版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2025年山東省曲阜市田家炳中學初三下第二次月考數(shù)學試題試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.甲隊修路120m與乙隊修路100m所用天數(shù)相同,已知甲隊比乙隊每天多修10m,設甲隊每天修路xm.依題意,下面所列方程正確的是A.B. C.D.2.已知點A(0,﹣4),B(8,0)和C(a,﹣a),若過點C的圓的圓心是線段AB的中點,則這個圓的半徑的最小值是()A. B. C. D.23.如圖,從正方形紙片的頂點沿虛線剪開,則∠1的度數(shù)可能是()A.44 B.45 C.46 D.474.中國古代人民很早就在生產(chǎn)生活中發(fā)現(xiàn)了許多有趣的數(shù)學問題,其中《孫子算經(jīng)》中有個問題:今有三人共車,二車空;二人共車,九人步,問人與車各幾何?這道題的意思是:今有若干人乘車,每三人乘一車,最終剩余2輛車,若每2人共乘一車,最終剩余9個人無車可乘,問有多少人,多少輛車?如果我們設有輛車,則可列方程()A. B.C. D.5.如圖,中,,且,設直線截此三角形所得陰影部分的面積為S,則S與t之間的函數(shù)關系的圖象為下列選項中的A. B. C. D.6.如圖是一個正方體被截去一角后得到的幾何體,從上面看得到的平面圖形是()A. B. C. D.7.如圖,直線m∥n,直角三角板ABC的頂點A在直線m上,則∠α的余角等于()A.19° B.38° C.42° D.52°8.若不等式組2x-1>3x≤a的整數(shù)解共有三個,則aA.5<a<6 B.5<a≤6 C.5≤a<6 D.5≤a≤69.若正多邊形的一個內(nèi)角是150°,則該正多邊形的邊數(shù)是()A.6B.12C.16D.1810.下列實數(shù)0,,,π,其中,無理數(shù)共有()A.1個 B.2個 C.3個 D.4個二、填空題(本大題共6個小題,每小題3分,共18分)11.如果,那么代數(shù)式的值是______.12.如圖,△ABC≌△ADE,∠EAC=40°,則∠B=_______°.13.如圖,某商店營業(yè)大廳自動扶梯AB的傾斜角為31°,AB的長為12米,則大廳兩層之間的高度為____米.(結果保留兩個有效數(shù)字)(參考數(shù)據(jù);sin31°=0.515,cos31°=0.857,tan31°=0.601)14.在中,若,則的度數(shù)是______.15.函數(shù)的自變量的取值范圍是.16.一個圓錐的側面展開圖是半徑為6,圓心角為120°的扇形,那么這個圓錐的底面圓的半徑為____.三、解答題(共8題,共72分)17.(8分)進入防汛期后,某地對河堤進行了加固.該地駐軍在河堤加固的工程中出色完成了任務.這是記者與駐軍工程指揮官的一段對話:通過這段對話,請你求出該地駐軍原來每天加固的米數(shù).18.(8分)計算:(﹣1)2018﹣2+|1﹣|+3tan30°.19.(8分)現(xiàn)有一次函數(shù)y=mx+n和二次函數(shù)y=mx2+nx+1,其中m≠0,若二次函數(shù)y=mx2+nx+1經(jīng)過點(2,0),(3,1),試分別求出兩個函數(shù)的解析式.若一次函數(shù)y=mx+n經(jīng)過點(2,0),且圖象經(jīng)過第一、三象限.二次函數(shù)y=mx2+nx+1經(jīng)過點(a,y1)和(a+1,y2),且y1>y2,請求出a的取值范圍.若二次函數(shù)y=mx2+nx+1的頂點坐標為A(h,k)(h≠0),同時二次函數(shù)y=x2+x+1也經(jīng)過A點,已知﹣1<h<1,請求出m的取值范圍.20.(8分)如圖,一農(nóng)戶要建一個矩形豬舍,豬舍的一邊利用長為12m的住房墻,另外三邊用25m長的建筑材料圍成,為方便進出,在垂直于住房墻的一邊留一個1m寬的門,所圍矩形豬舍的長、寬分別為多少時,豬舍面積為80m2?21.(8分)某手機店銷售部型和部型手機的利潤為元,銷售部型和部型手機的利潤為元.(1)求每部型手機和型手機的銷售利潤;(2)該手機店計劃一次購進,兩種型號的手機共部,其中型手機的進貨量不超過型手機的倍,設購進型手機部,這部手機的銷售總利潤為元.①求關于的函數(shù)關系式;②該手機店購進型、型手機各多少部,才能使銷售總利潤最大?(3)在(2)的條件下,該手機店實際進貨時,廠家對型手機出廠價下調(diào)元,且限定手機店最多購進型手機部,若手機店保持同種手機的售價不變,設計出使這部手機銷售總利潤最大的進貨方案.22.(10分)問題提出(1)如圖1,正方形ABCD的對角線交于點O,△CDE是邊長為6的等邊三角形,則O、E之間的距離為;問題探究(2)如圖2,在邊長為6的正方形ABCD中,以CD為直徑作半圓O,點P為弧CD上一動點,求A、P之間的最大距離;問題解決(3)窯洞是我省陜北農(nóng)村的主要建筑,窯洞賓館更是一道靚麗的風景線,是因為窯洞除了它的堅固性及特有的外在美之外,還具有冬暖夏涼的天然優(yōu)點家住延安農(nóng)村的一對即將參加中考的雙胞胎小寶和小貝兩兄弟,發(fā)現(xiàn)自家的窯洞(如圖3所示)的門窗是由矩形ABCD及弓形AMD組成,AB=2m,BC=3.2m,弓高MN=1.2m(N為AD的中點,MN⊥AD),小寶說,門角B到門窗弓形弧AD的最大距離是B、M之間的距離.小貝說這不是最大的距離,你認為誰的說法正確?請通過計算求出門角B到門窗弓形弧AD的最大距離.23.(12分)某漁業(yè)養(yǎng)殖場,對每天打撈上來的魚,一部分由工人運到集貿(mào)市場按10元/斤銷售,剩下的全部按3元/斤的購銷合同直接包銷給外面的某公司:養(yǎng)殖場共有30名工人,每名工人只能參與打撈與到集貿(mào)市場銷售中的一項工作,且每人每天可以打撈魚100斤或銷售魚50斤,設安排x名員工負責打撈,剩下的負責到市場銷售.(1)若養(yǎng)殖場一天的總銷售收入為y元,求y與x的函數(shù)關系式;(2)若合同要求每天銷售給外面某公司的魚至少200斤,在遵守合同的前提下,問如何分配工人,才能使一天的銷售收入最大?并求出最大值.24.如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點O作OE∥AB,交BC于E.(1)求證:ED為⊙O的切線;(2)若⊙O的半徑為3,ED=4,EO的延長線交⊙O于F,連DF、AF,求△ADF的面積.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】分析:甲隊每天修路xm,則乙隊每天修(x-10)m,因為甲、乙兩隊所用的天數(shù)相同,所以,。故選A。2、B【解析】
首先求得AB的中點D的坐標,然后求得經(jīng)過點D且垂直于直線y=-x的直線的解析式,然后求得與y=-x的交點坐標,再求得交點與D之間的距離即可.【詳解】AB的中點D的坐標是(4,-2),∵C(a,-a)在一次函數(shù)y=-x上,∴設過D且與直線y=-x垂直的直線的解析式是y=x+b,把(4,-2)代入解析式得:4+b=-2,解得:b=-1,則函數(shù)解析式是y=x-1.根據(jù)題意得:,解得:,則交點的坐標是(3,-3).則這個圓的半徑的最小值是:=.
故選:B本題考查了待定系數(shù)法求函數(shù)的解析式,以及兩直線垂直的條件,正確理解C(a,-a),一定在直線y=-x上,是關鍵.3、A【解析】
連接正方形的對角線,然后依據(jù)正方形的性質進行判斷即可.【詳解】解:如圖所示:∵四邊形為正方形,∴∠1=45°.∵∠1<∠1.∴∠1<45°.故選:A.本題主要考查的是正方形的性質,熟練掌握正方形的性質是解題的關鍵.4、A【解析】
根據(jù)每三人乘一車,最終剩余2輛車,每2人共乘一車,最終剩余1個人無車可乘,進而表示出總人數(shù)得出等式即可.【詳解】設有x輛車,則可列方程:
3(x-2)=2x+1.
故選:A.此題主要考查了由實際問題抽象出一元一次方程,正確表示總人數(shù)是解題關鍵.5、D【解析】
Rt△AOB中,AB⊥OB,且AB=OB=3,所以很容易求得∠AOB=∠A=45°;再由平行線的性質得出∠OCD=∠A,即∠AOD=∠OCD=45°,進而證明OD=CD=t;最后根據(jù)三角形的面積公式,解答出S與t之間的函數(shù)關系式,由函數(shù)解析式來選擇圖象.【詳解】解:∵Rt△AOB中,AB⊥OB,且AB=OB=3,∴∠AOB=∠A=45°,∵CD⊥OB,∴CD∥AB,∴∠OCD=∠A,∴∠AOD=∠OCD=45°,∴OD=CD=t,∴S△OCD=×OD×CD=t2(0≤t≤3),即S=t2(0≤t≤3).故S與t之間的函數(shù)關系的圖象應為定義域為[0,3],開口向上的二次函數(shù)圖象;故選D.本題主要考查的是二次函數(shù)解析式的求法及二次函數(shù)的圖象特征,解答本題的關鍵是根據(jù)三角形的面積公式,解答出S與t之間的函數(shù)關系式,由函數(shù)解析式來選擇圖象.6、B【解析】
根據(jù)俯視圖是從上面看到的圖形可得俯視圖為正方形以及右下角一個三角形.【詳解】從上面看,是正方形右邊有一條斜線,如圖:故選B.考查了三視圖的知識,根據(jù)俯視圖是從物體的上面看得到的視圖得出是解題關鍵.7、D【解析】試題分析:過C作CD∥直線m,∵m∥n,∴CD∥m∥n,∴∠DCA=∠FAC=52°,∠α=∠DCB,∵∠ACB=90°,∴∠α=90°﹣52°=38°,則∠a的余角是52°.故選D.考點:平行線的性質;余角和補角.8、C【解析】
首先確定不等式組的解集,利用含a的式子表示,根據(jù)整數(shù)解的個數(shù)就可以確定有哪些整數(shù)解,根據(jù)解的情況可以得到關于a的不等式,從而求出a的范圍.【詳解】解不等式組得:2<x≤a,∵不等式組的整數(shù)解共有3個,∴這3個是3,4,5,因而5≤a<1.故選C.本題考查了一元一次不等式組的整數(shù)解,正確解出不等式組的解集,確定a的范圍,是解答本題的關鍵.求不等式組的解集,應遵循以下原則:同大取較大,同小取較小,小大大小中間找,大大小小解不了.9、B【解析】設多邊形的邊數(shù)為n,則有(n-2)×180°=n×150°,解得:n=12,故選B.10、B【解析】
根據(jù)無理數(shù)的概念可判斷出無理數(shù)的個數(shù).【詳解】解:無理數(shù)有:,.故選B.本題主要考查了無理數(shù)的定義,注意帶根號的要開不盡方才是無理數(shù),無限不循環(huán)小數(shù)為無理數(shù).二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】分析:對所求代數(shù)式根據(jù)分式的混合運算順序進行化簡,再把變形后整體代入即可.詳解:故答案為1.點睛:考查分式的混合運算,掌握運算順序是解題的關鍵.注意整體代入法的運用.12、1°【解析】
根據(jù)全等三角形的對應邊相等、對應角相等得到∠BAC=∠DAE,AB=AD,根據(jù)等腰三角形的性質和三角形內(nèi)角和定理計算即可.【詳解】∵△ABC≌△ADE,∴∠BAC=∠DAE,AB=AD,∴∠BAD=∠EAC=40°,∴∠B=(180°-40°)÷2=1°,故答案為1.本題考查的是全等三角形的性質和三角形內(nèi)角和定理,掌握全等三角形的對應邊相等、對應角相等是解題的關鍵.13、6.2【解析】
根據(jù)題意和銳角三角函數(shù)可以求得BC的長,從而可以解答本題.【詳解】解:在Rt△ABC中,∵∠ACB=90°,∴BC=AB?sin∠BAC=12×0.515≈6.2(米),答:大廳兩層之間的距離BC的長約為6.2米.故答案為:6.2.本題考查解直角三角形的應用,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用銳角三角函數(shù)和數(shù)形結合的思想解答.14、【解析】
先根據(jù)非負數(shù)的性質求出,,再由特殊角的三角函數(shù)值求出與的值,根據(jù)三角形內(nèi)角和定理即可得出結論.【詳解】在中,,,,,,,故答案為:.本題考查了非負數(shù)的性質以及特殊角的三角函數(shù)值,熟練掌握特殊角的三角函數(shù)值是解題的關鍵.15、x≠1【解析】該題考查分式方程的有關概念根據(jù)分式的分母不為0可得X-1≠0,即x≠1那么函數(shù)y=的自變量的取值范圍是x≠116、2【解析】
試題分析:設此圓錐的底面半徑為r,根據(jù)圓錐的側面展開圖扇形的弧長等于圓錐底面周長可得,2πr=,解得r=2cm.考點:圓錐側面展開扇形與底面圓之間的關系.三、解答題(共8題,共72分)17、300米【解析】
解:設原來每天加固x米,根據(jù)題意,得.去分母,得1200+4200=18x(或18x=5400)解得.檢驗:當時,(或分母不等于0).∴是原方程的解.答:該地駐軍原來每天加固300米.18、﹣6+2【解析】分析:直接利用二次根式的性質以及絕對值的性質和特殊角的三角函數(shù)值分別化簡求出答案.詳解:原式=1﹣6+﹣1+3×=﹣5+﹣1+=﹣6+2.點睛:此題主要考查了實數(shù)運算,正確化簡各數(shù)是解題關鍵.19、(1)y=x﹣2,y=x2++1;(2)a<;(3)m<﹣2或m>1.【解析】
(1)直接將點代入函數(shù)解析式,用待定系數(shù)法即可求解函數(shù)解析式;(2)點(2,1)代入一次函數(shù)解析式,得到n=?2m,利用m與n的關系能求出二次函數(shù)對稱軸x=1,由一次函數(shù)經(jīng)過一、三象限可得m>1,確定二次函數(shù)開口向上,此時當y1>y2,只需讓a到對稱軸的距離比a+1到對稱軸的距離大即可求a的范圍.(3)將A(h,k)分別代入兩個二次函數(shù)解析式,再結合對稱抽得h=,將得到的三個關系聯(lián)立即可得到,再由題中已知?1<h<1,利用h的范圍求出m的范圍.【詳解】(1)將點(2,1),(3,1),代入一次函數(shù)y=mx+n中,,解得,∴一次函數(shù)的解析式是y=x﹣2,再將點(2,1),(3,1),代入二次函數(shù)y=mx2+nx+1,,解得,∴二次函數(shù)的解析式是.(2)∵一次函數(shù)y=mx+n經(jīng)過點(2,1),∴n=﹣2m,∵二次函數(shù)y=mx2+nx+1的對稱軸是x=,∴對稱軸為x=1,又∵一次函數(shù)y=mx+n圖象經(jīng)過第一、三象限,∴m>1,∵y1>y2,∴1﹣a>1+a﹣1,∴a<.(3)∵y=mx2+nx+1的頂點坐標為A(h,k),∴k=mh2+nh+1,且h=,又∵二次函數(shù)y=x2+x+1也經(jīng)過A點,∴k=h2+h+1,∴mh2+nh+1=h2+h+1,∴,又∵﹣1<h<1,∴m<﹣2或m>1.本題考點:點與函數(shù)的關系;二次函數(shù)的對稱軸與函數(shù)值關系;待定系數(shù)法求函數(shù)解析式;不等式的解法;數(shù)形結合思想是解決二次函數(shù)問題的有效方法.20、10,1.【解析】試題分析:可以設矩形豬舍垂直于住房墻一邊長為m,可以得出平行于墻的一邊的長為m,由題意得出方程求出邊長的值.試題解析:設矩形豬舍垂直于住房墻一邊長為m,可以得出平行于墻的一邊的長為m,由題意得化簡,得,解得:當時,(舍去),當時,,答:所圍矩形豬舍的長為10m、寬為1m.考點:一元二次方程的應用題.21、(1)每部型手機的銷售利潤為元,每部型手機的銷售利潤為元;(2)①;②手機店購進部型手機和部型手機的銷售利潤最大;(3)手機店購進部型手機和部型手機的銷售利潤最大.【解析】
(1)設每部型手機的銷售利潤為元,每部型手機的銷售利潤為元,根據(jù)題意列出方程組求解即可;(2)①根據(jù)總利潤=銷售A型手機的利潤+銷售B型手機的利潤即可列出函數(shù)關系式;②根據(jù)題意,得,解得,根據(jù)一次函數(shù)的增減性可得當當時,取最大值;(3)根據(jù)題意,,,然后分①當時,②當時,③當時,三種情況進行討論求解即可.【詳解】解:(1)設每部型手機的銷售利潤為元,每部型手機的銷售利潤為元.根據(jù)題意,得,解得答:每部型手機的銷售利潤為元,每部型手機的銷售利潤為元.(2)①根據(jù)題意,得,即.②根據(jù)題意,得,解得.,,隨的增大而減小.為正整數(shù),當時,取最大值,.即手機店購進部型手機和部型手機的銷售利潤最大.(3)根據(jù)題意,得.即,.①當時,隨的增大而減小,當時,取最大值,即手機店購進部型手機和部型手機的銷售利潤最大;②當時,,,即手機店購進型手機的數(shù)量為滿足的整數(shù)時,獲得利潤相同;③當時,,隨的增大而增大,當時,取得最大值,即手機店購進部型手機和部型手機的銷售利潤最大.本題主要考查一次函數(shù)的應用,二元一次方程組的應用,解此題的關鍵在于熟練掌握一次函數(shù)的增減性.22、(1);(2);(2)小貝的說法正確,理由見解析,.【解析】
(1)連接AC,BD,由OE垂直平分DC可得DH長,易知OH、HE長,相加即可;(2)補全⊙O,連接AO并延長交⊙O右半側于點P,則此時A、P之間的距離最大,在Rt△AOD中,由勾股定理可得AO長,易求AP長;(1)小貝的說法正確,補全弓形弧AD所在的⊙O,連接ON,OA,OD,過點O作OE⊥AB于點E,連接BO并延長交⊙O上端于點P,則此時B、P之間的距離即為門角B到門窗弓形弧AD的最大距離,在Rt△ANO中,設AO=r,由勾股定理可求出r,在Rt△OEB中,由勾股定理可得BO長,易知BP長.【詳解】解:(1)如圖1,連接AC,BD,對角線交點為O,連接OE交CD于H,則OD=OC.∵△DCE為等邊三角形,∴ED=EC,∵OD=OC∴OE垂直平分DC,∴DHDC=1.∵四邊形ABCD為正方形,∴△OHD為等腰直角三角形,∴OH=DH=1,在Rt△DHE中,HEDH=1,∴OE=HE+OH=11;(2)如圖2,補全⊙O,連接AO并延長交⊙O右半側于點P,則此時A、P之間的距離最大,在Rt△AOD中,AD=6,DO=1,∴AO1,∴AP=AO+OP=11;(1)小貝的說法正確.理由如下,如圖1,補全弓形弧AD所在的⊙O,連接ON,OA,OD,過點O作OE⊥AB于點E,連接BO并延長交⊙O上端于點P,則此時B、P之間的距離即為門角B到門窗弓形弧AD的最大距離,由題意知,點N為AD的中點,,∴ANAD=1.6,ON⊥AD,在Rt△ANO中,設AO=r,則ON=r﹣1.2.∵AN2+ON2=AO2,∴1.62+(r﹣1.2)2=r2,解得:r,∴AE=ON1.2,在Rt△OEB中,OE=AN=1.6,BE=AB﹣AE,∴BO,∴BP=BO+PO,∴門角B到門窗弓形弧AD的最大距離為.本題考查了圓與多邊形的綜合,涉及了圓的有關概念及性質、等邊三角形的性質、正方形和長方形的性質、勾股定理等,靈活的利用兩點之間線段最短,添加輔助線將題中所求最大距離轉化為圓外一點到圓上的最大距離是解題的關鍵.23、(1)y=﹣50x+10500;(2)安排12人打撈,18人銷售可使銷售利潤最大,最大銷售利潤為9900元.【解析】
(1)根據(jù)題意可以得到y(tǒng)關于x的函數(shù)解析式,本題得以解決;(2)根據(jù)題意可以得到x的不等式組,從而可以求得x的取值范圍,從而可以得到y(tǒng)的最大值,本題得以解決.【詳解】(1)由題意可得,y=10×50(30﹣x)+3[100x﹣50(30﹣x)]=﹣50x+10500,即y與x的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 鐵路工程臨時用工合同
- 二零二五年高端冷鏈庫房租賃及冷鏈物流合作協(xié)議3篇
- 橋梁建設班組施工合同
- 舊城改造施工合同毛利研究
- 中銀個人助業(yè)貸款合同(2024年度專用)
- 健身房連鎖店租約合同模板
- 舞蹈室破碎施工合同
- 臨時攝影師助理合同
- 風力發(fā)電場鉆探施工合同范本
- 水域使用權房產(chǎn)交易附加協(xié)議
- 分期還款協(xié)議書
- 小區(qū)住戶手冊范本
- ??低?視頻監(jiān)控原理培訓教材課件
- 《鄭伯克段于鄢》-完整版課件
- 土壤肥料全套課件
- 畢業(yè)生延期畢業(yè)申請表
- 學校6S管理制度
- 肽的健康作用及應用課件
- T.C--M-ONE效果器使用手冊
- 8小時等效A聲級計算工具
- 人教版七年級下冊數(shù)學計算題300道
評論
0/150
提交評論