2024屆浙江省寧波市北侖區(qū)長(zhǎng)江中學(xué)中考數(shù)學(xué)最后一模試卷含解析_第1頁(yè)
2024屆浙江省寧波市北侖區(qū)長(zhǎng)江中學(xué)中考數(shù)學(xué)最后一模試卷含解析_第2頁(yè)
2024屆浙江省寧波市北侖區(qū)長(zhǎng)江中學(xué)中考數(shù)學(xué)最后一模試卷含解析_第3頁(yè)
2024屆浙江省寧波市北侖區(qū)長(zhǎng)江中學(xué)中考數(shù)學(xué)最后一模試卷含解析_第4頁(yè)
2024屆浙江省寧波市北侖區(qū)長(zhǎng)江中學(xué)中考數(shù)學(xué)最后一模試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆浙江省寧波市北侖區(qū)長(zhǎng)江中學(xué)中考數(shù)學(xué)最后一模試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.李老師為了了解學(xué)生暑期在家的閱讀情況,隨機(jī)調(diào)查了20名學(xué)生某一天的閱讀小時(shí)數(shù),具體情況統(tǒng)計(jì)如下:閱讀時(shí)間(小時(shí))22.533.54學(xué)生人數(shù)(名)12863則關(guān)于這20名學(xué)生閱讀小時(shí)數(shù)的說法正確的是()A.眾數(shù)是8 B.中位數(shù)是3C.平均數(shù)是3 D.方差是0.342.一、單選題點(diǎn)P(2,﹣1)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)P′的坐標(biāo)是()A.(﹣2,1) B.(﹣2,﹣1) C.(﹣1,2) D.(1,﹣2)3.單項(xiàng)式2a3b的次數(shù)是()A.2 B.3 C.4 D.54.如圖,在△ABC中,EF∥BC,AB=3AE,若S四邊形BCFE=16,則S△ABC=()A.16 B.18 C.20 D.245.如圖,點(diǎn)C、D是線段AB上的兩點(diǎn),點(diǎn)D是線段AC的中點(diǎn).若AB=10cm,BC=4cm,則線段DB的長(zhǎng)等于()A.2cm B.3cm C.6cm D.7cm6.二次函數(shù)y=-x2-4x+5的最大值是()A.-7 B.5 C.0 D.97.如圖,⊙O與直線l1相離,圓心O到直線l1的距離OB=2,OA=4,將直線l1繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°后得到的直線l2剛好與⊙O相切于點(diǎn)C,則OC=()A.1 B.2 C.3 D.48.如圖,直線AB∥CD,∠A=70°,∠C=40°,則∠E等于()A.30° B.40°C.60° D.70°9.根據(jù)下表中的二次函數(shù)的自變量與函數(shù)的對(duì)應(yīng)值,可判斷該二次函數(shù)的圖象與軸().

…A.只有一個(gè)交點(diǎn) B.有兩個(gè)交點(diǎn),且它們分別在軸兩側(cè)C.有兩個(gè)交點(diǎn),且它們均在軸同側(cè) D.無交點(diǎn)10.以x為自變量的二次函數(shù)y=x2﹣2(b﹣2)x+b2﹣1的圖象不經(jīng)過第三象限,則實(shí)數(shù)b的取值范圍是()A.b≥1.25 B.b≥1或b≤﹣1 C.b≥2 D.1≤b≤211.已知拋物線y=ax2+bx+c與x軸交于點(diǎn)A和點(diǎn)B,頂點(diǎn)為P,若△ABP組成的三角形恰為等腰直角三角形,則b2﹣4ac的值為()A.1 B.4 C.8 D.1212.如果菱形的一邊長(zhǎng)是8,那么它的周長(zhǎng)是()A.16 B.32 C.163 D.323二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.在一條筆直的公路上有A、B、C三地,C地位于A、B兩地之間.甲車從A地沿這條公路勻速駛向C地,乙車從B地沿這條公路勻速駛向A地,在甲、乙行駛過程中,甲、乙兩車各自與C地的距離y(km)與甲車行駛時(shí)間t(h)之間的函數(shù)關(guān)系如圖所示.則當(dāng)乙車到達(dá)A地時(shí),甲車已在C地休息了_____小時(shí).14.內(nèi)接于圓,設(shè),圓的半徑為,則所對(duì)的劣弧長(zhǎng)為_____(用含的代數(shù)式表示).15.已知是方程組的解,則3a﹣b的算術(shù)平方根是_____.16.閱讀理解:引入新數(shù),新數(shù)滿足分配律,結(jié)合律,交換律.已知,那么________.17.如圖Rt△ABC中,∠C=90°,AC=6,BC=8,D是AB的中點(diǎn),P是直線BC上一點(diǎn),把△BDP沿PD所在直線翻折后,點(diǎn)B落在點(diǎn)Q處,如果QD⊥BC,那么點(diǎn)P和點(diǎn)B間的距離等于____.18.如圖,四邊形ABCD為矩形,H、F分別為AD、BC邊的中點(diǎn),四邊形EFGH為矩形,E、G分別在AB、CD邊上,則圖中四個(gè)直角三角形面積之和與矩形EFGH的面積之比為_____.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖(1),P為△ABC所在平面上一點(diǎn),且∠APB=∠BPC=∠CPA=120°,則點(diǎn)P叫做△ABC的費(fèi)馬點(diǎn).(1)如果點(diǎn)P為銳角△ABC的費(fèi)馬點(diǎn),且∠ABC=60°.①求證:△ABP∽△BCP;②若PA=3,PC=4,則PB=.(2)已知銳角△ABC,分別以AB、AC為邊向外作正△ABE和正△ACD,CE和BD相交于P點(diǎn).如圖(2)①求∠CPD的度數(shù);②求證:P點(diǎn)為△ABC的費(fèi)馬點(diǎn).20.(6分)為營(yíng)造“安全出行”的良好交通氛圍,實(shí)時(shí)監(jiān)控道路交迸,某市交管部門在路口安裝的高清攝像頭如圖所示,立桿MA與地面AB垂直,斜拉桿CD與AM交于點(diǎn)C,橫桿DE∥AB,攝像頭EF⊥DE于點(diǎn)E,AC=55米,CD=3米,EF=0.4米,∠CDE=162°.求∠MCD的度數(shù);求攝像頭下端點(diǎn)F到地面AB的距離.(精確到百分位)21.(6分)A、B、C三人玩籃球傳球游戲,游戲規(guī)則是:第一次傳球由A將球隨機(jī)地傳給B、C兩人中的某一人,以后的每一次傳球都是由上次的傳球者隨機(jī)地傳給其他兩人中的某一人.(1)求兩次傳球后,球恰在B手中的概率;(2)求三次傳球后,球恰在A手中的概率.22.(8分)一個(gè)不透明的袋子中裝有紅、白兩種顏色的小球,這些球除顏色外都相同,其中紅球有1個(gè),若從中隨機(jī)摸出一個(gè)球,這個(gè)球是白球的概率為.求袋子中白球的個(gè)數(shù);(請(qǐng)通過列式或列方程解答)隨機(jī)摸出一個(gè)球后,放回并攪勻,再隨機(jī)摸出一個(gè)球,求兩次都摸到相同顏色的小球的概率.(請(qǐng)結(jié)合樹狀圖或列表解答)23.(8分)二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a≠1)中的x與y的部分對(duì)應(yīng)值如表x

﹣1

1

1

3

y

﹣1

3

5

3

下列結(jié)論:①ac<1;②當(dāng)x>1時(shí),y的值隨x值的增大而減?。?是方程ax2+(b﹣1)x+c=1的一個(gè)根;④當(dāng)﹣1<x<3時(shí),ax2+(b﹣1)x+c>1.其中正確的結(jié)論是.24.(10分)小馬虎做一道數(shù)學(xué)題,“已知兩個(gè)多項(xiàng)式,,試求.”其中多項(xiàng)式的二次項(xiàng)系數(shù)印刷不清楚.小馬虎看答案以后知道,請(qǐng)你替小馬虎求出系數(shù)“”;在(1)的基礎(chǔ)上,小馬虎已經(jīng)將多項(xiàng)式正確求出,老師又給出了一個(gè)多項(xiàng)式,要求小馬虎求出的結(jié)果.小馬虎在求解時(shí),誤把“”看成“”,結(jié)果求出的答案為.請(qǐng)你替小馬虎求出“”的正確答案.25.(10分)如圖,拋物線y=﹣x2﹣x+4與x軸交于A,B兩點(diǎn)(A在B的左側(cè)),與y軸交于點(diǎn)C.(1)求點(diǎn)A,點(diǎn)B的坐標(biāo);(2)P為第二象限拋物線上的一個(gè)動(dòng)點(diǎn),求△ACP面積的最大值.26.(12分)(2013年四川綿陽(yáng)12分)如圖,AB是⊙O的直徑,C是半圓O上的一點(diǎn),AC平分∠DAB,AD⊥CD,垂足為D,AD交⊙O于E,連接CE.(1)判斷CD與⊙O的位置關(guān)系,并證明你的結(jié)論;(2)若E是的中點(diǎn),⊙O的半徑為1,求圖中陰影部分的面積.27.(12分)某農(nóng)場(chǎng)要建一個(gè)長(zhǎng)方形ABCD的養(yǎng)雞場(chǎng),雞場(chǎng)的一邊靠墻,(墻長(zhǎng)25m)另外三邊用木欄圍成,木欄長(zhǎng)40m.(1)若養(yǎng)雞場(chǎng)面積為168m2,求雞場(chǎng)垂直于墻的一邊AB的長(zhǎng).(2)請(qǐng)問應(yīng)怎樣圍才能使養(yǎng)雞場(chǎng)面積最大?最大的面積是多少?

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、B【解析】

A、根據(jù)眾數(shù)的定義找出出現(xiàn)次數(shù)最多的數(shù);B、根據(jù)中位數(shù)的定義將這組數(shù)據(jù)從小到大重新排列,求出最中間的2個(gè)數(shù)的平均數(shù),即可得出中位數(shù);C、根據(jù)加權(quán)平均數(shù)公式代入計(jì)算可得;D、根據(jù)方差公式計(jì)算即可.【詳解】解:A、由統(tǒng)計(jì)表得:眾數(shù)為3,不是8,所以此選項(xiàng)不正確;B、隨機(jī)調(diào)查了20名學(xué)生,所以中位數(shù)是第10個(gè)和第11個(gè)學(xué)生的閱讀小時(shí)數(shù),都是3,故中位數(shù)是3,所以此選項(xiàng)正確;C、平均數(shù)=,所以此選項(xiàng)不正確;D、S2=×[(2﹣3.35)2+2(2.5﹣3.35)2+8(3﹣3.35)2+6(3.5﹣3.35)2+3(4﹣3.35)2]==0.2825,所以此選項(xiàng)不正確;故選B.【點(diǎn)睛】本題考查方差;加權(quán)平均數(shù);中位數(shù);眾數(shù).2、A【解析】

根據(jù)“關(guān)于原點(diǎn)對(duì)稱的點(diǎn),橫坐標(biāo)與縱坐標(biāo)都互為相反數(shù)”解答.【詳解】解:點(diǎn)P(2,-1)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)是(-2,1).故選A.【點(diǎn)睛】本題考查了關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo),解決本題的關(guān)鍵是掌握好對(duì)稱點(diǎn)的坐標(biāo)規(guī)律:關(guān)于原點(diǎn)對(duì)稱的點(diǎn),橫坐標(biāo)與縱坐標(biāo)都互為相反數(shù).3、C【解析】分析:根據(jù)單項(xiàng)式的性質(zhì)即可求出答案.詳解:該單項(xiàng)式的次數(shù)為:3+1=4故選C.點(diǎn)睛:本題考查單項(xiàng)式的次數(shù)定義,解題的關(guān)鍵是熟練運(yùn)用單項(xiàng)式的次數(shù)定義,本題屬于基礎(chǔ)題型.4、B【解析】【分析】由EF∥BC,可證明△AEF∽△ABC,利用相似三角形的性質(zhì)即可求出S△ABC的值.【詳解】∵EF∥BC,∴△AEF∽△ABC,∵AB=3AE,∴AE:AB=1:3,∴S△AEF:S△ABC=1:9,設(shè)S△AEF=x,∵S四邊形BCFE=16,∴,解得:x=2,∴S△ABC=18,故選B.【點(diǎn)睛】本題考查了相似三角形的判定與性質(zhì),熟練掌握相似三角形的面積比等于相似比的平方是解本題的關(guān)鍵.5、D【解析】【分析】先求AC,再根據(jù)點(diǎn)D是線段AC的中點(diǎn),求出CD,再求BD.【詳解】因?yàn)?,AB=10cm,BC=4cm,所以,AC=AB-BC=10-4=6(cm)因?yàn)?,點(diǎn)D是線段AC的中點(diǎn),所以,CD=3cm,所以,BD=BC+CD=3+4=7(cm)故選D【點(diǎn)睛】本題考核知識(shí)點(diǎn):線段的中點(diǎn),和差.解題關(guān)鍵點(diǎn):利用線段的中點(diǎn)求出線段長(zhǎng)度.6、D【解析】

直接利用配方法得出二次函數(shù)的頂點(diǎn)式進(jìn)而得出答案.【詳解】y=﹣x2﹣4x+5=﹣(x+2)2+9,即二次函數(shù)y=﹣x2﹣4x+5的最大值是9,故選D.【點(diǎn)睛】此題主要考查了二次函數(shù)的最值,正確配方是解題關(guān)鍵.7、B【解析】

先利用三角函數(shù)計(jì)算出∠OAB=60°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得∠CAB=30°,根據(jù)切線的性質(zhì)得OC⊥AC,從而得到∠OAC=30°,然后根據(jù)含30度的直角三角形三邊的關(guān)系可得到OC的長(zhǎng).【詳解】解:在Rt△ABO中,sin∠OAB===,∴∠OAB=60°,∵直線l1繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°后得到的直線l1剛好與⊙O相切于點(diǎn)C,∴∠CAB=30°,OC⊥AC,∴∠OAC=60°﹣30°=30°,在Rt△OAC中,OC=OA=1.故選B.【點(diǎn)睛】本題考查了直線與圓的位置關(guān)系:設(shè)⊙O的半徑為r,圓心O到直線l的距離為d,則直線l和⊙O相交?d<r;直線l和⊙O相切?d=r;直線l和⊙O相離?d>r.也考查了旋轉(zhuǎn)的性質(zhì).8、A【解析】

∵AB∥CD,∠A=70°,∴∠1=∠A=70°,∵∠1=∠C+∠E,∠C=40°,∴∠E=∠1﹣∠C=70°﹣40°=30°.故選A.9、B【解析】

根據(jù)表中數(shù)據(jù)可得拋物線的對(duì)稱軸為x=1,拋物線的開口方向向上,再根據(jù)拋物線的對(duì)稱性即可作出判斷.【詳解】解:由題意得拋物線的對(duì)稱軸為x=1,拋物線的開口方向向上則該二次函數(shù)的圖像與軸有兩個(gè)交點(diǎn),且它們分別在軸兩側(cè)故選B.【點(diǎn)睛】本題考查二次函數(shù)的性質(zhì),屬于基礎(chǔ)應(yīng)用題,只需學(xué)生熟練掌握拋物線的對(duì)稱性,即可完成.10、A【解析】∵二次函數(shù)y=x2-2(b-2)x+b2-1的圖象不經(jīng)過第三象限,a=1>0,∴Δ≤0或拋物線與x軸的交點(diǎn)的橫坐標(biāo)均大于等于0.當(dāng)Δ≤0時(shí),[-2(b-2)]2-4(b2-1)≤0,解得b≥.當(dāng)拋物線與x軸的交點(diǎn)的橫坐標(biāo)均大于等于0時(shí),設(shè)拋物線與x軸的交點(diǎn)的橫坐標(biāo)分別為x1,x2,則x1+x2=2(b-2)>0,Δ=[-2(b-2)]2-4(b2-1)>0,無解,∴此種情況不存在.∴b≥.11、B【解析】

設(shè)拋物線與x軸的兩交點(diǎn)A、B坐標(biāo)分別為(x1,0),(x2,0),利用二次函數(shù)的性質(zhì)得到P(-,),利用x1、x2為方程ax2+bx+c=0的兩根得到x1+x2=-,x1?x2=,則利用完全平方公式變形得到AB=|x1-x2|=,接著根據(jù)等腰直角三角形的性質(zhì)得到||=?,然后進(jìn)行化簡(jiǎn)可得到b2-1ac的值.【詳解】設(shè)拋物線與x軸的兩交點(diǎn)A、B坐標(biāo)分別為(x1,0),(x2,0),頂點(diǎn)P的坐標(biāo)為(-,),則x1、x2為方程ax2+bx+c=0的兩根,∴x1+x2=-,x1?x2=,∴AB=|x1-x2|====,∵△ABP組成的三角形恰為等腰直角三角形,

∴||=?,=,∴b2-1ac=1.故選B.【點(diǎn)睛】本題考查了拋物線與x軸的交點(diǎn):把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點(diǎn)坐標(biāo)問題轉(zhuǎn)化為解關(guān)于x的一元二次方程.也考查了二次函數(shù)的性質(zhì)和等腰直角三角形的性質(zhì).12、B【解析】

根據(jù)菱形的四邊相等,可得周長(zhǎng)【詳解】菱形的四邊相等∴菱形的周長(zhǎng)=4×8=32故選B.【點(diǎn)睛】本題考查了菱形的性質(zhì),并靈活掌握及運(yùn)用菱形的性質(zhì)二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、2.1.【解析】

根據(jù)題意和函數(shù)圖象中的數(shù)據(jù)可以求得乙車的速度和到達(dá)A地時(shí)所用的時(shí)間,從而可以解答本題.【詳解】由題意可得,甲車到達(dá)C地用時(shí)4個(gè)小時(shí),乙車的速度為:200÷(3.1﹣1)=80km/h,乙車到達(dá)A地用時(shí)為:(200+240)÷80+1=6.1(小時(shí)),當(dāng)乙車到達(dá)A地時(shí),甲車已在C地休息了:6.1﹣4=2.1(小時(shí)),故答案為:2.1.【點(diǎn)睛】本題考查了一次函數(shù)的圖象,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.14、或【解析】

分0°<x°≤90°、90°<x°≤180°兩種情況,根據(jù)圓周角定理求出∠DOC,根據(jù)弧長(zhǎng)公式計(jì)算即可.【詳解】解:當(dāng)0°<x°≤90°時(shí),如圖所示:連接OC,

由圓周角定理得,∠BOC=2∠A=2x°,

∴∠DOC=180°-2x°,

∴∠OBC所對(duì)的劣弧長(zhǎng)=,

當(dāng)90°<x°≤180°時(shí),同理可得,∠OBC所對(duì)的劣弧長(zhǎng)=.

故答案為:或.【點(diǎn)睛】本題考查了三角形的外接圓與外心、弧長(zhǎng)的計(jì)算,掌握弧長(zhǎng)公式、圓周角定理是解題的關(guān)鍵.15、2.【解析】

靈活運(yùn)用方程的性質(zhì)求解即可?!驹斀狻拷猓河墒欠匠探M的解,可得滿足方程組,由①+②的,3x-y=8,即可3a-b=8,故3a﹣b的算術(shù)平方根是,故答案:【點(diǎn)睛】本題主要考查二元一次方程組的性質(zhì)及其解法。16、2【解析】

根據(jù)定義即可求出答案.【詳解】由題意可知:原式=1-i2=1-(-1)=2故答案為2【點(diǎn)睛】本題考查新定義型運(yùn)算,解題的關(guān)鍵是正確理解新定義.17、2.1或2【解析】

在Rt△ACB中,根據(jù)勾股定理可求AB的長(zhǎng),根據(jù)折疊的性質(zhì)可得QD=BD,QP=BP,根據(jù)三角形中位線定理可得DE=AC,BD=AB,BE=BC,再在Rt△QEP中,根據(jù)勾股定理可求QP,繼而可求得答案.【詳解】如圖所示:在Rt△ACB中,∠C=90°,AC=6,BC=8,

AB==2,

由折疊的性質(zhì)可得QD=BD,QP=BP,

又∵QD⊥BC,

∴DQ∥AC,

∵D是AB的中點(diǎn),

∴DE=AC=3,BD=AB=1,BE=BC=4,

①當(dāng)點(diǎn)P在DE右側(cè)時(shí),

∴QE=1-3=2,

在Rt△QEP中,QP2=(4-BP)2+QE2,

即QP2=(4-QP)2+22,

解得QP=2.1,

則BP=2.1.

②當(dāng)點(diǎn)P在DE左側(cè)時(shí),同①知,BP=2

故答案為:2.1或2.【點(diǎn)睛】考查了折疊的性質(zhì)、直角三角形的性質(zhì)以及勾股定理.此題難度適中,注意數(shù)形結(jié)合思想的應(yīng)用,注意折疊中的對(duì)應(yīng)關(guān)系.18、1:1【解析】

根據(jù)矩形性質(zhì)得出AD=BC,AD∥BC,∠D=90°,求出四邊形HFCD是矩形,得出△HFG的面積是CD×DH=S矩形HFCD,推出S△HFG=S△DHG+S△CFG,同理S△HEF=S△BEF+S△AEH,即可得出答案.【詳解】連接HF,∵四邊形ABCD為矩形,∴AD=BC,AD∥BC,∠D=90°∵H、F分別為AD、BC邊的中點(diǎn),∴DH=CF,DH∥CF,∵∠D=90°,∴四邊形HFCD是矩形,∴△HFG的面積是CD×DH=S矩形HFCD,即S△HFG=S△DHG+S△CFG,同理S△HEF=S△BEF+S△AEH,∴圖中四個(gè)直角三角形面積之和與矩形EFGH的面積之比是1:1,故答案為1:1.【點(diǎn)睛】本題考查了矩形的性質(zhì)和判定,三角形的面積,主要考查學(xué)生的推理能力.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)①證明見解析;②23【解析】試題分析:(1)①根據(jù)題意,利用內(nèi)角和定理及等式性質(zhì)得到一對(duì)角相等,利用兩角相等的三角形相似即可得證;②由三角形ABP與三角形BCP相似,得比例,將PA與PC的長(zhǎng)代入求出PB的長(zhǎng)即可;(2)①根據(jù)三角形ABE與三角形ACD為等邊三角形,利用等邊三角形的性質(zhì)得到兩對(duì)邊相等,兩個(gè)角為60°,利用等式的性質(zhì)得到夾角相等,利用SAS得到三角形ACE與三角形ABD全等,利用全等三角形的對(duì)應(yīng)角相等得到∠1=∠2,再由對(duì)頂角相等,得到∠5=∠6,即可求出所求角度數(shù);②由三角形ADF與三角形CPF相似,得到比例式,變形得到積的恒等式,再由對(duì)頂角相等,利用兩邊成比例,且夾角相等的三角形相似得到三角形AFP與三角形CFD相似,利用相似三角形對(duì)應(yīng)角相等得到∠APF為60°,由∠APD+∠DPC,求出∠APC為120°,進(jìn)而確定出∠APB與∠BPC都為120°,即可得證.試題解析:(1)證明:①∵∠PAB+∠PBA=180°﹣∠APB=60°,∠PBC+∠PBA=∠ABC=60°,∴∠PAB=∠PBC,又∵∠APB=∠BPC=120°,∴△ABP∽△BCP,②解:∵△ABP∽△BCP,∴PAPB∴PB2=PA?PC=12,∴PB=23;(2)解:①∵△ABE與△ACD都為等邊三角形,∴∠BAE=∠CAD=60°,AE=AB,AC=AD,∴∠BAE+∠BAC=∠CAD+∠BAC,即∠EAC=∠BAD,在△ACE和△ABD中,AC=AD∠EAC=∠BAD∴△ACE≌△ABD(SAS),∴∠1=∠2,∵∠3=∠4,∴∠CPD=∠6=∠5=60°;②證明:∵△ADF∽△CFP,∴AF?PF=DF?CF,∵∠AFP=∠CFD,∴△AFP∽△CDF.∴∠APF=∠ACD=60°,∴∠APC=∠CPD+∠APF=120°,∴∠BPC=120°,∴∠APB=360°﹣∠BPC﹣∠APC=120°,∴P點(diǎn)為△ABC的費(fèi)馬點(diǎn).考點(diǎn):相似形綜合題20、(1)(2)6.03米【解析】

分析:延長(zhǎng)ED,AM交于點(diǎn)P,由∠CDE=162°及三角形外角的性質(zhì)可得出結(jié)果;(2)利用解直角三角形求出PC,再利用PC+AC-EF即可得解.詳解:(1)如圖,延長(zhǎng)ED,AM交于點(diǎn)P,∵DE∥AB,∴,即∠MPD=90°∵∠CDE=162°∴(2)如圖,在Rt△PCD中,CD=3米,∴PC=米∵AC=5.5米,EF=0.4米,∴米答:攝像頭下端點(diǎn)F到地面AB的距離為6.03米.點(diǎn)睛:本題考查了解直角三角形的應(yīng)用,解決此類問題要了解角之間的關(guān)系,找到已知和未知相關(guān)聯(lián)的的直角三角形,當(dāng)圖形中沒有直角三角形時(shí),要通過作高線或垂線構(gòu)造直角三角形.21、(1);(2).【解析】試題分析:(1)直接列舉出兩次傳球的所有結(jié)果,球球恰在B手中的結(jié)果只有一種即可求概率;(2)畫出樹狀圖,表示出三次傳球的所有結(jié)果,三次傳球后,球恰在A手中的結(jié)果有2種,即可求出三次傳球后,球恰在A手中的概率.試題解析:解:(1)兩次傳球的所有結(jié)果有4種,分別是A→B→C,A→B→A,A→C→B,A→C→A.每種結(jié)果發(fā)生的可能性相等,球球恰在B手中的結(jié)果只有一種,所以兩次傳球后,球恰在B手中的概率是;(2)樹狀圖如下,由樹狀圖可知,三次傳球的所有結(jié)果有8種,每種結(jié)果發(fā)生的可能性相等.其中,三次傳球后,球恰在A手中的結(jié)果有A→B→C→A,A→C→B→A這兩種,所以三次傳球后,球恰在A手中的概率是.考點(diǎn):用列舉法求概率.22、(1)袋子中白球有2個(gè);(2)見解析,.【解析】

(1)首先設(shè)袋子中白球有x個(gè),利用概率公式求即可得方程:,解此方程即可求得答案;

(2)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與兩次都摸到相同顏色的小球的情況,再利用概率公式即可求得答案.【詳解】解:(1)設(shè)袋子中白球有x個(gè),根據(jù)題意得:,解得:x=2,經(jīng)檢驗(yàn),x=2是原分式方程的解,∴袋子中白球有2個(gè);(2)畫樹狀圖得:∵共有9種等可能的結(jié)果,兩次都摸到相同顏色的小球的有5種情況,∴兩次都摸到相同顏色的小球的概率為:.【點(diǎn)睛】此題考查了列表法或樹狀圖法求概率.注意掌握方程思想的應(yīng)用.注意概率=所求情況數(shù)與總情況數(shù)之比.23、①③④.【解析】試題分析:∵x=﹣1時(shí)y=﹣1,x=1時(shí),y=3,x=1時(shí),y=5,∴,解得,∴y=﹣x2+3x+3,∴ac=﹣1×3=﹣3<1,故①正確;對(duì)稱軸為直線,所以,當(dāng)x>時(shí),y的值隨x值的增大而減小,故②錯(cuò)誤;方程為﹣x2+2x+3=1,整理得,x2﹣2x﹣3=1,解得x1=﹣1,x2=3,所以,3是方程ax2+(b﹣1)x+c=1的一個(gè)根,正確,故③正確;﹣1<x<3時(shí),ax2+(b﹣1)x+c>1正確,故④正確;綜上所述,結(jié)論正確的是①③④.故答案為①③④.【考點(diǎn)】二次函數(shù)的性質(zhì).24、(1)-3;(2)“A-C”的正確答案為-7x2-2x+2.【解析】

(1)根據(jù)整式加減法則可求出二次項(xiàng)系數(shù);(2)表示出多項(xiàng)式,然后根據(jù)的結(jié)果求出多項(xiàng)式,計(jì)算即可求出答案.【詳解】(1)由題意得,,A+2B=(4+)+2-8,4+=1,=-3,即系數(shù)為-3.(2)A+C=,且A=,C=4,AC=【點(diǎn)睛】本題主要考查了多項(xiàng)式加減運(yùn)算,熟練掌握運(yùn)算法則是解題關(guān)鍵.25、(1)A(﹣4,0),B(2,0);(2)△ACP最大面積是4.【解析】

(1)令y=0,得到關(guān)于x的一元二次方程﹣x2﹣x+4=0,解此方程即可求得結(jié)果;(2)先求出直線AC解析式,再作PD⊥AO交AC于D,設(shè)P(t,﹣t2﹣t+4),可表示出D點(diǎn)坐標(biāo),于是線段PD可用含t的代數(shù)式表示,所以S△ACP=PD×OA=PD×4=2PD,可得S△ACP關(guān)于t的函數(shù)關(guān)系式,繼而可求出△ACP面積的最大值.【詳解】(1)解:設(shè)y=0,則0=﹣x2﹣x+4∴x1=﹣4,x2=2∴A(﹣4,0),B(2,0)(2)作PD⊥AO交AC于D設(shè)AC解析式y(tǒng)=kx+b∴解得:∴AC解析式為y=x+4.設(shè)P(t,﹣t2﹣t+4)則D(t,t+4)∴PD=(﹣t2﹣t+4)﹣(t+4)=﹣t2﹣2t=﹣(t+2)2+2∴S△ACP=PD×4=﹣(t+2)2+4∴當(dāng)t=﹣2時(shí),△ACP最大面積4.【點(diǎn)睛】本題考查二次函數(shù)綜合,解題的關(guān)鍵是掌握待定系數(shù)法進(jìn)行求解.26、

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論