版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
北京市航空航天大學(xué)附屬中學(xué)2025年高三第三次模擬考試數(shù)學(xué)試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.把滿足條件(1),,(2),,使得的函數(shù)稱為“D函數(shù)”,下列函數(shù)是“D函數(shù)”的個(gè)數(shù)為()①②③④⑤A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)2.趙爽是我國(guó)古代數(shù)學(xué)家、天文學(xué)家,大約在公元222年,趙爽為《周髀算經(jīng)》一書作序時(shí),介紹了“勾股圓方圖”,亦稱“趙爽弦圖”(以弦為邊長(zhǎng)得到的正方形是由4個(gè)全等的直角三角形再加上中間的一個(gè)小正方形組成的).類比“趙爽弦圖”.可類似地構(gòu)造如下圖所示的圖形,它是由3個(gè)全等的三角形與中間的一個(gè)小等邊三角形拼成一個(gè)大等邊三角形.設(shè),若在大等邊三角形中隨機(jī)取一點(diǎn),則此點(diǎn)取自小等邊三角形(陰影部分)的概率是()A. B. C. D.3.若非零實(shí)數(shù)、滿足,則下列式子一定正確的是()A. B.C. D.4.等差數(shù)列中,,,則數(shù)列前6項(xiàng)和為()A.18 B.24 C.36 D.725.已知是函數(shù)的極大值點(diǎn),則的取值范圍是A. B.C. D.6.三棱柱中,底面邊長(zhǎng)和側(cè)棱長(zhǎng)都相等,,則異面直線與所成角的余弦值為()A. B. C. D.7.函數(shù)在內(nèi)有且只有一個(gè)零點(diǎn),則a的值為()A.3 B.-3 C.2 D.-28.已知函數(shù)的圖像的一條對(duì)稱軸為直線,且,則的最小值為()A. B.0 C. D.9.已知集合A={x|y=lg(4﹣x2)},B={y|y=3x,x>0}時(shí),A∩B=()A.{x|x>﹣2}B.{x|1<x<2}C.{x|1≤x≤2}D.?10.已知函數(shù),則()A.函數(shù)在上單調(diào)遞增 B.函數(shù)在上單調(diào)遞減C.函數(shù)圖像關(guān)于對(duì)稱 D.函數(shù)圖像關(guān)于對(duì)稱11.已知函數(shù)為奇函數(shù),則()A. B.1 C.2 D.312.已知實(shí)數(shù)x,y滿足,則的最小值等于()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),,若函數(shù)有3個(gè)不同的零點(diǎn)x1,x2,x3(x1<x2<x3),則的取值范圍是_________.14.若一個(gè)正四面體的棱長(zhǎng)為1,四個(gè)頂點(diǎn)在同一個(gè)球面上,則此球的表面積為_________.15.已知內(nèi)角的對(duì)邊分別為外接圓的面積為,則的面積為_________.16.已知函數(shù)則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某大學(xué)生在開學(xué)季準(zhǔn)備銷售一種文具套盒進(jìn)行試創(chuàng)業(yè),在一個(gè)開學(xué)季內(nèi),每售出1盒該產(chǎn)品獲利50元,未售出的產(chǎn)品,每盒虧損30元.根據(jù)歷史資料,得到開學(xué)季市場(chǎng)需求量的頻率分布直方圖,如圖所示.該同學(xué)為這個(gè)開學(xué)季進(jìn)了160盒該產(chǎn)品,以(單位:盒,)表示這個(gè)開學(xué)季內(nèi)的市場(chǎng)需求量,(單位:元)表示這個(gè)開學(xué)季內(nèi)經(jīng)銷該產(chǎn)品的利潤(rùn).(1)根據(jù)直方圖估計(jì)這個(gè)開學(xué)季內(nèi)市場(chǎng)需求量的平均數(shù)和眾數(shù);(2)將表示為的函數(shù);(3)以需求量的頻率作為各需求量的概率,求開學(xué)季利潤(rùn)不少于4800元的概率.18.(12分)已知橢圓:(),點(diǎn)是的左頂點(diǎn),點(diǎn)為上一點(diǎn),離心率.(1)求橢圓的方程;(2)設(shè)過點(diǎn)的直線與的另一個(gè)交點(diǎn)為(異于點(diǎn)),是否存在直線,使得以為直徑的圓經(jīng)過點(diǎn),若存在,求出直線的方程;若不存在,說明理由.19.(12分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的極坐標(biāo)方程以及曲線的直角坐標(biāo)方程;(2)若直線與曲線、曲線在第一象限交于兩點(diǎn),且,點(diǎn)的坐標(biāo)為,求的面積.20.(12分)如圖,在四邊形ABCD中,AB//CD,∠ABD=30°,AB=2CD=2AD=2,DE⊥平面ABCD,EF//BD,且BD=2EF.(Ⅰ)求證:平面ADE⊥平面BDEF;(Ⅱ)若二面角CBFD的大小為60°,求CF與平面ABCD所成角的正弦值.21.(12分)某學(xué)校為了解全校學(xué)生的體重情況,從全校學(xué)生中隨機(jī)抽取了100人的體重?cái)?shù)據(jù),得到如下頻率分布直方圖,以樣本的頻率作為總體的概率.(1)估計(jì)這100人體重?cái)?shù)據(jù)的平均值和樣本方差;(結(jié)果取整數(shù),同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表)(2)從全校學(xué)生中隨機(jī)抽取3名學(xué)生,記為體重在的人數(shù),求的分布列和數(shù)學(xué)期望;(3)由頻率分布直方圖可以認(rèn)為,該校學(xué)生的體重近似服從正態(tài)分布.若,則認(rèn)為該校學(xué)生的體重是正常的.試判斷該校學(xué)生的體重是否正常?并說明理由.22.(10分)設(shè)函數(shù).(1)若函數(shù)在是單調(diào)遞減的函數(shù),求實(shí)數(shù)的取值范圍;(2)若,證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】
滿足(1)(2)的函數(shù)是偶函數(shù)且值域關(guān)于原點(diǎn)對(duì)稱,分別對(duì)所給函數(shù)進(jìn)行驗(yàn)證.【詳解】滿足(1)(2)的函數(shù)是偶函數(shù)且值域關(guān)于原點(diǎn)對(duì)稱,①不滿足(2);②不滿足(1);③不滿足(2);④⑤均滿足(1)(2).故選:B.本題考查新定義函數(shù)的問題,涉及到函數(shù)的性質(zhì),考查學(xué)生邏輯推理與分析能力,是一道容易題.2.A【解析】
根據(jù)幾何概率計(jì)算公式,求出中間小三角形區(qū)域的面積與大三角形面積的比值即可.【詳解】在中,,,,由余弦定理,得,所以.所以所求概率為.故選A.本題考查了幾何概型的概率計(jì)算問題,是基礎(chǔ)題.3.C【解析】
令,則,,將指數(shù)式化成對(duì)數(shù)式得、后,然后取絕對(duì)值作差比較可得.【詳解】令,則,,,,,因此,.故選:C.本題考查了利用作差法比較大小,同時(shí)也考查了指數(shù)式與對(duì)數(shù)式的轉(zhuǎn)化,考查推理能力,屬于中等題.4.C【解析】
由等差數(shù)列的性質(zhì)可得,根據(jù)等差數(shù)列的前項(xiàng)和公式可得結(jié)果.【詳解】∵等差數(shù)列中,,∴,即,∴,故選C.本題主要考查了等差數(shù)列的性質(zhì)以及等差數(shù)列的前項(xiàng)和公式的應(yīng)用,屬于基礎(chǔ)題.5.B【解析】
方法一:令,則,,當(dāng),時(shí),,單調(diào)遞減,∴時(shí),,,且,∴,即在上單調(diào)遞增,時(shí),,,且,∴,即在上單調(diào)遞減,∴是函數(shù)的極大值點(diǎn),∴滿足題意;當(dāng)時(shí),存在使得,即,又在上單調(diào)遞減,∴時(shí),,所以,這與是函數(shù)的極大值點(diǎn)矛盾.綜上,.故選B.方法二:依據(jù)極值的定義,要使是函數(shù)的極大值點(diǎn),須在的左側(cè)附近,,即;在的右側(cè)附近,,即.易知,時(shí),與相切于原點(diǎn),所以根據(jù)與的圖象關(guān)系,可得,故選B.6.B【解析】
設(shè),,,根據(jù)向量線性運(yùn)算法則可表示出和;分別求解出和,,根據(jù)向量夾角的求解方法求得,即可得所求角的余弦值.【詳解】設(shè)棱長(zhǎng)為1,,,由題意得:,,,又即異面直線與所成角的余弦值為:本題正確選項(xiàng):本題考查異面直線所成角的求解,關(guān)鍵是能夠通過向量的線性運(yùn)算、數(shù)量積運(yùn)算將問題轉(zhuǎn)化為向量夾角的求解問題.7.A【解析】
求出,對(duì)分類討論,求出單調(diào)區(qū)間和極值點(diǎn),結(jié)合三次函數(shù)的圖像特征,即可求解.【詳解】,若,,在單調(diào)遞增,且,在不存在零點(diǎn);若,,在內(nèi)有且只有一個(gè)零點(diǎn),.故選:A.本題考查函數(shù)的零點(diǎn)、導(dǎo)數(shù)的應(yīng)用,考查分類討論思想,熟練掌握函數(shù)圖像和性質(zhì)是解題的關(guān)鍵,屬于中檔題.8.D【解析】
運(yùn)用輔助角公式,化簡(jiǎn)函數(shù)的解析式,由對(duì)稱軸的方程,求得的值,得出函數(shù)的解析式,集合正弦函數(shù)的最值,即可求解,得到答案.【詳解】由題意,函數(shù)為輔助角,由于函數(shù)的對(duì)稱軸的方程為,且,即,解得,所以,又由,所以函數(shù)必須取得最大值和最小值,所以可設(shè),,所以,當(dāng)時(shí),的最小值,故選D.本題主要考查了正弦函數(shù)的圖象與性質(zhì),其中解答中利用三角恒等變換的公式,化簡(jiǎn)函數(shù)的解析式,合理利用正弦函數(shù)的對(duì)稱性與最值是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于中檔試題.9.B【解析】試題分析:由集合A中的函數(shù)y=lg(4-x2),得到4-x2>0,解得:-2<x<2,∴集合A={x|-2<x<2},由集合B中的函數(shù)考點(diǎn):交集及其運(yùn)算.10.C【解析】
依題意可得,即函數(shù)圖像關(guān)于對(duì)稱,再求出函數(shù)的導(dǎo)函數(shù),即可判斷函數(shù)的單調(diào)性;【詳解】解:由,,所以函數(shù)圖像關(guān)于對(duì)稱,又,在上不單調(diào).故正確的只有C,故選:C本題考查函數(shù)的對(duì)稱性的判定,利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,屬于基礎(chǔ)題.11.B【解析】
根據(jù)整體的奇偶性和部分的奇偶性,判斷出的值.【詳解】依題意是奇函數(shù).而為奇函數(shù),為偶函數(shù),所以為偶函數(shù),故,也即,化簡(jiǎn)得,所以.故選:B本小題主要考查根據(jù)函數(shù)的奇偶性求參數(shù)值,屬于基礎(chǔ)題.12.D【解析】
設(shè),,去絕對(duì)值,根據(jù)余弦函數(shù)的性質(zhì)即可求出.【詳解】因?yàn)閷?shí)數(shù),滿足,設(shè),,,恒成立,,故則的最小值等于.故選:.本題考查了橢圓的參數(shù)方程、三角函數(shù)的圖象和性質(zhì),考查了運(yùn)算能力和轉(zhuǎn)化能力,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
先根據(jù)題意,求出的解得或,然后求出f(x)的導(dǎo)函數(shù),求其單調(diào)性以及最值,在根據(jù)題意求出函數(shù)有3個(gè)不同的零點(diǎn)x1,x2,x3(x1<x2<x3),分情況討論求出的取值范圍.【詳解】解:令t=f(x),函數(shù)有3個(gè)不同的零點(diǎn),即+m=0有兩個(gè)不同的解,解之得即或因?yàn)榈膶?dǎo)函數(shù),令,解得x>e,,解得0<x<e,可得f(x)在(0,e)遞增,在遞減;f(x)的最大值為,且且f(1)=0;要使函數(shù)有3個(gè)不同的零點(diǎn),(1)有兩個(gè)不同的解,此時(shí)有一個(gè)解;(2)有兩個(gè)不同的解,此時(shí)有一個(gè)解當(dāng)有兩個(gè)不同的解,此時(shí)有一個(gè)解,此時(shí),不符合題意;或是不符合題意;所以只能是解得,此時(shí)=-m,此時(shí)有兩個(gè)不同的解,此時(shí)有一個(gè)解此時(shí),不符合題意;或是不符合題意;所以只能是解得,此時(shí)=,綜上:的取值范圍是故答案為本題主要考查了函數(shù)與導(dǎo)函數(shù)的綜合,考查到了函數(shù)的零點(diǎn),導(dǎo)函數(shù)的應(yīng)用,以及數(shù)形結(jié)合的思想、分類討論的思想,屬于綜合性極強(qiáng)的題目,屬于難題.14.【解析】
將四面體補(bǔ)成一個(gè)正方體,通過正方體的對(duì)角線與球的半徑的關(guān)系,得到球的半徑,利用球的表面積公式,即可求解.【詳解】如圖所示,將正四面體補(bǔ)形成一個(gè)正方體,則正四面體的外接球與正方體的外接球表示同一個(gè)球,因?yàn)檎拿骟w的棱長(zhǎng)為1,所以正方體的棱長(zhǎng)為,設(shè)球的半徑為,因?yàn)榍虻闹睆绞钦襟w的對(duì)角線,即,解得,所以球的表面積為.本題主要考查了有關(guān)求得組合體的結(jié)構(gòu)特征,以及球的表面積的計(jì)算,其中巧妙構(gòu)造正方體,利用正方體的外接球的直徑等于正方體的對(duì)角線長(zhǎng),得到球的半徑是解答的關(guān)鍵,著重考查了空間想象能力,以及運(yùn)算與求解能力,屬于基礎(chǔ)題.15.【解析】
由外接圓面積,求出外接圓半徑,然后由正弦定理可求得三角形的內(nèi)角,從而有,于是可得三角形邊長(zhǎng),可得面積.【詳解】設(shè)外接圓半徑為,則,由正弦定理,得,∴,,.故答案為:.本題考查正弦定理,利用正弦定理求出三角形的內(nèi)角,然后可得邊長(zhǎng),從而得面積,掌握正弦定理是解題關(guān)鍵.16.【解析】
先由解析式求得(2),再求(2).【詳解】(2),,所以(2),故答案為:本題考查對(duì)數(shù)、指數(shù)的運(yùn)算性質(zhì),分段函數(shù)求值關(guān)鍵是“對(duì)號(hào)入座”,屬于容易題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1),眾數(shù)為150;(2);(3)【解析】
(1)由頻率直方圖分別求出各組距內(nèi)的頻率,由此能求出這個(gè)開學(xué)季內(nèi)市場(chǎng)需求量的眾數(shù)和平均數(shù);(2)由已知條件推導(dǎo)出當(dāng)時(shí),,當(dāng)時(shí),,由此能將表示為的函數(shù);(3)利用頻率分布直方圖能求出利潤(rùn)不少于4800元的概率.【詳解】(1)由直方圖可估計(jì)需求量的眾數(shù)為150,由直方圖可知的頻率為:由直方圖可知的頻率為:由直方圖可知的頻率為:由直方圖可知的頻率為:由直方圖可知的頻率為:∴估計(jì)需求量的平均數(shù)為:(2)當(dāng)時(shí),當(dāng)時(shí),∴(3)由(2)知當(dāng)時(shí),當(dāng)時(shí),得∴開學(xué)季利潤(rùn)不少于4800元的需求量為由頻率分布直方圖可所求概率本題考查頻率分布直方圖的應(yīng)用,考查函數(shù)解析式的求法,考查概率的估計(jì),是中檔題,解題時(shí)要注意頻率分布直方圖的合理運(yùn)用.18.(1);(2)存在,【解析】
(1)把點(diǎn)代入橢圓C的方程,再結(jié)合離心率,可得a,b,c的關(guān)系,可得橢圓的方程;(2)設(shè)出直線的方程,代入橢圓,運(yùn)用韋達(dá)定理可求得點(diǎn)的坐標(biāo),再由,可求得直線的方程,要注意檢驗(yàn)直線是否和橢圓有兩個(gè)交點(diǎn).【詳解】(1)由題可得∴,所以橢圓的方程(2)由題知,設(shè),直線的斜率存在設(shè)為,則與橢圓聯(lián)立得,,∴,,∴若以為直徑的圓經(jīng)過點(diǎn),則,∴,化簡(jiǎn)得,∴,解得或因?yàn)榕c不重合,所以舍.所以直線的方程為.本題考查橢圓的簡(jiǎn)單性質(zhì),考查直線與橢圓位置關(guān)系的應(yīng)用,考查了向量的數(shù)量積的運(yùn)用,屬于中檔題.19.(1)的極坐標(biāo)方程為,的直角坐標(biāo)方程為(2)【解析】
(1)先把曲線的參數(shù)方程消參后,轉(zhuǎn)化為普通方程,再利用求得極坐標(biāo)方程.將,化為,再利用求得曲線的普通方程.(2)設(shè)直線的極角,代入,得,將代入,得,由,得,即,從而求得,,從而求得,再利用求解.【詳解】(1)依題意,曲線,即,故,即.因?yàn)椋?,即,?(2)將代入,得,將代入,得,由,得,得,解得,則.又,故,故的面積.本題考查極坐標(biāo)方程與直角坐標(biāo)方程、參數(shù)方程與普通方程的轉(zhuǎn)化、極坐標(biāo)的幾何意義,還考查推理論證能力以及數(shù)形結(jié)合思想,屬于中檔題.20.(1)見解析(2)【解析】分析:(1)根據(jù)面面垂直的判定定理即可證明平面ADE⊥平面BDEF;(2)建立空間直角坐標(biāo)系,利用空間向量法即可求CF與平面ABCD所成角的正弦值;也可以應(yīng)用常規(guī)法,作出線面角,放在三角形當(dāng)中來求解.詳解:(Ⅰ)在△ABD中,∠ABD=30°,由AO2=AB2+BD2-2AB·BDcos30°,解得BD=,所以AB2+BD2=AB2,根據(jù)勾股定理得∠ADB=90°∴AD⊥BD.又因?yàn)镈E⊥平面ABCD,AD平面ABCD,∴AD⊥DE.又因?yàn)锽DDE=D,所以AD⊥平面BDEF,又AD平面ABCD,∴平面ADE⊥平面BDEF,(Ⅱ)方法一:如圖,由已知可得,,則,則三角形BCD為銳角為30°的等腰三角形.則.過點(diǎn)C做,交DB、AB于點(diǎn)G,H,則點(diǎn)G為點(diǎn)F在面ABCD上的投影.連接FG,則,DE⊥平面ABCD,則平面.過G做于點(diǎn)I,則BF平面,即角為二面角CBFD的平面角,則60°.則,,則.在直角梯形BDEF中,G為BD中點(diǎn),,,,設(shè),則,,則.,則,即CF與平面ABCD所成角的正弦值為.(Ⅱ)方法二:可知DA、DB、DE兩兩垂直,以D為原點(diǎn),建立如圖所示的空間直角坐標(biāo)系D-xyz.設(shè)DE=h,則D(0,0,0),B(0,,0),C(-,-,h).,.設(shè)平面BCF的法向量為m=(x,y,z),則所以取x=,所以m=(,-1,-),取平面BDEF的法向量為n=(1,0,0),由,解得,則,又,則,設(shè)CF與平面ABCD所成角為,則sin=.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度爆炸物運(yùn)輸安全協(xié)議書3篇
- 服務(wù)行業(yè)安全管理工作總結(jié)
- 二零二五年度個(gè)人停車位使用權(quán)投資分紅協(xié)議4篇
- 二零二五年度離婚協(xié)議流程指導(dǎo)與婚姻登記服務(wù)合同2篇
- 二零二五年度智慧家居個(gè)人工程承包合同范本2篇
- 【培訓(xùn)教材】醫(yī)院消毒供應(yīng)中心(CSSD)技術(shù)操作規(guī)范解讀
- 通訊行業(yè)銷售總監(jiān)工作總結(jié)
- 二零二五年個(gè)人合伙清算協(xié)議書(清算后續(xù)合作)3篇
- 二零二五年度內(nèi)陸淡水水庫(kù)漁業(yè)開發(fā)承包合同3篇
- 二零二五年度家政服務(wù)銷售返利合同范本
- 豐順縣縣級(jí)集中式飲用水水源地基礎(chǔ)狀況調(diào)查和風(fēng)險(xiǎn)評(píng)估報(bào)告
- 重慶市2023-2024學(xué)年七年級(jí)上學(xué)期期末考試數(shù)學(xué)試題(含答案)
- 《七律二首 送瘟神》教案- 2023-2024學(xué)年高教版(2023)中職語文職業(yè)模塊
- 2024年中考語文滿分作文6篇(含題目)
- 2024年安全員之江蘇省C2證(土建安全員)題庫(kù)與答案
- 第一節(jié)-貨幣資金資料講解
- 2018注冊(cè)環(huán)保工程師考試公共基礎(chǔ)真題及答案
- 如何提高售后服務(wù)的快速響應(yīng)能力
- Unit-3-Reading-and-thinking課文詳解課件-高中英語人教版必修第二冊(cè)
- 婚介公司紅娘管理制度
- 煤礦電氣試驗(yàn)規(guī)程
評(píng)論
0/150
提交評(píng)論