![2025年福建省福州三中高三模擬卷數(shù)學試題(二)試題含解析_第1頁](http://file4.renrendoc.com/view12/M01/1C/06/wKhkGWbZotaAd8jJAAHRUnnIe6U375.jpg)
![2025年福建省福州三中高三模擬卷數(shù)學試題(二)試題含解析_第2頁](http://file4.renrendoc.com/view12/M01/1C/06/wKhkGWbZotaAd8jJAAHRUnnIe6U3752.jpg)
![2025年福建省福州三中高三模擬卷數(shù)學試題(二)試題含解析_第3頁](http://file4.renrendoc.com/view12/M01/1C/06/wKhkGWbZotaAd8jJAAHRUnnIe6U3753.jpg)
![2025年福建省福州三中高三模擬卷數(shù)學試題(二)試題含解析_第4頁](http://file4.renrendoc.com/view12/M01/1C/06/wKhkGWbZotaAd8jJAAHRUnnIe6U3754.jpg)
![2025年福建省福州三中高三模擬卷數(shù)學試題(二)試題含解析_第5頁](http://file4.renrendoc.com/view12/M01/1C/06/wKhkGWbZotaAd8jJAAHRUnnIe6U3755.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2025年福建省福州三中高三最新模擬卷數(shù)學試題(二)試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知點,若點在曲線上運動,則面積的最小值為()A.6 B.3 C. D.2.雙曲線的一條漸近線方程為,那么它的離心率為()A. B. C. D.3.若復數(shù)是純虛數(shù),則()A.3 B.5 C. D.4.我們熟悉的卡通形象“哆啦A夢”的長寬比為.在東方文化中通常稱這個比例為“白銀比例”,該比例在設計和建筑領域有著廣泛的應用.已知某電波塔自下而上依次建有第一展望臺和第二展望臺,塔頂?shù)剿椎母叨扰c第二展望臺到塔底的高度之比,第二展望臺到塔底的高度與第一展望臺到塔底的高度之比皆等于“白銀比例”,若兩展望臺間高度差為100米,則下列選項中與該塔的實際高度最接近的是()A.400米 B.480米C.520米 D.600米5.執(zhí)行如圖所示的程序框圖,若輸出的值為8,則框圖中①處可以填().A. B. C. D.6.已知直線與直線則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件7.圓心為且和軸相切的圓的方程是()A. B.C. D.8.已知,則下列不等式正確的是()A. B.C. D.9.函數(shù)(),當時,的值域為,則的范圍為()A. B. C. D.10.若不等式對于一切恒成立,則的最小值是()A.0 B. C. D.11.已知正項等比數(shù)列中,存在兩項,使得,,則的最小值是()A. B. C. D.12.函數(shù)(,,)的部分圖象如圖所示,則的值分別為()A.2,0 B.2, C.2, D.2,二、填空題:本題共4小題,每小題5分,共20分。13.已知復數(shù)滿足(為虛數(shù)單位),則復數(shù)的實部為____________.14.若函數(shù)滿足:①是偶函數(shù);②的圖象關于點對稱.則同時滿足①②的,的一組值可以分別是__________.15.在△ABC中,()⊥(>1),若角A的最大值為,則實數(shù)的值是_______.16.設數(shù)列為等差數(shù)列,其前項和為,已知,,若對任意都有成立,則的值為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設,,,.(1)若的最小值為4,求的值;(2)若,證明:或.18.(12分)已知橢圓的右焦點為,離心率為.(1)若,求橢圓的方程;(2)設直線與橢圓相交于、兩點,、分別為線段、的中點,若坐標原點在以為直徑的圓上,且,求的取值范圍.19.(12分)已知圓O經(jīng)過橢圓C:的兩個焦點以及兩個頂點,且點在橢圓C上.求橢圓C的方程;若直線l與圓O相切,與橢圓C交于M、N兩點,且,求直線l的傾斜角.20.(12分)某景點上山共有級臺階,寓意長長久久.甲上臺階時,可以一步走一個臺階,也可以一步走兩個臺階,若甲每步上一個臺階的概率為,每步上兩個臺階的概率為.為了簡便描述問題,我們約定,甲從級臺階開始向上走,一步走一個臺階記分,一步走兩個臺階記分,記甲登上第個臺階的概率為,其中,且.(1)若甲走步時所得分數(shù)為,求的分布列和數(shù)學期望;(2)證明:數(shù)列是等比數(shù)列;(3)求甲在登山過程中,恰好登上第級臺階的概率.21.(12分)設函數(shù).(1)當時,解不等式;(2)若的解集為,,求證:.22.(10分)已知函數(shù).(Ⅰ)求的值;(Ⅱ)若,且,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
求得直線的方程,畫出曲線表示的下半圓,結合圖象可得位于,結合點到直線的距離公式和兩點的距離公式,以及三角形的面積公式,可得所求最小值.【詳解】解:曲線表示以原點為圓心,1為半徑的下半圓(包括兩個端點),如圖,直線的方程為,可得,由圓與直線的位置關系知在時,到直線距離最短,即為,則的面積的最小值為.故選:B.本題考查三角形面積最值,解題關鍵是掌握直線與圓的位置關系,確定半圓上的點到直線距離的最小值,這由數(shù)形結合思想易得.2.D【解析】
根據(jù)雙曲線的一條漸近線方程為,列出方程,求出的值即可.【詳解】∵雙曲線的一條漸近線方程為,可得,∴,∴雙曲線的離心率.故選:D.本小題主要考查雙曲線離心率的求法,屬于基礎題.3.C【解析】
先由已知,求出,進一步可得,再利用復數(shù)模的運算即可【詳解】由z是純虛數(shù),得且,所以,.因此,.故選:C.本題考查復數(shù)的除法、復數(shù)模的運算,考查學生的運算能力,是一道基礎題.4.B【解析】
根據(jù)題意,畫出幾何關系,結合各線段比例可先求得第一展望臺和第二展望臺的距離,進而由比例即可求得該塔的實際高度.【詳解】設第一展望臺到塔底的高度為米,塔的實際高度為米,幾何關系如下圖所示:由題意可得,解得;且滿足,故解得塔高米,即塔高約為480米.故選:B本題考查了對中國文化的理解與簡單應用,屬于基礎題.5.C【解析】
根據(jù)程序框圖寫出幾次循環(huán)的結果,直到輸出結果是8時.【詳解】第一次循環(huán):第二次循環(huán):第三次循環(huán):第四次循環(huán):第五次循環(huán):第六次循環(huán):第七次循環(huán):第八次循環(huán):所以框圖中①處填時,滿足輸出的值為8.故選:C此題考查算法程序框圖,根據(jù)循環(huán)條件依次寫出每次循環(huán)結果即可解決,屬于簡單題目.6.B【解析】
利用充分必要條件的定義可判斷兩個條件之間的關系.【詳解】若,則,故或,當時,直線,直線,此時兩條直線平行;當時,直線,直線,此時兩條直線平行.所以當時,推不出,故“”是“”的不充分條件,當時,可以推出,故“”是“”的必要條件,故選:B.本題考查兩條直線的位置關系以及必要不充分條件的判斷,前者應根據(jù)系數(shù)關系來考慮,后者依據(jù)兩個條件之間的推出關系,本題屬于中檔題.7.A【解析】
求出所求圓的半徑,可得出所求圓的標準方程.【詳解】圓心為且和軸相切的圓的半徑為,因此,所求圓的方程為.故選:A.本題考查圓的方程的求解,一般求出圓的圓心和半徑,考查計算能力,屬于基礎題.8.D【解析】
利用特殊值代入法,作差法,排除不符合條件的選項,得到符合條件的選項.【詳解】已知,賦值法討論的情況:(1)當時,令,,則,,排除B、C選項;(2)當時,令,,則,排除A選項.故選:D.比較大小通常采用作差法,本題主要考查不等式與不等關系,不等式的基本性質(zhì),利用特殊值代入法,排除不符合條件的選項,得到符合條件的選項,是一種簡單有效的方法,屬于中等題.9.B【解析】
首先由,可得的范圍,結合函數(shù)的值域和正弦函數(shù)的圖像,可求的關于實數(shù)的不等式,解不等式即可求得范圍.【詳解】因為,所以,若值域為,所以只需,∴.故選:B本題主要考查三角函數(shù)的值域,熟悉正弦函數(shù)的單調(diào)性和特殊角的三角函數(shù)值是解題的關鍵,側(cè)重考查數(shù)學抽象和數(shù)學運算的核心素養(yǎng).10.C【解析】
試題分析:將參數(shù)a與變量x分離,將不等式恒成立問題轉(zhuǎn)化為求函數(shù)最值問題,即可得到結論.解:不等式x2+ax+1≥0對一切x∈(0,]成立,等價于a≥-x-對于一切成立,∵y=-x-在區(qū)間上是增函數(shù)∴∴a≥-∴a的最小值為-故答案為C.考點:不等式的應用點評:本題綜合考查了不等式的應用、不等式的解法等基礎知識,考查運算求解能力,考查化歸與轉(zhuǎn)化思想,屬于中檔題11.C【解析】
由已知求出等比數(shù)列的公比,進而求出,嘗試用基本不等式,但取不到等號,所以考慮直接取的值代入比較即可.【詳解】,,或(舍).,,.當,時;當,時;當,時,,所以最小值為.故選:C.本題考查等比數(shù)列通項公式基本量的計算及最小值,屬于基礎題.12.D【解析】
由題意結合函數(shù)的圖象,求出周期,根據(jù)周期公式求出,求出,根據(jù)函數(shù)的圖象過點,求出,即可求得答案【詳解】由函數(shù)圖象可知:,函數(shù)的圖象過點,,則故選本題主要考查的是的圖像的運用,在解答此類題目時一定要挖掘圖像中的條件,計算三角函數(shù)的周期、最值,代入已知點坐標求出結果二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
利用復數(shù)的概念與復數(shù)的除法運算計算即可得到答案.【詳解】,所以復數(shù)的實部為2.故答案為:2本題考查復數(shù)的除法運算,考查學生的基本計算能力,是一道基礎題.14.,【解析】
根據(jù)是偶函數(shù)和的圖象關于點對稱,即可求出滿足條件的和.【詳解】由是偶函數(shù)及,可取,則,由的圖象關于點對稱,得,,即,,可取.故,的一組值可以分別是,.故答案為:,.本題主要考查了正弦型三角函數(shù)的性質(zhì),屬于基礎題.15.1【解析】
把向量進行轉(zhuǎn)化,用表示,利用基本不等式可求實數(shù)的值.【詳解】,解得=1.故答案為:1.本題主要考查平面向量的數(shù)量積應用,綜合了基本不等式,側(cè)重考查數(shù)學運算的核心素養(yǎng).16.【解析】
由已知條件得出關于首項和公差的方程組,解出這兩個量,計算出,利用二次函數(shù)的基本性質(zhì)求出的最大值及其對應的值,即可得解.【詳解】設等差數(shù)列的公差為,由,解得,.所以,當時,取得最大值,對任意都有成立,則為數(shù)列的最大值,因此,.故答案為:.本題考查等差數(shù)列前項和最值的計算,一般利用二次函數(shù)的基本性質(zhì)求解,考查計算能力,屬于中等題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)2;(2)見解析【解析】
(1)將化簡為,再利用基本不等式即可求出最小值為4,便可得出的值;(2)根據(jù),即,得出,利用基本不等式求出最值,便可得出的取值范圍.【詳解】解:(1)由題可知,,,,,∴.(2)∵,∴,∴,∴,即:或.本題考查基本不等式的應用,利用基本不等式和放縮法求最值,考查化簡計算能力.18.(1);(2).【解析】
(1)由橢圓的離心率求出、的值,由此可求得橢圓的方程;(2)設點、,聯(lián)立直線與橢圓的方程,列出韋達定理,由題意得出,可得出,【詳解】(1)由題意得,,.又因為,,所以橢圓的方程為;(2)由,得.設、,所以,,依題意,,易知,四邊形為平行四邊形,所以.因為,,所以.即,將其整理為.因為,所以,.所以,即.本題考查橢圓方程的求法和直線與橢圓位置關系的綜合運用,解題時要認真審題,注意挖掘題設中的隱含條件,合理地進行等價轉(zhuǎn)化,考查計算能力,屬于中等題.19.(1);(2)或【解析】
(1)先由題意得出,可得出與的等量關系,然后將點的坐標代入橢圓的方程,可求出與的值,從而得出橢圓的方程;(2)對直線的斜率是否存在進行分類討論,當直線的斜率不存在時,可求出,然后進行檢驗;當直線的斜率存在時,可設直線的方程為,設點,先由直線與圓相切得出與之間的關系,再將直線的方程與橢圓的方程聯(lián)立,由韋達定理,利用弦長公式并結合條件得出的值,從而求出直線的傾斜角.【詳解】(1)由題可知圓只能經(jīng)過橢圓的上下頂點,所以橢圓焦距等于短軸長,可得,又點在橢圓上,所以,解得,即橢圓的方程為.(2)圓的方程為,當直線不存在斜率時,解得,不符合題意;當直線存在斜率時,設其方程為,因為直線與圓相切,所以,即.將直線與橢圓的方程聯(lián)立,得:,判別式,即,設,則,所以,解得,所以直線的傾斜角為或.求橢圓標準方程的方法一般為待定系數(shù)法,根據(jù)條件確定關于的方程組,解出,從而寫出橢圓的標準方程.解決直線與橢圓的位置關系的相關問題,其常規(guī)思路是先把直線方程與橢圓方程聯(lián)立,消元、化簡,然后應用根與系數(shù)的關系建立方程,解決相關問題.涉及弦中點的問題常常用“點差法”解決,往往會更簡單.20.見解析【解析】
(1)由題可得的所有可能取值為,,,,且,,,,所以的分布列為所以的數(shù)學期望.(2)由題可得,所以,又,,所以,所以是以為首項,為公比的等比數(shù)列.(3)由(2)可得.21.(1);(2)見解析.【解析】
(1)當時,將所求不等式變形為,然后分、、三段解不等式,綜合可得出原不等式的解集;(2)先由不等式的解集求得實數(shù),可得出,將代數(shù)式變形為,將與相乘,展開后利用基本不等式可求得的最小值,進而可證得結論.【詳解】(1)當時,不等
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度國防軍事訓練合作合同范本
- 玉溪2025年云南玉溪市第二幼兒園龍湖園區(qū)招聘編制外人員筆試歷年參考題庫附帶答案詳解
- 漯河2024年河南漯河市沙澧河建設運行保障中心人才引進5人筆試歷年參考題庫附帶答案詳解
- 湖南2025年湖南農(nóng)業(yè)大學招聘58人筆試歷年參考題庫附帶答案詳解
- 河南2025年河南省醫(yī)學科學院電生理研究所招聘20人筆試歷年參考題庫附帶答案詳解
- 池州2024年安徽池州學院招聘事業(yè)編制黨政管理崗筆試歷年參考題庫附帶答案詳解
- 杭州浙江杭州市臨平區(qū)沾橋中學招聘2024學年第二學期臨時聘用教師筆試歷年參考題庫附帶答案詳解
- 2025年中國塑料鏈條市場調(diào)查研究報告
- 2025年金融查詢機外殼項目可行性研究報告
- 2025至2031年中國非離子表面活性劑行業(yè)投資前景及策略咨詢研究報告
- 2025版茅臺酒出口業(yè)務代理及銷售合同模板4篇
- 2025年人教版數(shù)學五年級下冊教學計劃(含進度表)
- 北師大版七年級上冊數(shù)學期末考試試題及答案
- 初中信息技術課堂中的項目式學習實踐研究結題報告
- 《工業(yè)廢水臭氧催化氧化深度處理技術規(guī)程》(T-SDEPI 030-2022)
- 2024安全事故案例
- 生日快樂祝福含生日歌相冊課件模板
- 2024-2025學年人教版數(shù)學六年級上冊 期末綜合卷(含答案)
- 天津市部分區(qū)2023-2024學年高二上學期期末考試 物理 含解析
- 2024年考研管理類綜合能力(199)真題及解析完整版
- 2025年初級社會工作者綜合能力全國考試題庫(含答案)
評論
0/150
提交評論