版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025年湖北省三市聯(lián)考高考數(shù)學(xué)試題山東卷沖刺訓(xùn)練解析注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知F為拋物線y2=4x的焦點,過點F且斜率為1的直線交拋物線于A,B兩點,則||FA|﹣|FB||的值等于()A. B.8 C. D.42.集合,,則()A. B. C. D.3.將函數(shù)的圖象向左平移個單位長度,得到的函數(shù)為偶函數(shù),則的值為()A. B. C. D.4.已知函數(shù),若,則的值等于()A. B. C. D.5.高三珠海一模中,經(jīng)抽樣分析,全市理科數(shù)學(xué)成績X近似服從正態(tài)分布,且.從中隨機(jī)抽取參加此次考試的學(xué)生500名,估計理科數(shù)學(xué)成績不低于110分的學(xué)生人數(shù)約為()A.40 B.60 C.80 D.1006.已知函數(shù),則()A.1 B.2 C.3 D.47.給甲、乙、丙、丁四人安排泥工、木工、油漆三項工作,每項工作至少一人,每人做且僅做一項工作,甲不能安排木工工作,則不同的安排方法共有()A.12種 B.18種 C.24種 D.64種8.一個幾何體的三視圖如圖所示,則該幾何體的表面積為()A. B.C. D.9.()A. B. C. D.10.一個算法的程序框圖如圖所示,若該程序輸出的結(jié)果是,則判斷框中應(yīng)填入的條件是()A. B. C. D.11.公比為2的等比數(shù)列中存在兩項,,滿足,則的最小值為()A. B. C. D.12.已知焦點為的拋物線的準(zhǔn)線與軸交于點,點在拋物線上,則當(dāng)取得最大值時,直線的方程為()A.或 B.或 C.或 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知正實數(shù)滿足,則的最小值為.14.記等差數(shù)列和的前項和分別為和,若,則______.15.的展開式中的系數(shù)為__________.16.展開式中的系數(shù)為_______________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在四棱錐中,底面為直角梯形,,,,,,,分別為,的中點.(1)求證:.(2)若,求二面角的余弦值.18.(12分)已知△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,若c=2a,bsinB﹣asinA=asinC.(Ⅰ)求sinB的值;(Ⅱ)求sin(2B+)的值.19.(12分)已知函數(shù).(1)討論的零點個數(shù);(2)證明:當(dāng)時,.20.(12分)已知矩陣的一個特征值為3,求另一個特征值及其對應(yīng)的一個特征向量.21.(12分)已知,.(1)求函數(shù)的單調(diào)遞增區(qū)間;(2)的三個內(nèi)角、、所對邊分別為、、,若且,求面積的取值范圍.22.(10分)如圖1,在等腰中,,,分別為,的中點,為的中點,在線段上,且。將沿折起,使點到的位置(如圖2所示),且。(1)證明:平面;(2)求平面與平面所成銳二面角的余弦值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
將直線方程代入拋物線方程,根據(jù)根與系數(shù)的關(guān)系和拋物線的定義即可得出的值.【詳解】F(1,0),故直線AB的方程為y=x﹣1,聯(lián)立方程組,可得x2﹣6x+1=0,設(shè)A(x1,y1),B(x2,y2),由根與系數(shù)的關(guān)系可知x1+x2=6,x1x2=1.由拋物線的定義可知:|FA|=x1+1,|FB|=x2+1,∴||FA|﹣|FB||=|x1﹣x2|=.故選C.本題考查了拋物線的定義,直線與拋物線的位置關(guān)系,屬于中檔題.2.A【解析】
解一元二次不等式化簡集合A,再根據(jù)對數(shù)的真數(shù)大于零化簡集合B,求交集運算即可.【詳解】由可得,所以,由可得,所以,所以,故選A.本題主要考查了集合的交集運算,涉及一元二次不等式解法及對數(shù)的概念,屬于中檔題.3.D【解析】
利用三角函數(shù)的圖象變換求得函數(shù)的解析式,再根據(jù)三角函數(shù)的性質(zhì),即可求解,得到答案.【詳解】將將函數(shù)的圖象向左平移個單位長度,可得函數(shù)又由函數(shù)為偶函數(shù),所以,解得,因為,當(dāng)時,,故選D.本題主要考查了三角函數(shù)的圖象變換,以及三角函數(shù)的性質(zhì)的應(yīng)用,其中解答中熟記三角函數(shù)的圖象變換,合理應(yīng)用三角函數(shù)的圖象與性質(zhì)是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.4.B【解析】
由函數(shù)的奇偶性可得,【詳解】∵其中為奇函數(shù),也為奇函數(shù)∴也為奇函數(shù)∴故選:B函數(shù)奇偶性的運用即得結(jié)果,小記,定義域關(guān)于原點對稱時有:①奇函數(shù)±奇函數(shù)=奇函數(shù);②奇函數(shù)×奇函數(shù)=偶函數(shù);③奇函數(shù)÷奇函數(shù)=偶函數(shù);④偶函數(shù)±偶函數(shù)=偶函數(shù);⑤偶函數(shù)×偶函數(shù)=偶函數(shù);⑥奇函數(shù)×偶函數(shù)=奇函數(shù);⑦奇函數(shù)÷偶函數(shù)=奇函數(shù)5.D【解析】
由正態(tài)分布的性質(zhì),根據(jù)題意,得到,求出概率,再由題中數(shù)據(jù),即可求出結(jié)果.【詳解】由題意,成績X近似服從正態(tài)分布,則正態(tài)分布曲線的對稱軸為,根據(jù)正態(tài)分布曲線的對稱性,求得,所以該市某校有500人中,估計該校數(shù)學(xué)成績不低于110分的人數(shù)為人,故選:.本題考查正態(tài)分布的圖象和性質(zhì),考查學(xué)生分析問題的能力,難度容易.6.C【解析】
結(jié)合分段函數(shù)的解析式,先求出,進(jìn)而可求出.【詳解】由題意可得,則.故選:C.本題考查了求函數(shù)的值,考查了分段函數(shù)的性質(zhì),考查運算求解能力,屬于基礎(chǔ)題.7.C【解析】
根據(jù)題意,分2步進(jìn)行分析:①,將4人分成3組,②,甲不能安排木工工作,甲所在的一組只能安排給泥工或油漆,將剩下的2組全排列,安排其他的2項工作,由分步計數(shù)原理計算可得答案.【詳解】解:根據(jù)題意,分2步進(jìn)行分析:①,將4人分成3組,有種分法;②,甲不能安排木工工作,甲所在的一組只能安排給泥工或油漆,有2種情況,將剩下的2組全排列,安排其他的2項工作,有種情況,此時有種情況,則有種不同的安排方法;故選:C.本題考查排列、組合的應(yīng)用,涉及分步計數(shù)原理的應(yīng)用,屬于基礎(chǔ)題.8.B【解析】
由題意首先確定幾何體的空間結(jié)構(gòu)特征,然后結(jié)合空間結(jié)構(gòu)特征即可求得其表面積.【詳解】由三視圖可知,該幾何體為邊長為正方體挖去一個以為球心以為半徑球體的,如圖,故其表面積為,故選:B.(1)以三視圖為載體考查幾何體的表面積,關(guān)鍵是能夠?qū)o出的三視圖進(jìn)行恰當(dāng)?shù)姆治?,從三視圖中發(fā)現(xiàn)幾何體中各元素間的位置關(guān)系及數(shù)量關(guān)系.(2)多面體的表面積是各個面的面積之和;組合體的表面積應(yīng)注意重合部分的處理.(3)圓柱、圓錐、圓臺的側(cè)面是曲面,計算側(cè)面積時需要將這個曲面展為平面圖形計算,而表面積是側(cè)面積與底面圓的面積之和.9.A【解析】
分子分母同乘,即根據(jù)復(fù)數(shù)的除法法則求解即可.【詳解】解:,故選:A本題考查復(fù)數(shù)的除法運算,屬于基礎(chǔ)題.10.D【解析】
首先判斷循環(huán)結(jié)構(gòu)類型,得到判斷框內(nèi)的語句性質(zhì),然后對循環(huán)體進(jìn)行分析,找出循環(huán)規(guī)律,判斷輸出結(jié)果與循環(huán)次數(shù)以及的關(guān)系,最終得出選項.【詳解】經(jīng)判斷此循環(huán)為“直到型”結(jié)構(gòu),判斷框為跳出循環(huán)的語句,第一次循環(huán):;第二次循環(huán):;第三次循環(huán):,此時退出循環(huán),根據(jù)判斷框內(nèi)為跳出循環(huán)的語句,,故選D.題主要考查程序框圖的循環(huán)結(jié)構(gòu)流程圖,屬于中檔題.解決程序框圖問題時一定注意以下幾點:(1)不要混淆處理框和輸入框;(2)注意區(qū)分程序框圖是條件分支結(jié)構(gòu)還是循環(huán)結(jié)構(gòu);(3)注意區(qū)分當(dāng)型循環(huán)結(jié)構(gòu)和直到型循環(huán)結(jié)構(gòu);(4)處理循環(huán)結(jié)構(gòu)的問題時一定要正確控制循環(huán)次數(shù);(5)要注意各個框的順序,(6)在給出程序框圖求解輸出結(jié)果的試題中只要按照程序框圖規(guī)定的運算方法逐次計算,直到達(dá)到輸出條件即可.11.D【解析】
根據(jù)已知條件和等比數(shù)列的通項公式,求出關(guān)系,即可求解.【詳解】,當(dāng)時,,當(dāng)時,,當(dāng)時,,當(dāng)時,,當(dāng)時,,當(dāng)時,,最小值為.故選:D.本題考查等比數(shù)列通項公式,注意為正整數(shù),如用基本不等式要注意能否取到等號,屬于基礎(chǔ)題.12.A【解析】
過作與準(zhǔn)線垂直,垂足為,利用拋物線的定義可得,要使最大,則應(yīng)最大,此時與拋物線相切,再用判別式或?qū)?shù)計算即可.【詳解】過作與準(zhǔn)線垂直,垂足為,,則當(dāng)取得最大值時,最大,此時與拋物線相切,易知此時直線的斜率存在,設(shè)切線方程為,則.則,則直線的方程為.故選:A.本題考查直線與拋物線的位置關(guān)系,涉及到拋物線的定義,考查學(xué)生轉(zhuǎn)化與化歸的思想,是一道中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.4【解析】
由題意結(jié)合代數(shù)式的特點和均值不等式的結(jié)論整理計算即可求得最終結(jié)果.【詳解】.當(dāng)且僅當(dāng)時等號成立.據(jù)此可知:的最小值為4.條件最值的求解通常有兩種方法:一是消元法,即根據(jù)條件建立兩個量之間的函數(shù)關(guān)系,然后代入代數(shù)式轉(zhuǎn)化為函數(shù)的最值求解;二是將條件靈活變形,利用常數(shù)代換的方法構(gòu)造和或積為常數(shù)的式子,然后利用基本不等式求解最值.14.【解析】
結(jié)合等差數(shù)列的前項和公式,可得,求解即可.【詳解】由題意,,,因為,所以.故答案為:.本題考查了等差數(shù)列的前項和公式及等差中項的應(yīng)用,考查了學(xué)生的計算求解能力,屬于基礎(chǔ)題.15.3【解析】
分別用1和進(jìn)行分類討論即可【詳解】當(dāng)?shù)谝粋€因式取1時,第二個因式應(yīng)取含的項,則對應(yīng)系數(shù)為:;當(dāng)?shù)谝粋€因式取時,第二個因式應(yīng)取含的項,則對應(yīng)系數(shù)為:;故的展開式中的系數(shù)為.故答案為:3本題考查二項式定理中具體項對應(yīng)系數(shù)的求解,屬于基礎(chǔ)題16.【解析】
把按照二項式定理展開,可得的展開式中的系數(shù).【詳解】解:,故它的展開式中的系數(shù)為,故答案為:.本題主要考查二項式定理的應(yīng)用,二項展開式的通項公式,二項式系數(shù)的性質(zhì),屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)見解析(2)【解析】
(1)由已知可證明平面,從而得證面面垂直,再由,得線面垂直,從而得,由直角三角形得結(jié)論;(2)以為軸建立空間直角坐標(biāo)系,用空間向量法示二面角.【詳解】(1)證明:連接,,.,,平面.平面,平面平面.,為的中點,.平面平面,平面.平面,.為斜邊的中點,,(2),由(1)可知,為等腰直角三角形,則.以為坐標(biāo)原點建立如圖所示的空間直角坐標(biāo)系,則,,,,則,記平面的法向量為由得到,取,可得,則.易知平面的法向量為.記二面角的平面角為,且由圖可知為銳角,則,所以二面角的余弦值為.本題考查用面面垂直的性質(zhì)定理證明線面垂直,從而得線線垂直,考查用空間向量法求二面角.在立體幾何中求異面直線成的角、直線與平面所成的角、二面角等空間角時,可以建立空間直角坐標(biāo)系,用空間向量法求解空間角,可避免空間角的作證過程,通過計算求解.18.(Ⅰ)(Ⅱ)【解析】
(Ⅰ)根據(jù)條件由正弦定理得,又c=2a,所以,由余弦定理算出,進(jìn)而算出;(Ⅱ)由二倍角公式算出,代入兩角和的正弦公式計算即可.【詳解】(Ⅰ)bsinB﹣asinA=asinC,所以由正弦定理得,又c=2a,所以,由余弦定理得:,又,所以;(Ⅱ),.本題主要考查了正余弦定理的應(yīng)用,運用二倍角公式和兩角和的正弦公式求值,考查了學(xué)生的運算求解能力.19.(1)見解析(2)見解析【解析】
(1)求出,分別以當(dāng),,時,結(jié)合函數(shù)的單調(diào)性和最值判斷零點的個數(shù).(2)令,結(jié)合導(dǎo)數(shù)求出;同理可求出滿足,從而可得,進(jìn)而證明.【詳解】解析:(1),,當(dāng)時,,單調(diào)遞減,,,此時有1個零點;當(dāng)時,無零點;當(dāng)時,由得,由得,∴在單調(diào)遞減,在單調(diào)遞增,∴在處取得最小值,若,則,此時沒有零點;若,則,此時有1個零點;若,則,,求導(dǎo)易得,此時在,上各有1個零點.綜上可得時,沒有零點,或時,有1個零點,時,有2個零點.(2)令,則,當(dāng)時,;當(dāng)時,,∴.令,則,當(dāng)時,,當(dāng)時,,∴,∴,,∴,即.本題考查了導(dǎo)數(shù)判斷函數(shù)零點問題,考查了運用導(dǎo)數(shù)證明不等式問題,考查了分類的數(shù)學(xué)思想.本題的難點在于第二問不等式的證明中,合理設(shè)出函數(shù),通過比較最值證明.20.另一個特征值為,對應(yīng)的一個特征向量【解析】
根據(jù)特征多項式的一個零點為3,可得,再回代到方程即可解出另一個特征值為,最后利用求特征向量的一般步驟,可求出其對應(yīng)的一個特征向量.【詳解】矩陣的特征多項式為:,是方程的一個根,,解得,即方程即,,可得另一個特征值為:,設(shè)對應(yīng)的一個特征向量為:則由,得得,令,則,所以矩陣另一個特征值為,對應(yīng)的一個特征向量本題考查了矩陣的特征值以及特征向量,需掌握特征多項式的計算形式,屬于基礎(chǔ)題.21.(1);(2).【解析】
(1)利用三角恒等變換思想化簡函數(shù)的解析式為,然后解不等式,可求得函數(shù)的單調(diào)遞增區(qū)間;(2)由求得,利用余弦定理結(jié)合基本不等式求出的取
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 遼陽職業(yè)技術(shù)學(xué)院《化工CAD制圖》2023-2024學(xué)年第一學(xué)期期末試卷
- 五年級數(shù)學(xué)下冊應(yīng)用題-分?jǐn)?shù)應(yīng)用題
- 廊坊燕京職業(yè)技術(shù)學(xué)院《信息系統(tǒng)審計》2023-2024學(xué)年第一學(xué)期期末試卷
- 江西師范高等??茖W(xué)校《新媒體網(wǎng)絡(luò)營銷劃寫作》2023-2024學(xué)年第一學(xué)期期末試卷
- 嘉應(yīng)學(xué)院《奧爾夫音樂教學(xué)法》2023-2024學(xué)年第一學(xué)期期末試卷
- 湖州學(xué)院《傳感器技術(shù)與應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷
- 湖南國防工業(yè)職業(yè)技術(shù)學(xué)院《電子學(xué)二》2023-2024學(xué)年第一學(xué)期期末試卷
- 紅河衛(wèi)生職業(yè)學(xué)院《傳播學(xué)原理與技能》2023-2024學(xué)年第一學(xué)期期末試卷
- 淄博師范高等專科學(xué)?!冬F(xiàn)代數(shù)值仿真技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 周口理工職業(yè)學(xué)院《熱工材料基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷
- 保險公估作業(yè)指導(dǎo)書x
- 新人教版八年級數(shù)學(xué)下冊 第18章平行四邊形 導(dǎo)學(xué)案
- 《生理心理學(xué)實驗實訓(xùn)》指導(dǎo)書-
- 教練技術(shù)三階段講義
- GB/T 23799-2021車用甲醇汽油(M85)
- 車工工藝課件(緒論、一章)
- 催收服務(wù)工作手冊方案
- 信息化系統(tǒng)數(shù)據(jù)恢復(fù)應(yīng)急演練方案
- 常用有機(jī)溶劑性質(zhì)
- 公司沒有出審計報告情況說明解釋
- (完整word版)高考英語作文練習(xí)紙(標(biāo)準(zhǔn)答題卡)
評論
0/150
提交評論