黑龍江省哈爾濱市第六十九中學(xué)2022年中考數(shù)學(xué)模擬預(yù)測試卷含解析_第1頁
黑龍江省哈爾濱市第六十九中學(xué)2022年中考數(shù)學(xué)模擬預(yù)測試卷含解析_第2頁
黑龍江省哈爾濱市第六十九中學(xué)2022年中考數(shù)學(xué)模擬預(yù)測試卷含解析_第3頁
黑龍江省哈爾濱市第六十九中學(xué)2022年中考數(shù)學(xué)模擬預(yù)測試卷含解析_第4頁
黑龍江省哈爾濱市第六十九中學(xué)2022年中考數(shù)學(xué)模擬預(yù)測試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

黑龍江省哈爾濱市第六十九中學(xué)2022年中考數(shù)學(xué)模擬預(yù)測試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.已知A(x1,y1),B(x2,y2)是反比例函數(shù)y=kx(k≠0)圖象上的兩個點(diǎn),當(dāng)x1<x2<0時,y1>y2A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限2.如圖是一次數(shù)學(xué)活動課制作的一個轉(zhuǎn)盤,盤面被等分成四個扇形區(qū)域,并分別標(biāo)有數(shù)字6、7、8、1.若轉(zhuǎn)動轉(zhuǎn)盤一次,轉(zhuǎn)盤停止后(當(dāng)指針恰好指在分界線上時,不記,重轉(zhuǎn)),指針?biāo)竻^(qū)域的數(shù)字是奇數(shù)的概率為()A.12 B.14 C.13.某種商品的進(jìn)價為800元,出售時標(biāo)價為1200元,后來由于該商品積壓,商店準(zhǔn)備打折銷售,但要保證利潤率不低于5%,則至多可打()A.6折 B.7折C.8折 D.9折4.某公園里鮮花的擺放如圖所示,第①個圖形中有3盆鮮花,第②個圖形中有6盆鮮花,第③個圖形中有11盆鮮花,……,按此規(guī)律,則第⑦個圖形中的鮮花盆數(shù)為()A.37 B.38 C.50 D.515.一次函數(shù)的圖像不經(jīng)過的象限是:()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.如圖,將△ABC沿著點(diǎn)B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距離為6,則陰影部分面積為()A.42 B.96 C.84 D.487.下列各數(shù)中,最小的數(shù)是A. B. C.0 D.8.若,則()A. B. C. D.9.二元一次方程組的解是()A. B. C. D.10.某種電子元件的面積大約為0.00000069平方毫米,將0.00000069這個數(shù)用科學(xué)記數(shù)法表示正確的是()A.0.69×10﹣6 B.6.9×10﹣7 C.69×10﹣8 D.6.9×107二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,把△ABC繞點(diǎn)C按順時針方向旋轉(zhuǎn)35°,得到△A’B’C,A’B’交AC于點(diǎn)D,若∠A’DC=90°,則∠A=°.12.一元二次方程x﹣1=x2﹣1的根是_____.13.如圖,半徑為1的半圓形紙片,按如圖方式折疊,使對折后半圓弧的中點(diǎn)M與圓心O重合,則圖中陰影部分的面積是________.14.如圖,數(shù)軸上不同三點(diǎn)對應(yīng)的數(shù)分別為,其中,則點(diǎn)表示的數(shù)是__________.15.計算:(1)()2=_____;(2)=_____.16.?dāng)?shù)學(xué)綜合實踐課,老師要求同學(xué)們利用直徑為的圓形紙片剪出一個如圖所示的展開圖,再將它沿虛線折疊成一個無蓋的正方體形盒子(接縫處忽略不計).若要求折出的盒子體積最大,則正方體的棱長等于________.三、解答題(共8題,共72分)17.(8分)某興趣小組為了了解本校男生參加課外體育鍛煉情況,隨機(jī)抽取本校300名男生進(jìn)行了問卷調(diào)查,統(tǒng)計整理并繪制了如下兩幅尚不完整的統(tǒng)計圖.請根據(jù)以上信息解答下列問題:課外體育鍛煉情況扇形統(tǒng)計圖中,“經(jīng)常參加”所對應(yīng)的圓心角的度數(shù)為______;請補(bǔ)全條形統(tǒng)計圖;該校共有1200名男生,請估計全校男生中經(jīng)常參加課外體育鍛煉并且最喜歡的項目是籃球的人數(shù);小明認(rèn)為“全校所有男生中,課外最喜歡參加的運(yùn)動項目是乒乓球的人數(shù)約為1200×=108”,請你判斷這種說法是否正確,并說明理由.18.(8分)如圖,在△ABC中,AB>AC,點(diǎn)D在邊AC上.(1)作∠ADE,使∠ADE=∠ACB,DE交AB于點(diǎn)E;(尺規(guī)作圖,保留作圖痕跡,不寫作法)(2)若BC=5,點(diǎn)D是AC的中點(diǎn),求DE的長.19.(8分)如圖,已知是的外接圓,圓心在的外部,,,求的半徑.20.(8分)如圖,在平面直角坐標(biāo)系中,拋物線y=-x2+bx+c與x軸交于點(diǎn)A(-1,0),點(diǎn)B(3,0),與y軸交于點(diǎn)C,線段BC與拋物線的對稱軸交于點(diǎn)E、P為線段BC上的一點(diǎn)(不與點(diǎn)B、C重合),過點(diǎn)P作PF∥y軸交拋物線于點(diǎn)F,連結(jié)DF.設(shè)點(diǎn)P的橫坐標(biāo)為m.(1)求此拋物線所對應(yīng)的函數(shù)表達(dá)式.(2)求PF的長度,用含m的代數(shù)式表示.(3)當(dāng)四邊形PEDF為平行四邊形時,求m的值.21.(8分)綜合與實踐﹣猜想、證明與拓廣問題情境:數(shù)學(xué)課上同學(xué)們探究正方形邊上的動點(diǎn)引發(fā)的有關(guān)問題,如圖1,正方形ABCD中,點(diǎn)E是BC邊上的一點(diǎn),點(diǎn)D關(guān)于直線AE的對稱點(diǎn)為點(diǎn)F,直線DF交AB于點(diǎn)H,直線FB與直線AE交于點(diǎn)G,連接DG,CG.猜想證明(1)當(dāng)圖1中的點(diǎn)E與點(diǎn)B重合時得到圖2,此時點(diǎn)G也與點(diǎn)B重合,點(diǎn)H與點(diǎn)A重合.同學(xué)們發(fā)現(xiàn)線段GF與GD有確定的數(shù)量關(guān)系和位置關(guān)系,其結(jié)論為:;(2)希望小組的同學(xué)發(fā)現(xiàn),圖1中的點(diǎn)E在邊BC上運(yùn)動時,(1)中結(jié)論始終成立,為證明這兩個結(jié)論,同學(xué)們展開了討論:小敏:根據(jù)軸對稱的性質(zhì),很容易得到“GF與GD的數(shù)量關(guān)系”…小麗:連接AF,圖中出現(xiàn)新的等腰三角形,如△AFB,…小凱:不妨設(shè)圖中不斷變化的角∠BAF的度數(shù)為n,并設(shè)法用n表示圖中的一些角,可證明結(jié)論.請你參考同學(xué)們的思路,完成證明;(3)創(chuàng)新小組的同學(xué)在圖1中,發(fā)現(xiàn)線段CG∥DF,請你說明理由;聯(lián)系拓廣:(4)如圖3若將題中的“正方形ABCD”變?yōu)椤傲庑蜛BCD“,∠ABC=α,其余條件不變,請?zhí)骄俊螪FG的度數(shù),并直接寫出結(jié)果(用含α的式子表示).22.(10分)先化簡,再求值:,再從的范圍內(nèi)選取一個你最喜歡的值代入,求值.23.(12分)某種商品每天的銷售利潤元,銷售單價元,間滿足函數(shù)關(guān)系式:,其圖象如圖所示.(1)銷售單價為多少元時,該種商品每天的銷售利潤最大?最大利潤為多少元?(2)銷售單價在什么范圍時,該種商品每天的銷售利潤不低于21元?24.將一個等邊三角形紙片AOB放置在平面直角坐標(biāo)系中,點(diǎn)O(0,0),點(diǎn)B(6,0).點(diǎn)C、D分別在OB、AB邊上,DC∥OA,CB=2.(I)如圖①,將△DCB沿射線CB方向平移,得到△D′C′B′.當(dāng)點(diǎn)C平移到OB的中點(diǎn)時,求點(diǎn)D′的坐標(biāo);(II)如圖②,若邊D′C′與AB的交點(diǎn)為M,邊D′B′與∠ABB′的角平分線交于點(diǎn)N,當(dāng)BB′多大時,四邊形MBND′為菱形?并說明理由.(III)若將△DCB繞點(diǎn)B順時針旋轉(zhuǎn),得到△D′C′B,連接AD′,邊D′C′的中點(diǎn)為P,連接AP,當(dāng)AP最大時,求點(diǎn)P的坐標(biāo)及AD′的值.(直接寫出結(jié)果即可).

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】試題分析:當(dāng)x1<x2<0時,y1>y2,可判定k>0,所以﹣k<0,即可判定一次函數(shù)y=kx﹣k的圖象經(jīng)過第一、三、四象限,所以不經(jīng)過第二象限,故答案選B.考點(diǎn):反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征;一次函數(shù)圖象與系數(shù)的關(guān)系.2、A【解析】

轉(zhuǎn)盤中4個數(shù),每轉(zhuǎn)動一次就要4種可能,而其中是奇數(shù)的有2種可能.然后根據(jù)概率公式直接計算即可【詳解】奇數(shù)有兩種,共有四種情況,將轉(zhuǎn)盤轉(zhuǎn)動一次,求得到奇數(shù)的概率為:P(奇數(shù))=24=1【點(diǎn)睛】此題主要考查了幾何概率,正確應(yīng)用概率公式是解題關(guān)鍵.3、B【解析】

設(shè)可打x折,則有1200×-800≥800×5%,解得x≥1.即最多打1折.故選B.【點(diǎn)睛】本題考查的是一元一次不等式的應(yīng)用,解此類題目時注意利潤和折數(shù),計算折數(shù)時注意要除以2.解答本題的關(guān)鍵是讀懂題意,求出打折之后的利潤,根據(jù)利潤率不低于5%,列不等式求解.4、D【解析】試題解析:第①個圖形中有盆鮮花,第②個圖形中有盆鮮花,第③個圖形中有盆鮮花,…第n個圖形中的鮮花盆數(shù)為則第⑥個圖形中的鮮花盆數(shù)為故選C.5、C【解析】試題分析:根據(jù)一次函數(shù)y=kx+b(k≠0,k、b為常數(shù))的圖像與性質(zhì)可知:當(dāng)k>0,b>0時,圖像過一二三象限;當(dāng)k>0,b<0時,圖像過一三四象限;當(dāng)k<0,b>0時,圖像過一二四象限;當(dāng)k<0,b<0,圖像過二三四象限.這個一次函數(shù)的k=<0與b=1>0,因此不經(jīng)過第三象限.答案為C考點(diǎn):一次函數(shù)的圖像6、D【解析】

由平移的性質(zhì)知,BE=6,DE=AB=10,∴OE=DE﹣DO=10﹣4=6,∴S四邊形ODFC=S梯形ABEO=(AB+OE)?BE=(10+6)×6=1.故選D.【點(diǎn)睛】本題考查平移的性質(zhì),平移前后兩個圖形大小,形狀完全相同,圖形上的每個點(diǎn)都平移了相同的距離,對應(yīng)點(diǎn)之間的距離就是平移的距離.7、A【解析】

應(yīng)明確在數(shù)軸上,從左到右的順序,就是數(shù)從小到大的順序,據(jù)此解答.【詳解】解:因為在數(shù)軸上-3在其他數(shù)的左邊,所以-3最??;故選A.【點(diǎn)睛】此題考負(fù)數(shù)的大小比較,應(yīng)理解數(shù)字大的負(fù)數(shù)反而?。?、D【解析】

等式左邊為非負(fù)數(shù),說明右邊,由此可得b的取值范圍.【詳解】解:,

,解得故選D.【點(diǎn)睛】本題考查了二次根式的性質(zhì):,.9、B【解析】

利用加減消元法解二元一次方程組即可得出答案【詳解】解:①﹣②得到y(tǒng)=2,把y=2代入①得到x=4,∴,故選:B.【點(diǎn)睛】此題考查了解二元一次方程組,解方程組利用了消元的思想,消元的方法有:代入消元法與加減消元法.10、B【解析】試題解析:0.00000069=6.9×10-7,故選B.點(diǎn)睛:絕對值小于1的正數(shù)也可以利用科學(xué)記數(shù)法表示,一般形式為a×10-n,與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負(fù)指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.二、填空題(本大題共6個小題,每小題3分,共18分)11、55.【解析】

試題分析:∵把△ABC繞點(diǎn)C按順時針方向旋轉(zhuǎn)35°,得到△A’B’C∴∠ACA’=35°,∠A=∠A’,.∵∠A’DC=90°,∴∠A’=55°.∴∠A=55°.考點(diǎn):1.旋轉(zhuǎn)的性質(zhì);2.直角三角形兩銳角的關(guān)系.12、x=0或x=1.【解析】

利用因式分解法求解可得.【詳解】∵(x﹣1)﹣(x+1)(x﹣1)=0,∴(x﹣1)(1﹣x﹣1)=0,即﹣x(x﹣1)=0,則x=0或x=1,故答案為:x=0或x=1.【點(diǎn)睛】本題主要考查了解一元二次方程的能力,熟練掌握解一元二次方程的幾種常用方法:直接開平方法、因式分解法、公式法、配方法,結(jié)合方程的特點(diǎn)選擇合適、簡便的方法是解題的關(guān)鍵.13、.【解析】試題解析:如圖,連接OM交AB于點(diǎn)C,連接OA、OB,由題意知,OM⊥AB,且OC=MC=1,在RT△AOC中,∵OA=2,OC=1,∴cos∠AOC=,AC=∴∠AOC=60°,AB=2AC=2,∴∠AOB=2∠AOC=120°,則S弓形ABM=S扇形OAB-S△AOB==,S陰影=S半圓-2S弓形ABM=π×22-2()=2.故答案為2.14、1【解析】

根據(jù)兩點(diǎn)間的距離公式可求B點(diǎn)坐標(biāo),再根據(jù)絕對值的性質(zhì)即可求解.【詳解】∵數(shù)軸上不同三點(diǎn)A、B、C對應(yīng)的數(shù)分別為a、b、c,a=-4,AB=3,∴b=3+(-4)=-1,∵|b|=|c|,∴c=1.故答案為1.【點(diǎn)睛】考查了實數(shù)與數(shù)軸,絕對值,關(guān)鍵是根據(jù)兩點(diǎn)間的距離公式求得B點(diǎn)坐標(biāo).15、【解析】

(1)直接利用分式乘方運(yùn)算法則計算得出答案;(2)直接利用分式除法運(yùn)算法則計算得出答案.【詳解】(1)()2=;故答案為;(2)==.故答案為.【點(diǎn)睛】此題主要考查了分式的乘除法運(yùn)算,正確掌握運(yùn)算法則是解題關(guān)鍵.16、【解析】

根據(jù)題意作圖,可得AB=6cm,設(shè)正方體的棱長為xcm,則AC=x,BC=3x,根據(jù)勾股定理對稱62=x2+(3x)2,解方程即可求得.【詳解】解:如圖示,根據(jù)題意可得AB=6cm,

設(shè)正方體的棱長為xcm,則AC=x,BC=3x,

根據(jù)勾股定理,AB2=AC2+BC2,即,

解得故答案為:.【點(diǎn)睛】本題考查了勾股定理的應(yīng)用,正確理解題意是解題的關(guān)鍵.三、解答題(共8題,共72分)17、(1)144°;(2)補(bǔ)圖見解析;(3)160人;(4)這個說法不正確,理由見解析.【解析】

試題分析:(1)360°×(1﹣15%﹣45%)=360°×40%=144°;故答案為144°;(2)“經(jīng)常參加”的人數(shù)為:300×40%=120人,喜歡籃球的學(xué)生人數(shù)為:120﹣27﹣33﹣20=120﹣80=40人;補(bǔ)全統(tǒng)計圖如圖所示;(3)全校男生中經(jīng)常參加課外體育鍛煉并且最喜歡的項目是籃球的人數(shù)約為:1200×=160人;(4)這個說法不正確.理由如下:小明得到的108人是經(jīng)常參加課外體育鍛煉的男生中最喜歡的項目是乒乓球的人數(shù),而全校偶爾參加課外體育鍛煉的男生中也會有最喜歡乒乓球的,因此應(yīng)多于108人.考點(diǎn):①條形統(tǒng)計圖;②扇形統(tǒng)計圖.18、(1)作圖見解析;(2)【解析】

(1)根據(jù)作一個角等于已知角的步驟解答即可;(2)由作法可得DE∥BC,又因為D是AC的中點(diǎn),可證DE為△ABC的中位線,從而運(yùn)用三角形中位線的性質(zhì)求解.【詳解】解:(1)如圖,∠ADE為所作;(2)∵∠ADE=∠ACB,∴DE∥BC,∵點(diǎn)D是AC的中點(diǎn),∴DE為△ABC的中位線,∴DE=BC=.19、4【解析】

已知△ABC是等腰三角形,根據(jù)等腰三角形的性質(zhì),作于點(diǎn),則直線為的中垂線,直線過點(diǎn),在Rt△OBH中,用半徑表示出OH的長,即可用勾股定理求得半徑的長.【詳解】作于點(diǎn),則直線為的中垂線,直線過點(diǎn),,,,即,.【點(diǎn)睛】考查垂徑定理以及勾股定理,掌握垂徑定理是解題的關(guān)鍵.20、(1)y=-x2+2x+1;(2)-m2+1m.(1)2.【解析】

(1)根據(jù)待定系數(shù)法,可得函數(shù)解析式;(2)根據(jù)自變量與函數(shù)值的對應(yīng)關(guān)系,可得C點(diǎn)坐標(biāo),根據(jù)平行于y軸的直線上兩點(diǎn)之間的距離是較大的縱坐標(biāo)減較的縱坐標(biāo),可得答案;(1)根據(jù)自變量與函數(shù)值的對應(yīng)關(guān)系,可得F點(diǎn)坐標(biāo),根據(jù)平行于y軸的直線上兩點(diǎn)之間的距離是較大的縱坐標(biāo)減較的縱坐標(biāo),可得DE的長,根據(jù)平行四邊形的對邊相等,可得關(guān)于m的方程,根據(jù)解方程,可得m的值.【詳解】解:(1)∵點(diǎn)A(-1,0),點(diǎn)B(1,0)在拋物線y=-x2+bx+c上,∴,解得,此拋物線所對應(yīng)的函數(shù)表達(dá)式y(tǒng)=-x2+2x+1;(2)∵此拋物線所對應(yīng)的函數(shù)表達(dá)式y(tǒng)=-x2+2x+1,∴C(0,1).設(shè)BC所在的直線的函數(shù)解析式為y=kx+b,將B、C點(diǎn)的坐標(biāo)代入函數(shù)解析式,得,解得,即BC的函數(shù)解析式為y=-x+1.由P在BC上,F(xiàn)在拋物線上,得P(m,-m+1),F(xiàn)(m,-m2+2m+1).PF=-m2+2m+1-(-m+1)=-m2+1m.(1)如圖,∵此拋物線所對應(yīng)的函數(shù)表達(dá)式y(tǒng)=-x2+2x+1,∴D(1,4).∵線段BC與拋物線的對稱軸交于點(diǎn)E,當(dāng)x=1時,y=-x+1=2,∴E(1,2),∴DE=4-2=2.由四邊形PEDF為平行四邊形,得PF=DE,即-m2+1m=2,解得m1=1,m2=2.當(dāng)m=1時,線段PF與DE重合,m=1(不符合題意,舍).當(dāng)m=2時,四邊形PEDF為平行四邊形.考點(diǎn):二次函數(shù)綜合題.21、(1)GF=GD,GF⊥GD;(2)見解析;(3)見解析;(4)90°﹣.【解析】

(1)根據(jù)四邊形ABCD是正方形可得∠ABD=∠ADB=45°,∠BAD=90°,點(diǎn)D關(guān)于直線AE的對稱點(diǎn)為點(diǎn)F,即可證明出∠DBF=90°,故GF⊥GD,再根據(jù)∠F=∠ADB,即可證明GF=GD;(2)連接AF,證明∠AFG=∠ADG,再根據(jù)四邊形ABCD是正方形,得出AB=AD,∠BAD=90°,設(shè)∠BAF=n,∠FAD=90°+n,可得出∠FGD=360°﹣∠FAD﹣∠AFG﹣∠ADG=360°﹣(90°+n)﹣(180°﹣n)=90°,故GF⊥GD;(3)連接BD,由(2)知,F(xiàn)G=DG,F(xiàn)G⊥DG,再分別求出∠GFD與∠DBC的角度,再根據(jù)三角函數(shù)的性質(zhì)可證明出△BDF∽△CDG,故∠DGC=∠FDG,則CG∥DF;(4)連接AF,BD,根據(jù)題意可證得∠DAM=90°﹣∠2=90°﹣∠1,∠DAF=2∠DAM=180°﹣2∠1,再根據(jù)菱形的性質(zhì)可得∠ADB=∠ABD=α,故∠AFB+∠DBF+∠ADB+∠DAF=(∠DFG+∠1)+(∠DFG+∠1+α)+α+(180°﹣2∠1)=360°,2∠DFG+2∠1+α﹣2∠1=180°,即可求出∠DFG.【詳解】解:(1)GF=GD,GF⊥GD,理由:∵四邊形ABCD是正方形,∴∠ABD=∠ADB=45°,∠BAD=90°,∵點(diǎn)D關(guān)于直線AE的對稱點(diǎn)為點(diǎn)F,∠BAD=∠BAF=90°,∴∠F=∠ADB=45°,∠ABF=∠ABD=45°,∴∠DBF=90°,∴GF⊥GD,∵∠BAD=∠BAF=90°,∴點(diǎn)F,A,D在同一條線上,∵∠F=∠ADB,∴GF=GD,故答案為GF=GD,GF⊥GD;(2)連接AF,∵點(diǎn)D關(guān)于直線AE的對稱點(diǎn)為點(diǎn)F,∴直線AE是線段DF的垂直平分線,∴AF=AD,GF=GD,∴∠1=∠2,∠3=∠FDG,∴∠1+∠3=∠2+∠FDG,∴∠AFG=∠ADG,∵四邊形ABCD是正方形,∴AB=AD,∠BAD=90°,設(shè)∠BAF=n,∴∠FAD=90°+n,∵AF=AD=AB,∴∠FAD=∠ABF,∴∠AFB+∠ABF=180°﹣n,∴∠AFB+∠ADG=180°﹣n,∴∠FGD=360°﹣∠FAD﹣∠AFG﹣∠ADG=360°﹣(90°+n)﹣(180°﹣n)=90°,∴GF⊥DG,(3)如圖2,連接BD,由(2)知,F(xiàn)G=DG,F(xiàn)G⊥DG,∴∠GFD=∠GDF=(180°﹣∠FGD)=45°,∵四邊形ABCD是正方形,∴BC=CD,∠BCD=90°,∴∠BDC=∠DBC=(180°﹣∠BCD)=45°,∴∠FDG=∠BDC,∴∠FDG﹣∠BDG=∠BDC﹣∠BDG,∴∠FDB=∠GDC,在Rt△BDC中,sin∠DFG==sin45°=,在Rt△BDC中,sin∠DBC==sin45°=,∴,∴,∴△BDF∽△CDG,∵∠FDB=∠GDC,∴∠DGC=∠DFG=45°,∴∠DGC=∠FDG,∴CG∥DF;(4)90°﹣,理由:如圖3,連接AF,BD,∵點(diǎn)D與點(diǎn)F關(guān)于AE對稱,∴AE是線段DF的垂直平分線,∴AD=AF,∠1=∠2,∠AMD=90°,∠DAM=∠FAM,∴∠DAM=90°﹣∠2=90°﹣∠1,∴∠DAF=2∠DAM=180°﹣2∠1,∵四邊形ABCD是菱形,∴AB=AD,∴∠AFB=∠ABF=∠DFG+∠1,∵BD是菱形的對角線,∴∠ADB=∠ABD=α,在四邊形ADBF中,∠AFB+∠DBF+∠ADB+∠DAF=(∠DFG+∠1)+(∠DFG+∠1+α)+α+(180°﹣2∠1)=360°∴2∠DFG+2∠1+α﹣2∠1=180°,∴∠DFG=90°﹣.【點(diǎn)睛】本題考查了正方形、菱形、相似三角形的性質(zhì),解題的根據(jù)是熟練的掌握正方形、菱形、相似三角形的性質(zhì).22、原式=,把x=2代入的原式=1.【解析】試題分析:先對原分式的分子、分母進(jìn)行因式分解,然后按順序進(jìn)行乘除法運(yùn)算、加減法運(yùn)算,最后選取有意義的數(shù)值代入計算即可.試題解析:原式==當(dāng)x=2時,原式=123、(1)10,1;(2).【解析】

(1)將點(diǎn)代入中,求出函數(shù)解析式,再根據(jù)二次函數(shù)的性質(zhì)求出最大值即可;(2)求出對稱軸為直線,可知點(diǎn)關(guān)于對稱軸的對稱點(diǎn)是,再根據(jù)圖象判斷出x的取值范圍即可.【詳解】解:(1)圖象過點(diǎn),,解得..的頂點(diǎn)坐標(biāo)為.,∴當(dāng)時,最大=1.答:該商品的銷售單價為10元時,每天的銷售利潤最大,最大利潤為1元.(2)∵函數(shù)圖象的對稱軸為直線,可知點(diǎn)關(guān)于對稱軸的對稱點(diǎn)是,又∵函數(shù)圖象開口向下,∴當(dāng)時,.答:銷售單價不少于8元且不超過12元時,該種商品每天的銷售利潤不低于21元.【點(diǎn)睛】本題考查

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論