Discrete Log Problem and Pollard's Methods:離散對數(shù)問題的方法_第1頁
Discrete Log Problem and Pollard's Methods:離散對數(shù)問題的方法_第2頁
Discrete Log Problem and Pollard's Methods:離散對數(shù)問題的方法_第3頁
Discrete Log Problem and Pollard's Methods:離散對數(shù)問題的方法_第4頁
Discrete Log Problem and Pollard's Methods:離散對數(shù)問題的方法_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

DiscreteLogProblemandPollard’sMethodsAlexLoOverviewDiscretelogproblemPollard’smethodsforcomputingdiscretelogsPollard’sRhoMethodPollard’sKangarooMethodComparemethodsConclusionDiscreteLogProblem(DLP)Gisafinitecyclicgroup(usuallymodp)g,haremembersofGsuchthat<g>generatesG(G={g,g2,g3,g4…gn=1}nistheorderofgFindxsuchthath=gx

WhyStudytheDLP?Severalcryptographicandsignaturealgorithms/methodslike

Diffie-HellmankeyexchangeprotocolUSGovernment’sDigitalSignatureAlgorithm(DSA)andellipticcurveversion(ECDSA) relyonthefactthatitishard.DifficultyofDLPCanbeprovendifficult(asopposedtointegerfactorization)Dependsonthesizeofthelargestprimefactorofthegroup(theorder)O(n),n=largestprimesuchthatn||G|DLPvs.IntegerFactorizationDLPisusedforsignatureandpublickey(Diffie-Hellman,DSS/DSA,ElGamal)DLPcanbeprovedtobehardAsolutiontotheIFproblemdoesnothelpwithDLPIntegerfactorizationusedforprotectingpublickeycryptosystems(RSA)IntegerfactorizationisbelievedtobehardAsolutiontotheDLPproblemyieldsasolutiontoIFproblemInitialMethodsExhaustivesearchRuntime:O(|G|)Spacerequirement:O(1)Shank’sBabyStep-GiantStepMethod(1971)Runtime:O( )Spacerequirement:O( )Pollard’sRhoMethod(1975)TheRhomethodreliesonthebirthdayparadox.Elementsdrawnatrandomfrom<g>thentheexpectednumberofdrawsbeforeanelementisdrawntwice(acollision)isDefinearandomwalkon<g>consistingofelementsoftheformgehdforknowneandd,waitforacollisionwithe’andd’suchthatgehd=ge’hd’andcomputeloggh=(e–e’)/(d’–d)modorder(g).

Pollard’sRhoMethodgehd=ge’hd’Pollard’sRhoMethodRandomWalkPartitionGintothreesubsets:G1,G2,G3withapproximatelyequalcardinality.Takew1=g(soe=1,d=0)anddefinewi+1asafunctionofwi:Pollard’sRhoMethodRandomWalkComparewitow2ifori=1,2….Whenwi=w2i,thenwehavegehd=ge’hd’,wecangetalinearequationforloggh:loggh=(e–e’)/(d’–d)modorder(g).

How?How? geihdi

=ge2ihd2ige2i-ei=hdi-d2ilogg

ge2i-ei

=logg

hdi-d2ilogg

h=e2i-ei/di-d2imodnAnalysis:Pollard’sRhoMethodForsufficientlylargen:Asymptoticanalysis:Spacerequirements:O(1)ProbabilisticParallelizationoftheRhoMethodTrivialparallelization(1990)Runsameprocessindependentlyonmmachines.Payoff:factorofspeedupDistinguished-pointmethod(1994/1999)Runsclient/serverPayoff:factorofmspeedupPollard’sKangarooMethod(1978)SubsetofDLP,whereGisafinitecyclicgroupg,haremembersofGsuchthat<g>generatesG(G={g,g2,g3,g4…gn=1}Findxsuchthath=gx

Assumeweknowa<=x<bPollard’sKangarooMethodDefinetwokangaroos:Atamekangaroo,T,startingpointt0=gb

Awildkangaroo,W,startingpointw0=hLetd0(T)=b,theinitialdistanceofTfromoriginLetd0(W)=0,theinitialdistanceofWfromhPollard’sKangarooMethodLetS={gs1,gs2,gs3,gs4….gsr}(si

>0)bethesetofjumpsWethinkofsi

astravelingdistances,whichshouldbesmallcomparedtob-aLetv:G{1,…,r}beahashfunctionPollard’sKangarooMethodNowweletthetamekangarootravelthroughthegroup:Whilecomputingpath,keeptrackofdj(T):Sotj=gdj(T)

Pollard’sKangarooMethodAfteracertainnumberofjumps,thetamekangaroostopsandinstallsatrapatit’sfinalspot,tm,wehopethewildkangaroowillhitthatpoint(oranyotherti)Thewildkangarooisthensetloose,followingthepath:Keeptrackofdj(W):Pollard’sKangarooMethodIfW’strailhitsanyofti

thenitwillleadustoasolution.WhenW’strailwn=tm,thesearchisover.x=dm(T)-dn(W)Otherwisethewildkangarooishaltedandanewwildkangaroowithstartingpointh*gz

issetoffPollard’sKangarooMethodGraphicAnalysis:Pollard’sKangarooMethodWisthesizeoftheinterval(b-a)Time:O(sqrt(W))Space:O(logW)ProbabilisticParallelizationoftheKangarooMethodTrivialparallelization(1990)Runsameprocessindependentlyonmmachines.Payoff:factorofspeedupDistinguished-pointmethod(1994/1999)Runsclient/serverPayoff:factorofmspeedupRhovs.KangarooRhoSimulatesarandomwalkonG(<g>)KangarooJumps wheresiaresmalldistancesinsqrt(b-a)Rhovs.KangarooIfa=0andb=|G|--so(b-a)=|G|,thekangaroomethodtakes1.6timeslongerthantherhomethod.Kangaroobeco

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論