版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025年湖南省衡陽市樟樹中學下學期高三期末監(jiān)測試卷數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.雙曲線的右焦點為,過點且與軸垂直的直線交兩漸近線于兩點,與雙曲線的其中一個交點為,若,且,則該雙曲線的離心率為()A. B. C. D.2.正項等差數(shù)列的前和為,已知,則=()A.35 B.36 C.45 D.543.設,則()A. B. C. D.4.要得到函數(shù)的圖象,只需將函數(shù)圖象上所有點的橫坐標()A.伸長到原來的2倍(縱坐標不變),再將得到的圖象向右平移個單位長度B.伸長到原來的2倍(縱坐標不變),再將得到的圖像向左平移個單位長度C.縮短到原來的倍(縱坐標不變),再將得到的圖象向左平移個單位長度D.縮短到原來的倍(縱坐標不變),再將得到的圖象向右平移個單位長度5.設集合,,若,則()A. B. C. D.6.設函數(shù)的定義域為,命題:,的否定是()A., B.,C., D.,7.如圖所示的莖葉圖為高三某班名學生的化學考試成績,算法框圖中輸入的,,,,為莖葉圖中的學生成績,則輸出的,分別是()A., B.,C., D.,8.函數(shù)的圖象為C,以下結論中正確的是()①圖象C關于直線對稱;②圖象C關于點對稱;③由y=2sin2x的圖象向右平移個單位長度可以得到圖象C.A.① B.①② C.②③ D.①②③9.在長方體中,,則直線與平面所成角的余弦值為()A. B. C. D.10.函數(shù)且的圖象是()A. B.C. D.11.以下三個命題:①在勻速傳遞的產(chǎn)品生產(chǎn)流水線上,質檢員每10分鐘從中抽取一件產(chǎn)品進行某項指標檢測,這樣的抽樣是分層抽樣;②若兩個變量的線性相關性越強,則相關系數(shù)的絕對值越接近于1;③對分類變量與的隨機變量的觀測值來說,越小,判斷“與有關系”的把握越大;其中真命題的個數(shù)為()A.3 B.2 C.1 D.012.在正項等比數(shù)列{an}中,a5-a1=15,a4-a2=6,則a3=()A.2 B.4 C. D.8二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線的一條漸近線為,且經(jīng)過拋物線的焦點,則雙曲線的標準方程為______.14.已知全集,集合則_____.15.對定義在上的函數(shù),如果同時滿足以下兩個條件:(1)對任意的總有;(2)當,,時,總有成立.則稱函數(shù)稱為G函數(shù).若是定義在上G函數(shù),則實數(shù)a的取值范圍為________.16.在的二項展開式中,只有第5項的二項式系數(shù)最大,則該二項展開式中的常數(shù)項等于_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知各項均不相等的等差數(shù)列的前項和為,且成等比數(shù)列.(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和.18.(12分)市民小張計劃貸款60萬元用于購買一套商品住房,銀行給小張?zhí)峁┝藘煞N貸款方式.①等額本金:每月的還款額呈遞減趨勢,且從第二個還款月開始,每月還款額與上月還款額的差均相同;②等額本息:每個月的還款額均相同.銀行規(guī)定,在貸款到賬日的次月當天開始首次還款(若2019年7月7日貸款到賬,則2019年8月7日首次還款).已知小張該筆貸款年限為20年,月利率為0.004.(1)若小張采取等額本金的還款方式,現(xiàn)已得知第一個還款月應還4900元,最后一個還款月應還2510元,試計算小張該筆貸款的總利息;(2)若小張采取等額本息的還款方式,銀行規(guī)定,每月還款額不得超過家庭平均月收入的一半,已知小張家庭平均月收入為1萬元,判斷小張該筆貸款是否能夠獲批(不考慮其他因素);(3)對比兩種還款方式,從經(jīng)濟利益的角度來考慮,小張應選擇哪種還款方式.參考數(shù)據(jù):.19.(12分)已知橢圓C:(a>b>0)的兩個焦點分別為F1(-,0)、F2(,0).點M(1,0)與橢圓短軸的兩個端點的連線相互垂直.(1)求橢圓C的方程;(2)已知點N的坐標為(3,2),點P的坐標為(m,n)(m≠3).過點M任作直線l與橢圓C相交于A、B兩點,設直線AN、NP、BN的斜率分別為k1、k2、k3,若k1+k3=2k2,試求m,n滿足的關系式.20.(12分)已知函數(shù).(1)解不等式:;(2)求證:.21.(12分)某超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當天全部處理完.根據(jù)往年銷售經(jīng)驗,每天需求量與當天最高氣溫(單位:℃)有關.如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數(shù)據(jù),得下面的頻數(shù)分布表:最高氣溫[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天數(shù)216362574以最高氣溫位于各區(qū)間的頻率估計最高氣溫位于該區(qū)間的概率.(1)求六月份這種酸奶一天的需求量不超過300瓶的概率;(2)設六月份一天銷售這種酸奶的利潤為Y(單位:元),當六月份這種酸奶一天的進貨量為450瓶時,寫出Y的所有可能值,并估計Y大于零的概率.22.(10分)在平面直角坐標系中,直線的的參數(shù)方程為(其中為參數(shù)),以坐標原點為極點,軸的正半軸為極軸的極坐標系中,點的極坐標為,直線經(jīng)過點.曲線的極坐標方程為.(1)求直線的普通方程與曲線的直角坐標方程;(2)過點作直線的垂線交曲線于兩點(在軸上方),求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
根據(jù)已知得本題首先求出直線與雙曲線漸近線的交點,再利用,求出點,因為點在雙曲線上,及,代入整理及得,又已知,即可求出離心率.【詳解】由題意可知,代入得:,代入雙曲線方程整理得:,又因為,即可得到,故選:D.本題主要考查的是雙曲線的簡單幾何性質和向量的坐標運算,離心率問題關鍵尋求關于,,的方程或不等式,由此計算雙曲線的離心率或范圍,屬于中檔題.2.C【解析】
由等差數(shù)列通項公式得,求出,再利用等差數(shù)列前項和公式能求出.【詳解】正項等差數(shù)列的前項和,,,解得或(舍),,故選C.本題主要考查等差數(shù)列的性質與求和公式,屬于中檔題.解等差數(shù)列問題要注意應用等差數(shù)列的性質()與前項和的關系.3.D【解析】
結合指數(shù)函數(shù)及對數(shù)函數(shù)的單調性,可判斷出,,,即可選出答案.【詳解】由,即,又,即,,即,所以.故選:D.本題考查了幾個數(shù)的大小比較,考查了指數(shù)函數(shù)與對數(shù)函數(shù)的單調性的應用,屬于基礎題.4.B【解析】
分析:根據(jù)三角函數(shù)的圖象關系進行判斷即可.詳解:將函數(shù)圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),
得到再將得到的圖象向左平移個單位長度得到故選B.點睛:本題主要考查三角函數(shù)的圖象變換,結合和的關系是解決本題的關鍵.5.A【解析】
根據(jù)交集的結果可得是集合的元素,代入方程后可求的值,從而可求.【詳解】依題意可知是集合的元素,即,解得,由,解得.本題考查集合的交,注意根據(jù)交集的結果確定集合中含有的元素,本題屬于基礎題.6.D【解析】
根據(jù)命題的否定的定義,全稱命題的否定是特稱命題求解.【詳解】因為:,是全稱命題,所以其否定是特稱命題,即,.故選:D本題主要考查命題的否定,還考查了理解辨析的能力,屬于基礎題.7.B【解析】
試題分析:由程序框圖可知,框圖統(tǒng)計的是成績不小于80和成績不小于60且小于80的人數(shù),由莖葉圖可知,成績不小于80的有12個,成績不小于60且小于80的有26個,故,.考點:程序框圖、莖葉圖.8.B【解析】
根據(jù)三角函數(shù)的對稱軸、對稱中心和圖象變換的知識,判斷出正確的結論.【詳解】因為,又,所以①正確.,所以②正確.將的圖象向右平移個單位長度,得,所以③錯誤.所以①②正確,③錯誤.故選:B本小題主要考查三角函數(shù)的對稱軸、對稱中心,考查三角函數(shù)圖象變換,屬于基礎題.9.C【解析】
在長方體中,得與平面交于,過做于,可證平面,可得為所求解的角,解,即可求出結論.【詳解】在長方體中,平面即為平面,過做于,平面,平面,平面,為與平面所成角,在,,直線與平面所成角的余弦值為.故選:C.本題考查直線與平面所成的角,定義法求空間角要體現(xiàn)“做”“證”“算”,三步驟缺一不可,屬于基礎題.10.B【解析】
先判斷函數(shù)的奇偶性,再取特殊值,利用零點存在性定理判斷函數(shù)零點分布情況,即可得解.【詳解】由題可知定義域為,,是偶函數(shù),關于軸對稱,排除C,D.又,,在必有零點,排除A.故選:B.本題考查了函數(shù)圖象的判斷,考查了函數(shù)的性質,屬于中檔題.11.C【解析】
根據(jù)抽樣方式的特征,可判斷①;根據(jù)相關系數(shù)的性質,可判斷②;根據(jù)獨立性檢驗的方法和步驟,可判斷③.【詳解】①根據(jù)抽樣是間隔相同,且樣本間無明顯差異,故①應是系統(tǒng)抽樣,即①為假命題;②兩個隨機變量相關性越強,則相關系數(shù)的絕對值越接近于1;兩個隨機變量相關性越弱,則相關系數(shù)的絕對值越接近于0;故②為真命題;③對分類變量與的隨機變量的觀測值來說,越小,“與有關系”的把握程度越小,故③為假命題.故選:.本題以命題的真假判斷為載體考查了抽樣方法、相關系數(shù)、獨立性檢驗等知識點,屬于基礎題.12.B【解析】
根據(jù)題意得到,,解得答案.【詳解】,,解得或(舍去).故.故選:.本題考查了等比數(shù)列的計算,意在考查學生的計算能力.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
設以直線為漸近線的雙曲線的方程為,再由雙曲線經(jīng)過拋物線焦點,能求出雙曲線方程.【詳解】解:設以直線為漸近線的雙曲線的方程為,∵雙曲線經(jīng)過拋物線焦點,∴,∴雙曲線方程為,故答案為:.本題主要考查雙曲線方程的求法,考查拋物線、雙曲線簡單性質的合理運用,屬于中檔題.14.【解析】
根據(jù)補集的定義求解即可.【詳解】解:.故答案為.本題主要考查了補集的運算,屬于基礎題.15.【解析】
由不等式恒成立問題采用分離變量最值法:對任意的恒成立,解得,又在,恒成立,即,所以,從而可得.【詳解】因為是定義在上G函數(shù),所以對任意的總有,則對任意的恒成立,解得,當時,又因為,,時,總有成立,即恒成立,即恒成立,又此時的最小值為,即恒成立,又因為解得.故答案為:本題是一道函數(shù)新定義題目,考查了不等式恒成立求參數(shù)的取值范圍,考查了學生分析理解能力,屬于中檔題.16.1【解析】
由題意可得,再利用二項展開式的通項公式,求得二項展開式常數(shù)項的值.【詳解】的二項展開式的中,只有第5項的二項式系數(shù)最大,,通項公式為,令,求得,可得二項展開式常數(shù)項等于,故答案為1.本題主要考查二項式定理的應用,二項展開式的通項公式,二項式系數(shù)的性質,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2).【解析】試題分析:(1)設公差為,列出關于的方程組,求解的值,即可得到數(shù)列的通項公式;(2)由(1)可得,即可利用裂項相消求解數(shù)列的和.試題解析:(1)設公差為.由已知得,解得或(舍去),所以,故.(2),考點:等差數(shù)列的通項公式;數(shù)列的求和.18.(1)289200元;(2)能夠獲批;(3)應選擇等額本金還款方式【解析】
(1)由題意可知,等額本金還款方式中,每月的還款額構成一個等差數(shù)列,即可由等差數(shù)列的前n項和公式求得其還款總額,減去本金即為還款的利息;(2)根據(jù)題意,采取等額本息的還款方式,每月還款額為一等比數(shù)列,設小張每月還款額為元,由等比數(shù)列求和公式及參考數(shù)據(jù),即可求得其還款額,與收入的一半比較即可判斷;(3)計算出等額本息還款方式時所付出的總利息,兩個利息比較即可判斷.【詳解】(1)由題意可知,等額本金還款方式中,每月的還款額構成一個等差數(shù)列,記為,表示數(shù)列的前項和,則,,則,故小張該筆貸款的總利息為元.(2)設小張每月還款額為元,采取等額本息的還款方式,每月還款額為一等比數(shù)列,則,所以,即,因為,所以小張該筆貸款能夠獲批.(3)小張采取等額本息貸款方式的總利息為:,因為,所以從經(jīng)濟利益的角度來考慮,小張應選擇等額本金還款方式.本題考查了等差數(shù)列與等比數(shù)列求和公式的綜合應用,數(shù)列在實際問題中的應用,理解題意是解決問題的關鍵,屬于中檔題.19.(1);(2)m-n-1=0【解析】試題分析:(1)利用M與短軸端點構成等腰直角三角形,可求得b的值,進而得到橢圓方程;(2)設出過M的直線l的方程,將l與橢圓C聯(lián)立,得到兩交點坐標關系,然后將k1+k3表示為直線l斜率的關系式,化簡后得k1+k3=2,于是可得m,n的關系式.試題解析:(1)由題意,c=,b=1,所以a=故橢圓C的方程為(2)①當直線l的斜率不存在時,方程為x=1,代入橢圓得,y=±不妨設A(1,),B(1,-)因為k1+k3==2又k1+k3=2k2,所以k2=1所以m,n的關系式為=1,即m-n-1=0②當直線l的斜率存在時,設l的方程為y=k(x-1)將y=k(x-1)代入,整理得:(3k2+1)x2-6k2x+3k2-3=0設A(x1,y1),B(x2,y2),則又y1=k(x1-1),y2=k(x2-1)所以k1+k3======2所以2k2=2,所以k2==1所以m,n的關系式為m-n-1=0綜上所述,m,n的關系式為m-n-1=0.考點:橢圓標準方程,直線與橢圓位置關系,20.(1);(2)見解析.【解析】
(1)代入得,分類討論,解不等式即可;(2)利用絕對值不等式得性質,,,比較大小即可.【詳解】(1)由于,于是原不等式化為,若,則,解得;若,則,解得;若,則,解得.綜上所述,不等式解集為.(2)由已知條件,對于,可得.又,由于,所以.又由于,于是.所以.本題考查了絕對值不等式得求解和恒成立問題,考查了學生分類討論,轉化劃歸,數(shù)學運算能力,屬于中檔題.21.(1).(2).【解析】
(1)由前三年六月份各天的最高氣溫數(shù)據(jù),求出最高氣溫位于區(qū)間[20,25)和最高氣溫低于20的天數(shù),由此能求出六月份這種酸奶一天的需求量不超過300瓶的概率.(2)當溫度大于等于25℃時,需求量為500,求出Y=900元;當溫度在[20,25)℃時,需求量為300,求出Y=300元;當溫度低于20℃時,需求量為200,求出Y=﹣100元,從而當溫度大于等于20時,Y>0,由此能估計估計Y大于零的概率.【詳解】解:(1)由前三年六月份各天的最高氣溫數(shù)據(jù),得到最高氣溫位于區(qū)間[20,25)和最高氣溫低于20的天數(shù)為2+16+36=54,根據(jù)往年銷售經(jīng)驗,每天需求量與當天最高氣溫(單位:℃)有關.如果
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版危險品運輸應急響應預案合同3篇
- 二零二五年度寵物領養(yǎng)及終身關愛計劃合同3篇
- 二零二五年度生態(tài)循環(huán)大棚租賃經(jīng)營合同范本4篇
- 二零二五年度文化旅游產(chǎn)業(yè)園區(qū)承包經(jīng)營合同4篇
- 2025年度環(huán)保設備制造項目承包合同范本4篇
- 2025年度大理石石材加工與室內裝修一體化合同3篇
- 2025年度茶室智能化裝修與設備采購合同4篇
- 2025版事業(yè)單位教學輔助人員勞動合同樣本3篇
- 二零二五年度船舶油輪船員聘用合同樣本4篇
- 二零二五版煤炭購銷居間代理傭金結算及爭議解決合同4篇
- 2025年度房地產(chǎn)權證辦理委托代理合同典范3篇
- 柴油墊資合同模板
- 湖北省五市州2023-2024學年高一下學期期末聯(lián)考數(shù)學試題
- 城市作戰(zhàn)案例研究報告
- 【正版授權】 ISO 12803:1997 EN Representative sampling of plutonium nitrate solutions for determination of plutonium concentration
- 道德經(jīng)全文及注釋
- 2024中考考前地理沖刺卷及答案(含答題卡)
- 多子女贍養(yǎng)老人協(xié)議書范文
- 彩票市場銷售計劃書
- 支付行業(yè)反洗錢與反恐怖融資
- 基礎設施綠色施工技術研究
評論
0/150
提交評論