湖北竹溪縣2021-2022學(xué)年中考數(shù)學(xué)仿真試卷含解析_第1頁
湖北竹溪縣2021-2022學(xué)年中考數(shù)學(xué)仿真試卷含解析_第2頁
湖北竹溪縣2021-2022學(xué)年中考數(shù)學(xué)仿真試卷含解析_第3頁
湖北竹溪縣2021-2022學(xué)年中考數(shù)學(xué)仿真試卷含解析_第4頁
湖北竹溪縣2021-2022學(xué)年中考數(shù)學(xué)仿真試卷含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

湖北竹溪縣2021-2022學(xué)年中考數(shù)學(xué)仿真試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.一元二次方程x2﹣3x+1=0的根的情況()A.有兩個(gè)相等的實(shí)數(shù)根 B.有兩個(gè)不相等的實(shí)數(shù)根C.沒有實(shí)數(shù)根 D.以上答案都不對(duì)2.在△ABC中,點(diǎn)D、E分別在邊AB、AC上,如果AD=1,BD=3,那么由下列條件能夠判斷DE∥BC的是()A. B. C. D.3.“一般的,如果二次函數(shù)y=ax2+bx+c的圖象與x軸有兩個(gè)公共點(diǎn),那么一元二次方程ax2+bx+c=0有兩個(gè)不相等的實(shí)數(shù)根.——蘇科版《數(shù)學(xué)》九年級(jí)(下冊(cè))P21”參考上述教材中的話,判斷方程x2﹣2x=﹣2實(shí)數(shù)根的情況是()A.有三個(gè)實(shí)數(shù)根 B.有兩個(gè)實(shí)數(shù)根 C.有一個(gè)實(shí)數(shù)根 D.無實(shí)數(shù)根4.在3,0,-2,-2四個(gè)數(shù)中,最小的數(shù)是()A.3 B.0 C.-2 D.-25.如圖,矩形ABCD中,AB=4,BC=3,F(xiàn)是AB中點(diǎn),以點(diǎn)A為圓心,AD為半徑作弧交AB于點(diǎn)E,以點(diǎn)B為圓心,BF為半徑作弧交BC于點(diǎn)G,則圖中陰影部分面積的差S1-S2為()A. B. C. D.66.平面直角坐標(biāo)系中的點(diǎn)P(2﹣m,m)在第一象限,則m的取值范圍在數(shù)軸上可表示為()A. B.C. D.7.在平面直角坐標(biāo)系xOy中,對(duì)于任意三點(diǎn)A,B,C的“矩面積”,給出如下定義:“水平底”a:任意兩點(diǎn)橫坐標(biāo)差的最大值,“鉛垂高”h:任意兩點(diǎn)縱坐標(biāo)差的最大值,則“矩面積”S=ah.例如:三點(diǎn)坐標(biāo)分別為A(1,2),B(﹣3,1),C(2,﹣2),則“水平底”a=5,“鉛垂高”h=4,“矩面積”S=ah=1.若D(1,2)、E(﹣2,1)、F(0,t)三點(diǎn)的“矩面積”為18,則t的值為()A.﹣3或7B.﹣4或6C.﹣4或7D.﹣3或68.下列圖形中,可以看作中心對(duì)稱圖形的是()A. B. C. D.9.的化簡結(jié)果為A.3 B. C. D.910.下列各圖中,∠1與∠2互為鄰補(bǔ)角的是()A. B.C. D.11.《孫子算經(jīng)》是中國古代重要的數(shù)學(xué)著作,成書于約一千五百年前,其中有首歌謠:今有竿不知其長,量得影長一丈五尺,立一標(biāo)桿,長一尺五寸,影長五寸,問竿長幾何?意即:有一根竹竿不知道有多長,量出它在太陽下的影子長一丈五尺,同時(shí)立一根一尺五寸的小標(biāo)桿,它的影長五寸(提示:1丈=10尺,1尺=10寸),則竹竿的長為()A.五丈 B.四丈五尺 C.一丈 D.五尺12.如圖,在△ABC中,EF∥BC,AB=3AE,若S四邊形BCFE=16,則S△ABC=()A.16 B.18 C.20 D.24二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.分解因式:x2y﹣6xy+9y=_____.14.如圖,在邊長為1的正方形格點(diǎn)圖中,B、D、E為格點(diǎn),則∠BAC的正切值為_____.15.如圖,在矩形紙片ABCD中,AB=2cm,點(diǎn)E在BC上,且AE=CE.若將紙片沿AE折疊,點(diǎn)B恰好與AC上的點(diǎn)B1重合,則AC=_____cm.16.計(jì)算:×(﹣2)=___________.17.如圖,點(diǎn)A在反比例函數(shù)y=(x>0)的圖像上,過點(diǎn)A作AD⊥y軸于點(diǎn)D,延長AD至點(diǎn)C,使CD=2AD,過點(diǎn)A作AB⊥x軸于點(diǎn)B,連結(jié)BC交y軸于點(diǎn)E,若△ABC的面積為6,則k的值為________.18.如圖,A、B是雙曲線y=上的兩點(diǎn),過A點(diǎn)作AC⊥x軸,交OB于D點(diǎn),垂足為C.若D為OB的中點(diǎn),△ADO的面積為3,則k的值為_____.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,我們把一個(gè)半圓和拋物線的一部分圍成的封閉圖形稱為“果圓”,已知分別為“果圓”與坐標(biāo)軸的交點(diǎn),直線與“果圓”中的拋物線交于兩點(diǎn)(1)求“果圓”中拋物線的解析式,并直接寫出“果圓”被軸截得的線段的長;(2)如圖,為直線下方“果圓”上一點(diǎn),連接,設(shè)與交于,的面積記為,的面積即為,求的最小值(3)“果圓”上是否存在點(diǎn),使,如果存在,直接寫出點(diǎn)坐標(biāo),如果不存在,請(qǐng)說明理由20.(6分)如圖,已知□ABCD的面積為S,點(diǎn)P、Q時(shí)是?ABCD對(duì)角線BD的三等分點(diǎn),延長AQ、AP,分別交BC,CD于點(diǎn)E,F(xiàn),連結(jié)EF。甲,乙兩位同學(xué)對(duì)條件進(jìn)行分析后,甲得到結(jié)論①:“E是BC中點(diǎn)”.乙得到結(jié)論②:“四邊形QEFP的面積為S”。請(qǐng)判斷甲乙兩位同學(xué)的結(jié)論是否正確,并說明理由.21.(6分)問題提出(1)如圖1,正方形ABCD的對(duì)角線交于點(diǎn)O,△CDE是邊長為6的等邊三角形,則O、E之間的距離為;問題探究(2)如圖2,在邊長為6的正方形ABCD中,以CD為直徑作半圓O,點(diǎn)P為弧CD上一動(dòng)點(diǎn),求A、P之間的最大距離;問題解決(3)窯洞是我省陜北農(nóng)村的主要建筑,窯洞賓館更是一道靚麗的風(fēng)景線,是因?yàn)楦G洞除了它的堅(jiān)固性及特有的外在美之外,還具有冬暖夏涼的天然優(yōu)點(diǎn)家住延安農(nóng)村的一對(duì)即將參加中考的雙胞胎小寶和小貝兩兄弟,發(fā)現(xiàn)自家的窯洞(如圖3所示)的門窗是由矩形ABCD及弓形AMD組成,AB=2m,BC=3.2m,弓高M(jìn)N=1.2m(N為AD的中點(diǎn),MN⊥AD),小寶說,門角B到門窗弓形弧AD的最大距離是B、M之間的距離.小貝說這不是最大的距離,你認(rèn)為誰的說法正確?請(qǐng)通過計(jì)算求出門角B到門窗弓形弧AD的最大距離.22.(8分)觀察與思考:閱讀下列材料,并解決后面的問題在銳角△ABC中,∠A、∠B、∠C的對(duì)邊分別是a、b、c,過A作AD⊥BC于D(如圖(1)),則sinB=,sinC=,即AD=csinB,AD=bsinC,于是csinB=bsinC,即,同理有:,,所以.即:在一個(gè)三角形中,各邊和它所對(duì)角的正弦的比相等在銳角三角形中,若已知三個(gè)元素(至少有一條邊),運(yùn)用上述結(jié)論和有關(guān)定理就可以求出其余三個(gè)未知元素.根據(jù)上述材料,完成下列各題.(1)如圖(2),△ABC中,∠B=45°,∠C=75°,BC=60,則∠A=;AC=;(2)自從去年日本政府自主自導(dǎo)“釣魚島國有化”鬧劇以來,我國政府靈活應(yīng)對(duì),現(xiàn)如今已對(duì)釣魚島執(zhí)行常態(tài)化巡邏.某次巡邏中,如圖(3),我漁政204船在C處測(cè)得A在我漁政船的北偏西30°的方向上,隨后以40海里/時(shí)的速度按北偏東30°的方向航行,半小時(shí)后到達(dá)B處,此時(shí)又測(cè)得釣魚島A在的北偏西75°的方向上,求此時(shí)漁政204船距釣魚島A的距離AB.(結(jié)果精確到0.01,≈2.449)23.(8分)如圖,AB∥CD,E、F分別為AB、CD上的點(diǎn),且EC∥BF,連接AD,分別與EC、BF相交與點(diǎn)G、H,若AB=CD,求證:AG=DH.24.(10分)“不出城郭而獲山水之怡,身居鬧市而有林泉之致”,合肥市某區(qū)不斷推進(jìn)“園林城市”建設(shè),今春種植了四類花苗,園林部門從種植的這批花苗中隨機(jī)抽取了2000株,將四類花苗的種植株數(shù)繪制成扇形統(tǒng)計(jì)圖,將四類花苗的成活株數(shù)繪制成條形統(tǒng)圖.經(jīng)統(tǒng)計(jì)這批2000株的花苗總成活率為90%,其中玉蘭和月季的成活率較高,根據(jù)圖表中的信息解答下列問題:扇形統(tǒng)計(jì)圖中玉蘭所對(duì)的圓心角為,并補(bǔ)全條形統(tǒng)計(jì)圖;該區(qū)今年共種植月季8000株,成活了約株;園林部門決定明年從這四類花苗中選兩類種植,請(qǐng)用列表法或畫樹狀圖求恰好選到成活率較高的兩類花苗的概率.25.(10分)先化簡,再求值:x(x+1)﹣(x+1)(x﹣1),其中x=1.26.(12分)先化簡,然后從-2≤x≤2的范圍內(nèi)選取一個(gè)合適的整數(shù)作為x的值代入求值.27.(12分)如圖,一次函數(shù)的圖象與反比例函數(shù)(為常數(shù),且)的圖象交于A(1,a)、B兩點(diǎn).求反比例函數(shù)的表達(dá)式及點(diǎn)B的坐標(biāo);在x軸上找一點(diǎn)P,使PA+PB的值最小,求滿足條件的點(diǎn)P的坐標(biāo)及△PAB的面積.

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、B【解析】

首先確定a=1,b=-3,c=1,然后求出△=b2-4ac的值,進(jìn)而作出判斷.【詳解】∵a=1,b=-3,c=1,∴△=(-3)2-4×1×1=5>0,∴一元二次方程x2-3x+1=0兩個(gè)不相等的實(shí)數(shù)根;故選B.【點(diǎn)睛】此題考查了根的判別式,一元二次方程根的情況與判別式△的關(guān)系:(1)△>0?方程有兩個(gè)不相等的實(shí)數(shù)根;(2)△=0?方程有兩個(gè)相等的實(shí)數(shù);(3)△<0?方程沒有實(shí)數(shù)根.2、D【解析】

如圖,∵AD=1,BD=3,∴,當(dāng)時(shí),,又∵∠DAE=∠BAC,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC,而根據(jù)選項(xiàng)A、B、C的條件都不能推出DE∥BC,故選D.3、C【解析】試題分析:由得,,即是判斷函數(shù)與函數(shù)的圖象的交點(diǎn)情況.因?yàn)楹瘮?shù)與函數(shù)的圖象只有一個(gè)交點(diǎn)所以方程只有一個(gè)實(shí)數(shù)根故選C.考點(diǎn):函數(shù)的圖象點(diǎn)評(píng):函數(shù)的圖象問題是初中數(shù)學(xué)的重點(diǎn)和難點(diǎn),是中考常見題,在壓軸題中比較常見,要特別注意.4、C【解析】

根據(jù)比較實(shí)數(shù)大小的方法進(jìn)行比較即可.根據(jù)正數(shù)都大于0,負(fù)數(shù)都小于0,兩個(gè)負(fù)數(shù)絕對(duì)值大的反而小即可求解.【詳解】因?yàn)檎龜?shù)大于負(fù)數(shù),兩個(gè)負(fù)數(shù)比較大小,絕對(duì)值較大的數(shù)反而較小,所以-2<-2所以最小的數(shù)是-2,故選C.【點(diǎn)睛】此題主要考查了實(shí)數(shù)的大小的比較,正數(shù)都大于0,負(fù)數(shù)都小于0,兩個(gè)負(fù)數(shù)絕對(duì)值大的反而?。?、A【解析】

根據(jù)圖形可以求得BF的長,然后根據(jù)圖形即可求得S1-S2的值.【詳解】∵在矩形ABCD中,AB=4,BC=3,F(xiàn)是AB中點(diǎn),∴BF=BG=2,∴S1=S矩形ABCD-S扇形ADE-S扇形BGF+S2,∴S1-S2=4×3-=,故選A.【點(diǎn)睛】本題考查扇形面積的計(jì)算、矩形的性質(zhì),解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.6、B【解析】

根據(jù)第二象限中點(diǎn)的特征可得:,解得:.在數(shù)軸上表示為:故選B.考點(diǎn):(1)、不等式組;(2)、第一象限中點(diǎn)的特征7、C【解析】

由題可知“水平底”a的長度為3,則由“矩面積”為18可知“鉛垂高”h=6,再分>2或t<1兩種情況進(jìn)行求解即可.【詳解】解:由題可知a=3,則h=18÷3=6,則可知t>2或t<1.當(dāng)t>2時(shí),t-1=6,解得t=7;當(dāng)t<1時(shí),2-t=6,解得t=-4.綜上,t=-4或7.故選擇C.【點(diǎn)睛】本題考查了平面直角坐標(biāo)系的內(nèi)容,理解題意是解題關(guān)鍵.8、B【解析】

根據(jù)中心對(duì)稱圖形的概念求解.【詳解】解:A、不是中心對(duì)稱圖形,故此選項(xiàng)錯(cuò)誤;

B、是中心對(duì)稱圖形,故此選項(xiàng)正確;

C、不是中心對(duì)稱圖形,故此選項(xiàng)錯(cuò)誤;

D、不是中心對(duì)稱圖形,故此選項(xiàng)錯(cuò)誤.

故選:B.【點(diǎn)睛】此題主要考查了中心對(duì)稱圖形的概念,中心對(duì)稱圖形是要尋找對(duì)稱中心,旋轉(zhuǎn)180度后兩部分重合.9、A【解析】試題分析:根據(jù)二次根式的計(jì)算化簡可得:.故選A.考點(diǎn):二次根式的化簡10、D【解析】根據(jù)鄰補(bǔ)角的定義可知:只有D圖中的是鄰補(bǔ)角,其它都不是.故選D.11、B【解析】【分析】根據(jù)同一時(shí)刻物高與影長成正比可得出結(jié)論.【詳解】設(shè)竹竿的長度為x尺,∵竹竿的影長=一丈五尺=15尺,標(biāo)桿長=一尺五寸=1.5尺,影長五寸=0.5尺,∴,解得x=45(尺),故選B.【點(diǎn)睛】本題考查了相似三角形的應(yīng)用舉例,熟知同一時(shí)刻物髙與影長成正比是解答此題的關(guān)鍵.12、B【解析】【分析】由EF∥BC,可證明△AEF∽△ABC,利用相似三角形的性質(zhì)即可求出S△ABC的值.【詳解】∵EF∥BC,∴△AEF∽△ABC,∵AB=3AE,∴AE:AB=1:3,∴S△AEF:S△ABC=1:9,設(shè)S△AEF=x,∵S四邊形BCFE=16,∴,解得:x=2,∴S△ABC=18,故選B.【點(diǎn)睛】本題考查了相似三角形的判定與性質(zhì),熟練掌握相似三角形的面積比等于相似比的平方是解本題的關(guān)鍵.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、y(x﹣3)2【解析】本題考查因式分解.解答:.14、【解析】

根據(jù)圓周角定理可得∠BAC=∠BDC,然后求出tan∠BDC的值即可.【詳解】由圖可得,∠BAC=∠BDC,∵⊙O在邊長為1的網(wǎng)格格點(diǎn)上,∴BE=3,DB=4,則tan∠BDC==∴tan∠BAC=故答案為【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是圓周角定理及其推論及解直角三角形,解題的關(guān)鍵是熟練的掌握?qǐng)A周角定理及其推論及解直角三角形.15、4【解析】

∵AB=2cm,AB=AB1,∴AB1=2cm,∵四邊形ABCD是矩形,AE=CE,∴∠ABE=∠AB1E=90°∵AE=CE∴AB1=B1C∴AC=4cm.16、-1【解析】

根據(jù)“兩數(shù)相乘,異號(hào)得負(fù),并把絕對(duì)值相乘”即可求出結(jié)論.【詳解】故答案為【點(diǎn)睛】本題考查了有理數(shù)的乘法,牢記“兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相乘”是解題的關(guān)鍵.17、1【解析】

連結(jié)BD,利用三角形面積公式得到S△ADB=S△ABC=2,則S矩形OBAD=2S△ADB=1,于是可根據(jù)反比例函數(shù)的比例系數(shù)k的幾何意義得到k的值.【詳解】連結(jié)BD,如圖,∵DC=2AD,∴S△ADB=S△BDC=S△BAC=×6=2,∵AD⊥y軸于點(diǎn)D,AB⊥x軸,∴四邊形OBAD為矩形,∴S矩形OBAD=2S△ADB=2×2=1,∴k=1.故答案為:1.【點(diǎn)睛】本題考查了反比例函數(shù)的比例系數(shù)k的幾何意義:在反比例函數(shù)y=圖象中任取一點(diǎn),過這一個(gè)點(diǎn)向x軸和y軸分別作垂線,與坐標(biāo)軸圍成的矩形的面積是定值|k|.18、1.【解析】過點(diǎn)B作BE⊥x軸于點(diǎn)E,根據(jù)D為OB的中點(diǎn)可知CD是△OBE的中位線,即CD=BE,設(shè)A(x,),則B(2x,),故CD=,AD=﹣,再由△ADO的面積為1求出k的值即可得出結(jié)論.解:如圖所示,過點(diǎn)B作BE⊥x軸于點(diǎn)E,∵D為OB的中點(diǎn),∴CD是△OBE的中位線,即CD=BE.設(shè)A(x,),則B(2x,),CD=,AD=﹣,∵△ADO的面積為1,∴AD?OC=3,(﹣)?x=3,解得k=1,故答案為1.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1);6;(2)有最小值;(3),.【解析】

(1)先求出點(diǎn)B,C坐標(biāo),利用待定系數(shù)法求出拋物線解析式,進(jìn)而求出點(diǎn)A坐標(biāo),即可求出半圓的直徑,再構(gòu)造直角三角形求出點(diǎn)D的坐標(biāo)即可求出BD;

(2)先判斷出要求的最小值,只要CG最大即可,再求出直線EG解析式和拋物線解析式聯(lián)立成的方程只有一個(gè)交點(diǎn),求出直線EG解析式,即可求出CG,結(jié)論得證.

(3)求出線段AC,BC進(jìn)而判斷出滿足條件的一個(gè)點(diǎn)P和點(diǎn)B重合,再利用拋物線的對(duì)稱性求出另一個(gè)點(diǎn)P.【詳解】解:(1)對(duì)于直線y=x-3,令x=0,

∴y=-3,

∴B(0,-3),

令y=0,

∴x-3=0,

∴x=4,

∴C(4,0),

∵拋物線y=x2+bx+c過B,C兩點(diǎn),∴∴∴拋物線的解析式為y=;令y=0,

∴=0,∴x=4或x=-1,

∴A(-1,0),

∴AC=5,

如圖2,記半圓的圓心為O',連接O'D,

∴O'A=O'D=O'C=AC=,

∴OO'=OC-O'C=4-=,

在Rt△O'OD中,OD==2,∴D(0,2),

∴BD=2-(-3)=5;(2)如圖3,

∵A(-1,0),C(4,0),

∴AC=5,

過點(diǎn)E作EG∥BC交x軸于G,

∵△ABF的AF邊上的高和△BEF的EF邊的高相等,設(shè)高為h,

∴S△ABF=AF?h,S△BEF=EF?h,∴==∵的最小值,∴最小,∵CF∥GE,∴∴最小,即:CG最大,∴EG和果圓的拋物線部分只有一個(gè)交點(diǎn)時(shí),CG最大,

∵直線BC的解析式為y=x-3,

設(shè)直線EG的解析式為y=x+m①,

∵拋物線的解析式為y=x2-x-3②,

聯(lián)立①②化簡得,3x2-12x-12-4m=0,

∴△=144+4×3×(12+4m)=0,

∴m=-6,

∴直線EG的解析式為y=x-6,

令y=0,

∴x-6=0,

∴x=8,

∴CG=4,∴=;(3),.理由:如圖1,∵AC是半圓的直徑,

∴半圓上除點(diǎn)A,C外任意一點(diǎn)Q,都有∠AQC=90°,

∴點(diǎn)P只能在拋物線部分上,

∵B(0,-3),C(4,0),

∴BC=5,

∵AC=5,

∴AC=BC,

∴∠BAC=∠ABC,

當(dāng)∠APC=∠CAB時(shí),點(diǎn)P和點(diǎn)B重合,即:P(0,-3),

由拋物線的對(duì)稱性知,另一個(gè)點(diǎn)P的坐標(biāo)為(3,-3),

即:使∠APC=∠CAB,點(diǎn)P坐標(biāo)為(0,-3)或(3,-3).【點(diǎn)睛】本題是二次函數(shù)綜合題,考查待定系數(shù)法,圓的性質(zhì),勾股定理,相似三角形的判定和性質(zhì),拋物線的對(duì)稱性,等腰三角形的判定和性質(zhì),判斷出CG最大時(shí),兩三角形面積之比最小是解本題的關(guān)鍵.20、①結(jié)論一正確,理由見解析;②結(jié)論二正確,S四QEFP=S【解析】試題分析:(1)由已知條件易得△BEQ∽△DAQ,結(jié)合點(diǎn)Q是BD的三等分點(diǎn)可得BE:AD=BQ:DQ=1:2,再結(jié)合AD=BC即可得到BE:BC=1:2,從而可得點(diǎn)E是BC的中點(diǎn),由此即可說明甲同學(xué)的結(jié)論①成立;(2)同(1)易證點(diǎn)F是CD的中點(diǎn),由此可得EF∥BD,EF=BD,從而可得△CEF∽△CBD,則可得得到S△CEF=S△CBD=S平行四邊形ABCD=S,結(jié)合S四邊形AECF=S可得S△AEF=S,由QP=BD,EF=BD可得QP:EF=2:3,結(jié)合△AQP∽△AEF可得S△AQP=S△AEF=,由此可得S四邊形QEFP=S△AEF-S△AQP=S,從而說明乙的結(jié)論②正確;試題解析:甲和乙的結(jié)論都成立,理由如下:(1)∵在平行四邊形ABCD中,AD∥BC,∴△BEQ∽△DAQ,又∵點(diǎn)P、Q是線段BD的三等分點(diǎn),∴BE:AD=BQ:DQ=1:2,∵AD=BC,∴BE:BC=1:2,∴點(diǎn)E是BC的中點(diǎn),即結(jié)論①正確;(2)和(1)同理可得點(diǎn)F是CD的中點(diǎn),∴EF∥BD,EF=BD,∴△CEF∽△CBD,∴S△CEF=S△CBD=S平行四邊形ABCD=S,∵S四邊形AECF=S△ACE+S△ACF=S平行四邊形ABCD=S,∴S△AEF=S四邊形AECF-S△CEF=S,∵EF∥BD,∴△AQP∽△AEF,又∵EF=BD,PQ=BD,∴QP:EF=2:3,∴S△AQP=S△AEF=,∴S四邊形QEFP=S△AEF-S△AQP=S-=S,即結(jié)論②正確.綜上所述,甲、乙兩位同學(xué)的結(jié)論都正確.21、(1);(2);(2)小貝的說法正確,理由見解析,.【解析】

(1)連接AC,BD,由OE垂直平分DC可得DH長,易知OH、HE長,相加即可;(2)補(bǔ)全⊙O,連接AO并延長交⊙O右半側(cè)于點(diǎn)P,則此時(shí)A、P之間的距離最大,在Rt△AOD中,由勾股定理可得AO長,易求AP長;(1)小貝的說法正確,補(bǔ)全弓形弧AD所在的⊙O,連接ON,OA,OD,過點(diǎn)O作OE⊥AB于點(diǎn)E,連接BO并延長交⊙O上端于點(diǎn)P,則此時(shí)B、P之間的距離即為門角B到門窗弓形弧AD的最大距離,在Rt△ANO中,設(shè)AO=r,由勾股定理可求出r,在Rt△OEB中,由勾股定理可得BO長,易知BP長.【詳解】解:(1)如圖1,連接AC,BD,對(duì)角線交點(diǎn)為O,連接OE交CD于H,則OD=OC.∵△DCE為等邊三角形,∴ED=EC,∵OD=OC∴OE垂直平分DC,∴DHDC=1.∵四邊形ABCD為正方形,∴△OHD為等腰直角三角形,∴OH=DH=1,在Rt△DHE中,HEDH=1,∴OE=HE+OH=11;(2)如圖2,補(bǔ)全⊙O,連接AO并延長交⊙O右半側(cè)于點(diǎn)P,則此時(shí)A、P之間的距離最大,在Rt△AOD中,AD=6,DO=1,∴AO1,∴AP=AO+OP=11;(1)小貝的說法正確.理由如下,如圖1,補(bǔ)全弓形弧AD所在的⊙O,連接ON,OA,OD,過點(diǎn)O作OE⊥AB于點(diǎn)E,連接BO并延長交⊙O上端于點(diǎn)P,則此時(shí)B、P之間的距離即為門角B到門窗弓形弧AD的最大距離,由題意知,點(diǎn)N為AD的中點(diǎn),,∴ANAD=1.6,ON⊥AD,在Rt△ANO中,設(shè)AO=r,則ON=r﹣1.2.∵AN2+ON2=AO2,∴1.62+(r﹣1.2)2=r2,解得:r,∴AE=ON1.2,在Rt△OEB中,OE=AN=1.6,BE=AB﹣AE,∴BO,∴BP=BO+PO,∴門角B到門窗弓形弧AD的最大距離為.【點(diǎn)睛】本題考查了圓與多邊形的綜合,涉及了圓的有關(guān)概念及性質(zhì)、等邊三角形的性質(zhì)、正方形和長方形的性質(zhì)、勾股定理等,靈活的利用兩點(diǎn)之間線段最短,添加輔助線將題中所求最大距離轉(zhuǎn)化為圓外一點(diǎn)到圓上的最大距離是解題的關(guān)鍵.22、(1)60,20;(2)漁政船距海島A的距離AB約為24.49海里.【解析】

(1)利用題目總結(jié)的正弦定理,將有關(guān)數(shù)據(jù)代入求解即可;(2)在△ABC中,分別求得BC的長和三個(gè)內(nèi)角的度數(shù),利用題目中總結(jié)的正弦定理求AC的長即可.【詳解】(1)由正玄定理得:∠A=60°,AC=20;故答案為60°,20;(2)如圖:依題意,得BC=40×0.5=20(海里).∵CD∥BE,∴∠DCB+∠CBE=180°.∵∠DCB=30°,∴∠CBE=150°.∵∠ABE=75°,∴∠ABC=75°,∴∠A=45°.在△ABC中,,即,解得AB=10≈24.49(海里).答:漁政船距海島A的距離AB約為24.49海里.【點(diǎn)睛】本題考查了方向角的知識(shí),更重要的是考查了同學(xué)們的閱讀理解能力,通過材料總結(jié)出學(xué)生們沒有接觸的知識(shí),并根據(jù)此知識(shí)點(diǎn)解決相關(guān)的問題,是近幾年中考的高頻考點(diǎn).23、證明見解析.【解析】【分析】利用AAS先證明?ABH≌?DCG,根據(jù)全等三角形的性質(zhì)可得AH=DG,再根據(jù)AH=AG+GH,DG=DH+GH即可證得AG=HD.【詳解】∵AB∥CD,∴∠A=∠D,∵CE∥BF,∴∠AHB=∠DGC,在?ABH和?DCG中,,∴?ABH≌?DCG(AAS),∴AH=DG,∵AH=AG+GH,DG=DH+GH,∴AG=HD.【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì),熟練掌握全等三角形的判定與性質(zhì)是解題的關(guān)鍵.24、(1)72°,見解析;(2)7280;(3)16【解析】

(1)根據(jù)題意列式計(jì)算,補(bǔ)全條形統(tǒng)計(jì)圖即可;(2)根據(jù)題意列式計(jì)算即可;(3)畫樹狀圖得出所有等可能的情況數(shù),找出選到成活率較高的兩類樹苗的情況數(shù),即可求出所求的概率.【詳解】(1)扇形統(tǒng)計(jì)圖中玉蘭所對(duì)的圓心角為360°×(1-40%-15%-25%)=72°月季的株數(shù)為2000×90%-380-422-270=728(株),補(bǔ)全條形統(tǒng)計(jì)圖如圖所示:(2)月季的成活率為728所以月季成活株數(shù)為8000×91%=7280(株).故答案為:7280.(3)由題意知,成活率較高的兩類花苗是玉蘭和月季,玉蘭、月季、桂花、臘梅分別用A、B、C、D表示,畫樹狀圖如下:所有等可能的情況有12種,其中恰好選到成活率較高的兩類花苗有2種.∴P(恰好選到成活率較高的兩類花苗)=【點(diǎn)睛】此題主要考查了條形統(tǒng)計(jì)圖以及扇形統(tǒng)計(jì)圖的應(yīng)用,根據(jù)統(tǒng)計(jì)圖

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論