2025年山東省新泰第一中學高三一??荚嚁祵W試題理試題含解析_第1頁
2025年山東省新泰第一中學高三一??荚嚁祵W試題理試題含解析_第2頁
2025年山東省新泰第一中學高三一模考試數學試題理試題含解析_第3頁
2025年山東省新泰第一中學高三一??荚嚁祵W試題理試題含解析_第4頁
2025年山東省新泰第一中學高三一??荚嚁祵W試題理試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025年山東省新泰第一中學高三一??荚嚁祵W試題理試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知某幾何體的三視圖如圖所示,則該幾何體的體積是()A. B.64 C. D.322.復數滿足,則復數在復平面內所對應的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知全集,集合,,則陰影部分表示的集合是()A. B. C. D.4.設,是雙曲線的左,右焦點,是坐標原點,過點作的一條漸近線的垂線,垂足為.若,則的離心率為()A. B. C. D.5.已知是邊長為的正三角形,若,則A. B.C. D.6.已知,,若,則向量在向量方向的投影為()A. B. C. D.7.圓心為且和軸相切的圓的方程是()A. B.C. D.8.設,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件9.已知函數是上的偶函數,是的奇函數,且,則的值為()A. B. C. D.10.已知向量,,若,則()A. B. C. D.11.如圖所示的程序框圖輸出的是126,則①應為()A. B. C. D.12.設,是非零向量,若對于任意的,都有成立,則A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若將函數的圖象沿軸向右平移個單位后所得的圖象與的圖象關于軸對稱,則的最小值為________________.14.已知雙曲線的一條漸近線方程為,則________.15.設為數列的前項和,若,則____16.已知雙曲線的左右焦點分別為,過的直線與雙曲線左支交于兩點,,的內切圓的圓心的縱坐標為,則雙曲線的離心率為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)求函數的單調遞增區(qū)間;(2)在△ABC中,角A,B,C所對的邊分別是a,b,c,若滿足,,,求.18.(12分)設函數.(Ⅰ)討論函數的單調性;(Ⅱ)若函數有兩個極值點,求證:.19.(12分)已知數列是等差數列,前項和為,且,.(1)求.(2)設,求數列的前項和.20.(12分)在直角坐標系中,已知曲線的參數方程為(為參數),以坐標原點為極點,軸的正半軸為極軸,建立極坐標系,直線的極坐標方程為.(1)求曲線的普通方程和直線的直角坐標方程;(2)若射線的極坐標方程為().設與相交于點,與相交于點,求.21.(12分)設函數,,.(1)求函數的單調區(qū)間;(2)若函數有兩個零點,().(i)求的取值范圍;(ii)求證:隨著的增大而增大.22.(10分)在如圖所示的多面體中,平面平面,四邊形是邊長為2的菱形,四邊形為直角梯形,四邊形為平行四邊形,且,,(1)若分別為,的中點,求證:平面;(2)若,與平面所成角的正弦值,求二面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】

根據三視圖,還原空間幾何體,即可得該幾何體的體積.【詳解】由該幾何體的三視圖,還原空間幾何體如下圖所示:可知該幾何體是底面在左側的四棱錐,其底面是邊長為4的正方形,高為4,故.故選:A本題考查了三視圖的簡單應用,由三視圖還原空間幾何體,棱錐體積的求法,屬于基礎題.2.B【解析】

設,則,可得,即可得到,進而找到對應的點所在象限.【詳解】設,則,,,所以復數在復平面內所對應的點為,在第二象限.故選:B本題考查復數在復平面內對應的點所在象限,考查復數的模,考查運算能力.3.D【解析】

先求出集合N的補集,再求出集合M與的交集,即為所求陰影部分表示的集合.【詳解】由,,可得或,又所以.故選:D.本題考查了韋恩圖表示集合,集合的交集和補集的運算,屬于基礎題.4.B【解析】

設過點作的垂線,其方程為,聯立方程,求得,,即,由,列出相應方程,求出離心率.【詳解】解:不妨設過點作的垂線,其方程為,由解得,,即,由,所以有,化簡得,所以離心率.故選:B.本題主要考查雙曲線的概念、直線與直線的位置關系等基礎知識,考查運算求解、推理論證能力,屬于中檔題.5.A【解析】

由可得,因為是邊長為的正三角形,所以,故選A.6.B【解析】

由,,,再由向量在向量方向的投影為化簡運算即可【詳解】∵∴,∴,∴向量在向量方向的投影為.故選:B.本題考查向量投影的幾何意義,屬于基礎題7.A【解析】

求出所求圓的半徑,可得出所求圓的標準方程.【詳解】圓心為且和軸相切的圓的半徑為,因此,所求圓的方程為.故選:A.本題考查圓的方程的求解,一般求出圓的圓心和半徑,考查計算能力,屬于基礎題.8.B【解析】

先解不等式化簡兩個條件,利用集合法判斷充分必要條件即可【詳解】解不等式可得,解絕對值不等式可得,由于為的子集,據此可知“”是“”的必要不充分條件.故選:B本題考查了必要不充分條件的判定,考查了學生數學運算,邏輯推理能力,屬于基礎題.9.B【解析】

根據函數的奇偶性及題設中關于與關系,轉換成關于的關系式,通過變形求解出的周期,進而算出.【詳解】為上的奇函數,,而函數是上的偶函數,,,故為周期函數,且周期為故選:B本題主要考查了函數的奇偶性,函數的周期性的應用,屬于基礎題.10.A【解析】

利用平面向量平行的坐標條件得到參數x的值.【詳解】由題意得,,,,解得.故選A.本題考查向量平行定理,考查向量的坐標運算,屬于基礎題.11.B【解析】試題分析:分析程序中各變量、各語句的作用,再根據流程圖所示的順序,可知:該程序的作用是累加S=2+22+…+2n的值,并輸出滿足循環(huán)的條件.解:分析程序中各變量、各語句的作用,再根據流程圖所示的順序,可知:該程序的作用是累加S=2+22+…+2n的值,并輸出滿足循環(huán)的條件.∵S=2+22+…+21=121,故①中應填n≤1.故選B點評:算法是新課程中的新增加的內容,也必然是新高考中的一個熱點,應高度重視.程序填空也是重要的考試題型,這種題考試的重點有:①分支的條件②循環(huán)的條件③變量的賦值④變量的輸出.其中前兩點考試的概率更大.此種題型的易忽略點是:不能準確理解流程圖的含義而導致錯誤.12.D【解析】

畫出,,根據向量的加減法,分別畫出的幾種情況,由數形結合可得結果.【詳解】由題意,得向量是所有向量中模長最小的向量,如圖,當,即時,最小,滿足,對于任意的,所以本題答案為D.本題主要考查了空間向量的加減法,以及點到直線的距離最短問題,解題的關鍵在于用有向線段正確表示向量,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

由題意利用函數的圖象變換規(guī)律,三角函數的圖像的對稱性,求得的最小值.【詳解】解:將函數的圖象沿軸向右平移個單位長度,可得的圖象.根據圖象與的圖象關于軸對稱,可得,,,即時,的最小值為.故答案為:.本題主要考查函數的圖象變換規(guī)律,正弦函數圖像的對稱性,屬于基礎題.14.【解析】

根據雙曲線的標準方程寫出雙曲線的漸近線方程,結合題意可求得正實數的值.【詳解】雙曲線的漸近線方程為,由于該雙曲線的一條漸近線方程為,,解得.故答案為:.本題考查利用雙曲線的漸近線方程求參數,考查計算能力,屬于基礎題.15.【解析】

當時,由,解得,當時,,兩式相減可得,即,可得數列是等比數列再求通項公式.【詳解】當時,,即,當時,,兩式相減可得,即,即,故數列是以為首項,為公比的等比數列,所以.故答案為:本題考查數列的前項和與通項公式的關系,還考查運算求解能力以及化歸與轉化思想,屬于基礎題.16.2【解析】

由題意畫出圖形,設內切圓的圓心為,圓分別切于,可得四邊形為正方形,再由圓的切線的性質結臺雙曲線的定義,求得的內切圓的圓心的縱坐標,結合已知列式,即可求得雙曲線的離心率.【詳解】設內切圓的圓心為,圓分別切于,連接,則,故四邊形為正方形,邊長為圓的半徑,由,,得,與重合,,,即——①,——②聯立①②解得:,又因圓心的縱坐標為,.故答案為:本題考查雙曲線的幾何性質,考查數形結合思想與運算求解能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)【解析】

(1)化簡得到,取,解得答案.(2),解得,根據余弦定理得到,再用一次余弦定理解得答案.【詳解】(1).取,解得.(2),因為,故,.根據余弦定理:,..本題考查了三角恒等變換,三角函數單調性,余弦定理,意在考查學生對于三角函數知識的綜合應用.18.(Ⅰ)見解析(Ⅱ)見解析【解析】

(Ⅰ)求導得到,討論,,三種情況得到單調區(qū)間.(Ⅱ)設,要證,即證,,設,根據函數單調性得到證明.【詳解】(Ⅰ),令,,(1)當,即時,,,在上單調遞增;(2)當,即時,設的兩根為(),,①若,,時,,所以在和上單調遞增,時,,所以在上單調遞減,②若,,時,,所以在上單調遞減,時,,所以在上單調遞增.綜上,當時,在上單調遞增;當時,在和上單調遞增,在上單調遞減;當時,在上單調遞減,在上單調遞增.(Ⅱ)不妨設,要證,即證,即證,由(Ⅰ)可知,,,可得,,所以有,令,,所以在單調遞增,所以,因為,所以,所以.本題考查了函數單調性,證明不等式,意在考查學生的分類討論能力和計算能力.19.(1)(2)【解析】

(1)由數列是等差數列,所以,解得,又由,解得,即可求得數列的通項公式;(2)由(1)得,利用乘公比錯位相減,即可求解數列的前n項和.【詳解】(1)由題意,數列是等差數列,所以,又,,由,得,所以,解得,所以數列的通項公式為.(2)由(1)得,,,兩式相減得,,即.本題主要考查等差的通項公式、以及“錯位相減法”求和的應用,此類題目是數列問題中的常見題型,解答中確定通項公式是基礎,準確計算求和是關鍵,易錯點是在“錯位”之后求和時,弄錯等比數列的項數,能較好的考查考生的數形結合思想、邏輯思維能力及基本計算能力等.20.(1)曲線的普通方程為;直線的直角坐標方程為(2)【解析】

(1)利用消去參數,將曲線的參數方程化成普通方程,利用互化公式,將直線的極坐標方程化為直角坐標方程;(2)根據(1)求出曲線的極坐標方程,分別聯立射線與曲線以及射線與直線的極坐標方程,求出和,即可求出.【詳解】解:(1)因為(為參數),所以消去參數,得,所以曲線的普通方程為.因為所以直線的直角坐標方程為.(2)曲線的極坐標方程為.設的極徑分別為和,將()代入,解得,將()代入,解得.故.本題考查利用消參法將參數方程化成普通方程以及利用互化公式將極坐標方程化為直角坐標方程,還考查極徑的運用和兩點間距離,屬于中檔題.21.(1)見解析;(2)(i)(ii)證明見解析【解析】

(1)求出導函數,分類討論即可求解;(2)(i)結合(1)的單調性分析函數有兩個零點求解參數取值范圍;(ii)設,通過轉化,討論函數的單調性得證.【詳解】(1)因為,所以當時,在上恒成立,所以在上單調遞增,當時,的解集為,的解集為,所以的單調增區(qū)間為,的單調減區(qū)間為;(2)(i)由(1)可知,當時,在上單調遞增,至多一個零點,不符題意,當時,因為有兩個零點,所以,解得,因為,且,所以存在,使得,又因為,設,則,所以單調遞增,所以,即,因為,所以存在,使得,綜上,;(ii)因為,所以,因為,所以,設,則,所以,解得,所以,所以,設,則,設,則,所以單調遞增,所以,所以,即,所以單調遞增,即隨著的增大而增大,所以隨著的增大而增大,命題得證.此題考查利用導函數處理函數的單調性,根據函數的零點個數求參數的取值范圍,通過等價轉化證明與零點相關的命題.22.(1)見解析(2)【解析】試題分析:(1)第(1)問,轉化成證明平面,再轉化成證明和.(2)第(2)問,先利用幾何法找到與平面所成角,再根據與平面所成角的正弦值為求出再建立空間直角坐標系,求出二面角的余弦值.試題解析:(1)連接,因為四邊形為菱形,所以.因為平面平面,平面平面,平面,,所以平面.又平面,所以.因為,所以.因為,所以平面.因為分別為,的中點,所以,所以平面(2)設,由(1)得平面.由,,得,.過點作,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論