2024-2025學(xué)年北京市平谷區(qū)名校九上數(shù)學(xué)開學(xué)綜合測試模擬試題【含答案】_第1頁
2024-2025學(xué)年北京市平谷區(qū)名校九上數(shù)學(xué)開學(xué)綜合測試模擬試題【含答案】_第2頁
2024-2025學(xué)年北京市平谷區(qū)名校九上數(shù)學(xué)開學(xué)綜合測試模擬試題【含答案】_第3頁
2024-2025學(xué)年北京市平谷區(qū)名校九上數(shù)學(xué)開學(xué)綜合測試模擬試題【含答案】_第4頁
2024-2025學(xué)年北京市平谷區(qū)名校九上數(shù)學(xué)開學(xué)綜合測試模擬試題【含答案】_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共6頁2024-2025學(xué)年北京市平谷區(qū)名校九上數(shù)學(xué)開學(xué)綜合測試模擬試題題號一二三四五總分得分批閱人A卷(100分)一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、(4分)若等腰的周長是,一腰長為,底邊長為,則與的函數(shù)關(guān)系式及自變量的取值范圍是A. B.C. D.2、(4分)若分式有意義,則的取值范圍是A. B. C. D.3、(4分)如圖,雙曲線的圖象經(jīng)過正方形對角線交點,則這條雙曲線與正方形邊交點的坐標(biāo)為()A. B. C. D.4、(4分)一名射擊運動員連續(xù)打靶8次,命中的環(huán)數(shù)如圖所示,則命中環(huán)數(shù)的眾數(shù)與中位數(shù)分別為(

)A.9環(huán)與8環(huán) B.8環(huán)與9環(huán) C.8環(huán)與8.5環(huán) D.8.5環(huán)與9環(huán)5、(4分)點P是△ABC內(nèi)一點,且P到△ABC的三邊距離相等,則P是△ABC哪三條線的交點()A.邊的垂直平分線 B.角平分線C.高線 D.中位線6、(4分)如圖,陰影部分是一個長方形,它的面積是()A. B. C. D.7、(4分)如圖,分別是的邊上的點,將四邊形沿翻折,得到交于點則的周長為()A. B. C. D.8、(4分)分式-11-x可變形為(A.-1x-1 B.1x-1 C.二、填空題(本大題共5個小題,每小題4分,共20分)9、(4分)當(dāng)x=______時,分式的值為0.10、(4分)如圖,小明在“4x5”的長方形內(nèi)丟一粒花生(將花生看作一個點),則花生落在陰影的部分的概率是_________11、(4分)在函數(shù)y=中,自變量x的取值范圍是____.12、(4分)要使代數(shù)式有意義,則的取值范圍是________.13、(4分)在五邊形中,若,則__________.三、解答題(本大題共5個小題,共48分)14、(12分)如圖,在矩形ABCD中,點E在AD上,且EC平分∠BED.(1)△BEC是否為等腰三角形?證明你的結(jié)論;(2)若AB=2,∠DCE=22.5°,求BC長.15、(8分)如圖,在平行四邊形ABCD中,AC,BD相交于點O,點E,F(xiàn)在AC上,且OE=OF.(1)求證:BE=DF;(2)當(dāng)線段OE=_____時,四邊形BEDF為矩形,并說明理由.16、(8分)哈市某專賣店銷售某品牌服裝,設(shè)服裝進價為80元,當(dāng)每件服裝售價為240元時,月銷售為200件,該專賣店為提高經(jīng)營利潤,準(zhǔn)備采取降價的方式進行促銷,經(jīng)市場調(diào)查發(fā)現(xiàn):當(dāng)每件價格每下降10元時,月銷售量就會增加20件,設(shè)每件服裝售價為x(元),該專賣店的月利潤為y(元).

(1)求出y與x的函數(shù)關(guān)系式(不要求寫出x的取值范圍);

(2)該專賣店要獲得最大月利潤,售價應(yīng)定為每件多少元?最大利潤是多少?17、(10分)一個二次函數(shù)的圖象經(jīng)過三點.求這個二次函數(shù)的解析式并寫出圖象的開口方向、對稱軸和頂點.18、(10分)在平面直角坐標(biāo)系中,已知點,,,點與關(guān)于軸對稱.(1)寫出點所在直線的函數(shù)解析式;(2)連接,若線段能構(gòu)成三角形,求的取值范圍;(3)若直線把四邊形的面積分成相等的兩部分,試求的值.B卷(50分)一、填空題(本大題共5個小題,每小題4分,共20分)19、(4分)如圖,點A的坐標(biāo)為2,2,則線段AO的長度為_________.20、(4分)已知的頂點坐標(biāo)分別是,,.過點的直線與相交于點.若分的面積比為,則點的坐標(biāo)為________.21、(4分)如圖,在平面直角坐標(biāo)系xOy中,點A(0,2),B(4,0),點N為線段AB的中點,則點N的坐標(biāo)為_____________.22、(4分)拋擲一枚質(zhì)地均勻的骰子1次,朝上一面的點數(shù)不小于3的概率是_____.23、(4分)若,則=______.二、解答題(本大題共3個小題,共30分)24、(8分)隨著“一帶一路”的不斷建設(shè)與深化,我國不少知名企業(yè)都積極拓展海外市場,參與投資經(jīng)營.某著名手機公司在某國經(jīng)銷某種型號的手機,受該國政府經(jīng)濟政策與國民購買力雙重影響,手機價格不斷下降.分公司在該國某城市的一家手機銷售門店,今年5月份的手機售價比去年同期每臺降價1000元,若賣出同樣多的手機,去年銷售額可達10萬元,今年銷售額只有8萬元.(1)今年5月份每臺手機售價多少元?(2)為增加收入,分公司決定拓展產(chǎn)品線,增加經(jīng)銷某種新型筆記本電腦.已知手機每臺成本為3500元,筆記本電腦每臺成本為3000元,分公司預(yù)計用不少于4.8萬元的成本資金少量試生產(chǎn)這兩種產(chǎn)品共15臺,但因資金所限不能超過5萬元,共有幾種生產(chǎn)方案?(3)如果筆記本電腦每臺售價3800元,現(xiàn)為打開筆記本電腦的銷路,公司決定每售出1臺筆記本電腦,就返還顧客現(xiàn)金a元,要使(2)中各方案獲利最大,a的值應(yīng)為多少?最大利潤多少?25、(10分)如圖1,在平面直角坐標(biāo)系中,直線AB與軸交于點A,與軸交于點B,與直線OC:交于點C.(1)若直線AB解析式為,①求點C的坐標(biāo);②求△OAC的面積.(2)如圖2,作的平分線ON,若AB⊥ON,垂足為E,OA=4,P、Q分別為線段OA、OE上的動點,連結(jié)AQ與PQ,試探索AQ+PQ是否存在最小值?若存在,求出這個最小值;若不存在,說明理由.26、(12分)小明到眼鏡店調(diào)查了近視眼鏡鏡片的度數(shù)和鏡片焦距的關(guān)系,發(fā)現(xiàn)鏡片的度數(shù)(度)是鏡片焦距(厘米)()的反比例函數(shù),調(diào)查數(shù)據(jù)如下表:眼鏡片度數(shù)(度)…鏡片焦距(厘米)…(1)求與的函數(shù)表達式;(2)若小明所戴近視眼鏡鏡片的度數(shù)為度,求該鏡片的焦距.

參考答案與詳細(xì)解析一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、C【解析】

根據(jù)題意,等腰三角形的兩腰長相等,即可列出關(guān)系式.【詳解】依題意,,根據(jù)三角形的三邊關(guān)系得,,得,,得,得,,故與的函數(shù)關(guān)系式及自變量的取值范圍是:,故選.本題考查了一次函數(shù)的應(yīng)用,涉及了等腰三角形的性質(zhì),三角形的三邊關(guān)系,做此類題型要注意利用三角形的三邊關(guān)系要確定邊長的取值范圍.2、A【解析】

直接利用分式有意義的條件即分母不為零,進而得出答案.【詳解】解:分式有意義,,解得:.故選:.此題主要考查了分式有意義的條件,正確把握定義是解題關(guān)鍵.3、B【解析】

由于雙曲線的一支經(jīng)過這個正方形的對角線的交點A,由正方形的性質(zhì)求出A的坐標(biāo),進而根據(jù)正方形的性質(zhì)表示出點C的坐標(biāo),又因B,C相同橫坐標(biāo),再將點C的橫坐標(biāo)代入反比例函數(shù)即可求得B的坐標(biāo)?!驹斀狻吭O(shè)點在反比例函數(shù)的圖象上,,,將的坐標(biāo)代入反比例函數(shù)得故的坐標(biāo)為故選B.本題考查了反比例函數(shù)圖象上點的坐標(biāo)特征:反比例函數(shù)y=(k為常數(shù),k≠0)的圖象是雙曲線,圖象上的點(x,y)的橫縱坐標(biāo)的積是定值k,即xy=k.也考查了正方形的性質(zhì).4、C【解析】

根據(jù)眾數(shù)的定義找出出現(xiàn)次數(shù)最多的數(shù);根據(jù)中位數(shù)的定義求出最中間兩個數(shù)的平均數(shù)即可.【詳解】根據(jù)統(tǒng)計圖可得:8出現(xiàn)了3次,出現(xiàn)的次數(shù)最多,則眾數(shù)是8;∵共有8個數(shù),∴中位數(shù)是第4和1個數(shù)的平均數(shù),∴中位數(shù)是(8+9)÷2=8.1.故選C.本題考查了眾數(shù)和中位數(shù),用到的知識點是眾數(shù)和中位數(shù)的定義,中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻?,最中間的那個數(shù)(最中間兩個數(shù)的平均數(shù)),眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù),注意眾數(shù)不止一個.5、B【解析】

根據(jù)到角的兩邊的距離相等的點在角的平分線上解答.【詳解】∵P到△ABC的三邊距離相等,∴點P在△ABC的三條角平分線上,∴P是△ABC三條角平分線的交點,故選:B.本題考查的是角平分線的性質(zhì),掌握到角的兩邊的距離相等的點在角的平分線上是解題的關(guān)鍵.6、C【解析】

由勾股定理求出直角三角形的斜邊長,再由長方形的面積公式即可得出結(jié)果.【詳解】由勾股定理得:cm,∴陰影部分的面積=5×1=5(cm2);

故選:C.考查了勾股定理、長方形的性質(zhì);熟練掌握勾股定理是解決問題的關(guān)鍵.7、C【解析】

根據(jù)平行四邊形的性質(zhì)得到AD∥BC,由平行線的性質(zhì)得到∠AEG=∠EGF,根據(jù)折疊的性質(zhì)得到∠GEF=∠DEF=60°,推出△EGF是等邊三角形,于是得到結(jié)論.【詳解】解:∵四邊形ABCD是平行四邊形,∴AD∥BC,∴∠AEG=∠EGF,∵將四邊形EFCD沿EF翻折,得到EFC′D′,∴∠GEF=∠DEF=60°,∴∠AEG=60°,∴∠EGF=60°,∴△EGF是等邊三角形,∴EG=FG=EF=4,∴△GEF的周長=4×3=12,故選:C.本題考查了翻折變換的性質(zhì)、平行四邊形的性質(zhì)、等邊三角形的判定與性質(zhì)等知識;熟練掌握翻折變換的性質(zhì)是解決問題的關(guān)鍵.8、B【解析】

根據(jù)分式的基本性質(zhì)進行變形即可.【詳解】-11-x=故選B.此題主要考查了分式的基本性質(zhì),正確利用分式的基本性質(zhì)求出是解題關(guān)鍵.二、填空題(本大題共5個小題,每小題4分,共20分)9、1.【解析】

直接利用分式的值為零則分子為零,分母不為零進而得出答案.【詳解】解:∵分式的值為0,

∴1x-4=0且x-1≠0,

解得:x=1.

故答案為:1.本題考查分式的值為零的條件,正確把握分式的定義是解題關(guān)鍵.10、【解析】

根據(jù)題意,判斷概率類型,分別算出長方形面積和陰影面積,再利用幾何概型公式加以計算,即可得到所求概率.【詳解】解:長方形面積=4×5=20,陰影面積=,∴這粒豆子落入陰影部分的概率為:P=,故答案為:.本題給出丟豆子的事件,求豆子落入指定區(qū)域的概率.著重考查了長方形、三角形面積公式和幾何概型的計算等知識,屬于基礎(chǔ)題.11、x≥-2且x≠1【解析】

根據(jù)二次根式被開方數(shù)大于等于1,分式分母不等于1列式計算即可得解.【詳解】解:由題意得,x+2≥1且2x≠1,

解得:x≥-2且x≠1.

故答案為:x≥-2且x≠1.本題考查了函數(shù)自變量的范圍,一般從三個方面考慮:(1)當(dāng)函數(shù)表達式是整式時,自變量可取全體實數(shù);(2)當(dāng)函數(shù)表達式是分式時,考慮分式的分母不能為1;(3)當(dāng)函數(shù)表達式是二次根式時,被開方數(shù)非負(fù).12、且【解析】

分式的分母不等于零時分式有意義,且還需滿足被開方數(shù)大于等于零的條件,根據(jù)要求列式計算即可.【詳解】∵代數(shù)式有意義,∴,且,∴且,故答案為:且.此題考查分式有意義的條件,二次根式被開方數(shù)的取值范圍的確定,正確理解題意列出不等式是解題的關(guān)鍵.13、130°【解析】

首先利用多邊形的外角和定理求得正五邊形的內(nèi)角和,然后減去已知四個角的和即可.【詳解】解:正五邊形的內(nèi)角和為(5-2)×180°=540°,∵∠A+∠B+∠C+∠D=410°,∴∠E=540°-410°=130°,故答案為:130°.本題主要考查了多邊形的內(nèi)角和公式,熟記公式是解題的關(guān)鍵.三、解答題(本大題共5個小題,共48分)14、(1)△BEC是等腰三角形,見解析;(2)2【解析】

(1)由矩形的性質(zhì)和角平分線的定義得出∠DEC=∠ECB=∠BEC,推出BE=BC即可;(2)證出AE=AB=2,根據(jù)勾股定理求出BE,即可得出BC的長.【詳解】解:(1)△BEC是等腰三角形;理由如下:∵四邊形ABCD是矩形,∴AD∥BC,∴∠DEC=∠BCE,∵EC平分∠DEB,∴∠DEC=∠BEC,∴∠BEC=∠ECB,∴BE=BC,即△BEC是等腰三角形.(2)∵四邊形ABCD是矩形,∴∠A=∠D=90°,∵∠DCE=22.5°,∴∠DEB=2×(90°-22.5°)=135°,∴∠AEB=180°-∠DEB=45°,∴∠ABE=∠AEB=45°,∴AE=AB=2,由勾股定理得:BC=BE===2,答:BC的長是2.本題考查了矩形的性質(zhì),等腰三角形的判定,勾股定理的應(yīng)用;熟練掌握矩形的性質(zhì),證出∠BEC=∠ECB是解決問題的關(guān)鍵.15、(1)見解析;(2)OD.【解析】

(1)運用平行四邊形性質(zhì),對角線相互平分,即可確定BO=OD,然后運用線段的和差即可求得BE=DF.(2)根據(jù)矩形對角線相等且相互平分,可確定OE=OD【詳解】(1)證明:分別連接DE、BF∵四邊形ABCD是平行四邊形∴OB=OD又∵OE=OF∴四邊形DEBF是平行四邊形∴BE=DF(2)當(dāng)OE=OD時,四邊形BEDF是矩形∵OE=OF,OB=OD∴四邊形BEDF是平行四邊形又∵OE=OD,EF=2OE,BD=20D∴EF=BD∴四邊形BEDF是矩形本題主要考查了平行四邊形額性質(zhì)和矩形的判定,有一定難度,需要認(rèn)真審題和分析.16、(1)y=?2x2+840x?54400;(2)售價應(yīng)定為每件210元,最大利潤是33800元.【解析】

(1)由題意得到每件服裝的利潤為

x?80

元,則可得月銷售量為

200+,再根據(jù)月利潤等于總銷量乘以每件服裝的利潤即可得到;(2)

由(1)得到y(tǒng)=?2x2+840x?54400經(jīng)過變形得到y(tǒng)=?2(x?210)2+33800,即可得到答案.【詳解】解:(1)每件服裝的利潤為

x?80

元,月銷售量為

200+,所以月利潤:

y=(x-80)?(

200+)=(x?80)(680?2x)=?2x2+840x?54400,所以函數(shù)關(guān)系式為y=?2x2+840x?54400;

(2)

y=?2x2+840x?54400=?2(x?210)2+33800

所以,當(dāng)x=210時,y最大=33800

.

即售價應(yīng)定為每件210元,最大利潤是33800元.

答:售價應(yīng)定為每件210元,最大利潤是33800元.本題考查一元二次函數(shù)的實際應(yīng)用,解題的關(guān)鍵是讀懂題意,得到等式關(guān)系.17、,圖象開口向上,對稱軸直線,頂點.【解析】

首先根據(jù)待定系數(shù)法求解二次函數(shù)的解析式,再根據(jù)二次函數(shù)的系數(shù)確定拋物線的開口方向,對稱軸,和公式法計算頂點坐標(biāo).【詳解】設(shè)二次函數(shù)的解析式為.由已知,函數(shù)的圖象經(jīng)過三點,可得解這個方程組,得,,.所求二次函數(shù)的解析式為,圖象開口向上,對稱軸直線,頂點.本題主要考查二次函數(shù)拋物線解析式的計算、拋物線的性質(zhì),這是考試的必考點,必須熟練掌握.18、(1);(2)時,線段能構(gòu)成三角形;(3)當(dāng)時,把四邊形的面積分成相等的兩部分.【解析】

(1)根據(jù)題意可得點,可得的當(dāng)橫坐標(biāo)為m時,縱坐標(biāo)為-3m+22,因此可得點C的所在直線的解析式.(2)首先利用待定系數(shù)法計算直線AB的解析式,再利用點C是否在直線上,來確定是否構(gòu)成三角形,從而確定m的范圍.(3)首先計算D點坐標(biāo),設(shè)的中點為,過作軸于,軸于,進而確定E點的坐標(biāo),再計算DE所在直線的解析式,根據(jù)點C在直線DE上可求得m的值.【詳解】解:(1)根據(jù)題意可得點,可得的當(dāng)橫坐標(biāo)為m時,縱坐標(biāo)為-3m+22,所以(2)設(shè)所在直線的函數(shù)解析式為,將點,代入得,解得,∴當(dāng)點在直線上時,線段不能構(gòu)成三角形將代入,得解得,∴時,線段能構(gòu)成三角形;(3)根據(jù)題意可得,設(shè)的中點為,過作軸于,軸于,根據(jù)三角形中位線性質(zhì)可知,由三角形中線性質(zhì)可知,當(dāng)點在直線上時,把四邊形的面積分成相等的兩部分,設(shè)直線的函數(shù)解析式為,將,代入,得,解得,∴,將代入,得,解得,∴當(dāng)時,把四邊形的面積分成相等的兩部分.本題主要考查一次函數(shù)的性質(zhì),本題難度系數(shù)較大,關(guān)鍵在于根據(jù)點在直線上來求參數(shù)的.一、填空題(本大題共5個小題,每小題4分,共20分)19、2【解析】

根據(jù)勾股定理計算即可.【詳解】解:∵點A坐標(biāo)為(2,2),∴AO=22故答案為:22本題考查了勾股定理的運用和點到坐標(biāo)軸的距離:①到x軸的距離與縱坐標(biāo)有關(guān),到y(tǒng)軸的距離與橫坐標(biāo)有關(guān);②距離都是非負(fù)數(shù),而坐標(biāo)可以是負(fù)數(shù),在由距離求坐標(biāo)時,需要加上恰當(dāng)?shù)姆枺?0、(5,-)或(5,-).【解析】

由AE分△ABC的面積比為1:2,可得出BE:CE=1:2或BE:CE=2:1,由點B,C的坐標(biāo)可得出線段BC的長度,再由BE:CE=1:2或BE:CE=2:1結(jié)合點B的坐標(biāo)可得出點E的坐標(biāo),此題得解.【詳解】∵AE分△ABC的面積比為1:2,點E在線段BC上,∴BE:CE=1:2或BE:CE=2:1.∵B(5,1),C(5,-6),∴BC=1-(-6)=2.當(dāng)BE:CE=1:2時,點E的坐標(biāo)為(5,1-×2),即(5,-);當(dāng)BE:CE=2:1時,點E的坐標(biāo)為(5,1-×2),即(5,-).故答案為:(5,-)或(5,-).本題考查了比例的性質(zhì)以及三角形的面積,由三角形的面積比找出BE:CE的比值是解題的關(guān)鍵.21、(2,1)【解析】【分析】直接運用線段中點坐標(biāo)的求法,易求N的坐標(biāo).【詳解】點N的坐標(biāo)是:(),即(2,1).故答案為:(2,1)【點睛】本題考核知識點:平面直角坐標(biāo)系中求線段的中點.解題關(guān)鍵點:理解線段中點的坐標(biāo)求法.22、【解析】

由題意知共有6種等可能結(jié)果,朝上一面的點數(shù)不小于3的有4種結(jié)果,利用概率公式計算可得.【詳解】解:∵拋擲一枚質(zhì)地均勻的骰子1次共有6種等可能結(jié)果,朝上一面的點數(shù)不小于3的有4種結(jié)果,

所以朝上一面的點數(shù)不小于3的概率是=,

故答案為:.此題考查了概率公式的應(yīng)用.解題時注意:概率=所求情況數(shù)與總情況數(shù)之比.23、1【解析】

根據(jù)二次根式和偶次方根的非負(fù)性即可求出x,y的值,進而可求答案【詳解】∵∴∴∴故答案為1.本題考查的是二次根式偶次方根的非負(fù)性,能夠據(jù)此解答出x、y的值是解題的關(guān)鍵.二、解答題(本大題共3個小題,共30分)24、(1)今年5月份每臺手機售價4000元;(2)5種生產(chǎn)方案;(3)a的值應(yīng)為2元,最大利潤為7500元.【解析】

(1)設(shè)今年5月份手機每臺售價為m元,則去年同期每臺售價為(m+100)元,根據(jù)數(shù)量=總價÷單價結(jié)合今年5月份與去年同期的銷售數(shù)量相同,即可得出關(guān)于m的分式方程,解之經(jīng)檢驗后即可得出結(jié)論;(2)設(shè)生產(chǎn)手機x臺,則生產(chǎn)筆記本電腦(15-x)臺,根據(jù)總價=單價×數(shù)量結(jié)合總價不少于4.8萬元不能超過高于5萬元,即可得出關(guān)于x的一元一次不等式組,解之即可得出x的取值范圍,由該范圍內(nèi)整數(shù)的個數(shù)即可得出方案的種數(shù);(3)設(shè)總獲利為w元,根據(jù)利潤=銷售收入-成本,即可得出w關(guān)于x的一次函數(shù)關(guān)系式,由w的值與x無關(guān),即可得出a-2=0,解之即可求出a值.【詳解】(1)設(shè)今年5月份手機每臺售價為m元,則去年同期每臺售價為(m+100)元,根據(jù)題意得:,解得:m=4000,經(jīng)檢驗,m=4000是原方程的根且符合題意.答:今年5月份手機每臺售價為4000元.(2)設(shè)生產(chǎn)手機x臺,則生產(chǎn)筆記本電腦(15-x)臺,根據(jù)題意得:,解得:6≤x≤1,∴x的正整數(shù)解為6、7、8、9、1.答:共有5種生產(chǎn)方案.(3)設(shè)總獲利為w元,根據(jù)題意得:w=(4000-3500)x+(3800-20-a)(15-x)=(a-2)x+12000-15a.∵w的值與x值無關(guān),∴a-2=0,即a=2.當(dāng)a=2時,最大利潤為12000-15×2=7500元.本題考查了分式方程的應(yīng)用、一元一次不等式組的應(yīng)用以

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論