版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022年山東省煙臺市萊山區(qū)重點中學十校聯(lián)考最后數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.觀察下面“品”字形中各數(shù)之間的規(guī)律,根據(jù)觀察到的規(guī)律得出a的值為()A.23 B.75 C.77 D.1392.如果將直線l1:y=2x﹣2平移后得到直線l2:y=2x,那么下列平移過程正確的是()A.將l1向左平移2個單位 B.將l1向右平移2個單位C.將l1向上平移2個單位 D.將l1向下平移2個單位3.下列計算正確的是()A.﹣5x﹣2x=﹣3x B.(a+3)2=a2+9 C.(﹣a3)2=a5 D.a(chǎn)2p÷a﹣p=a3p4.三角形兩邊的長是3和4,第三邊的長是方程x2-12x+35=0的根,則該三角形的周長為()A.14 B.12 C.12或14 D.以上都不對5.某春季田徑運動會上,參加男子跳高的15名運動員的成績?nèi)缦卤硭荆撼煽內(nèi)藬?shù)這些運動員跳高成績的中位數(shù)是()A. B. C. D.6.的相反數(shù)是()A.2 B.﹣2 C.4 D.﹣7.1.在以下綠色食品、回收、節(jié)能、節(jié)水四個標志中,是軸對稱圖形的是()A. B. C. D.8.今年,我省啟動了“關愛留守兒童工程”.某村小為了了解各年級留守兒童的數(shù)量,對一到六年級留守兒童數(shù)量進行了統(tǒng)計,得到每個年級的留守兒童人數(shù)分別為10,15,10,17,18,1.對于這組數(shù)據(jù),下列說法錯誤的是()A.平均數(shù)是15 B.眾數(shù)是10 C.中位數(shù)是17 D.方差是9.4的平方根是()A.4 B.±4 C.±2 D.210.由6個大小相同的正方體搭成的幾何體如圖所示,比較它的正視圖、左視圖和俯視圖的面積,則()A.三個視圖的面積一樣大 B.主視圖的面積最小C.左視圖的面積最小 D.俯視圖的面積最小二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖所示是一組有規(guī)律的圖案,第l個圖案由4個基礎圖形組成,第2個圖案由7個基礎圖形組成,……,第n(n是正整數(shù))個圖案中的基礎圖形個數(shù)為_______(用含n的式子表示).12.如果實數(shù)x、y滿足方程組,求代數(shù)式(+2)÷.13.拋物線y=(x﹣2)2﹣3的頂點坐標是____.14.觀察下列一組數(shù),,,,,…探究規(guī)律,第n個數(shù)是_____.15.如圖,點A、B、C是圓O上的三點,且四邊形ABCO是平行四邊形,OF⊥OC交圓O于點F,則∠BAF=__.16.已知方程的一個根為1,則的值為__________.三、解答題(共8題,共72分)17.(8分)如圖,在△ABC中,D為BC邊上一點,AC=DC,E為AB邊的中點,(1)尺規(guī)作圖:作∠C的平分線CF,交AD于點F(保留作圖痕跡,不寫作法);(2)連接EF,若BD=4,求EF的長.18.(8分)美麗的黃河宛如一條玉帶穿城而過,沿河兩岸的濱河路風情線是蘭州最美的景觀之一.數(shù)學課外實踐活動中,小林在南濱河路上的A,B兩點處,利用測角儀分別對北岸的一觀景亭D進行了測量.如圖,測得∠DAC=45°,∠DBC=65°.若AB=132米,求觀景亭D到南濱河路AC的距離約為多少米?(結果精確到1米,參考數(shù)據(jù):sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)19.(8分)已知二次函數(shù)的圖象如圖6所示,它與軸的一個交點坐標為,與軸的交點坐標為(0,3).求出此二次函數(shù)的解析式;根據(jù)圖象,寫出函數(shù)值為正數(shù)時,自變量的取值范圍.20.(8分)某校為美化校園,計劃對面積為1800m2的區(qū)域進行綠化,安排甲、乙兩個工程隊完成.已知甲隊每天能完成綠化的面積是乙隊每天能完成綠化的面積的2倍,并且在獨立完成面積為400m2區(qū)域的綠化時,甲隊比乙隊少用4天.(1)求甲、乙兩工程隊每天能完成綠化的面積分別是多少m2?(2)若學校每天需付給甲隊的綠化費用是0.4萬元,乙隊為0.25萬元,要使這次的綠化總費用不超過8萬元,至少應安排甲隊工作多少天?21.(8分)如圖,已知△ABC中,AB=BC=5,tan∠ABC=.求邊AC的長;設邊BC的垂直平分線與邊AB的交點為D,求的值.22.(10分)如圖,在△ABC中,點D是AB邊的中點,點E是CD邊的中點,過點C作CF∥AB交AE的延長線于點F,連接BF.求證:DB=CF;(2)如果AC=BC,試判斷四邊形BDCF的形狀,并證明你的結論.23.(12分)2013年我國多地出現(xiàn)霧霾天氣,某企業(yè)抓住商機準備生產(chǎn)空氣凈化設備,該企業(yè)決定從以下兩個投資方案中選擇一個進行投資生產(chǎn),方案一:生產(chǎn)甲產(chǎn)品,每件產(chǎn)品成本為a元(a為常數(shù),且40<a<100),每件產(chǎn)品銷售價為120元,每年最多可生產(chǎn)125萬件;方案二:生產(chǎn)乙產(chǎn)品,每件產(chǎn)品成本價為80元,每件產(chǎn)品銷售價為180元,每年可生產(chǎn)120萬件,另外,年銷售x萬件乙產(chǎn)品時需上交0.5x2萬元的特別關稅,在不考慮其它因素的情況下:(1)分別寫出該企業(yè)兩個投資方案的年利潤y1(萬元)、y2(萬元)與相應生產(chǎn)件數(shù)x(萬件)(x為正整數(shù))之間的函數(shù)關系式,并指出自變量的取值范圍;(2)分別求出這兩個投資方案的最大年利潤;(3)如果你是企業(yè)決策者,為了獲得最大收益,你會選擇哪個投資方案?24.一次函數(shù)的圖象經(jīng)過點和點,求一次函數(shù)的解析式.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】
由圖可知:上邊的數(shù)與左邊的數(shù)的和正好等于右邊的數(shù),上邊的數(shù)為連續(xù)的奇數(shù),左邊的數(shù)為21,22,23,…26,由此可得a,b.【詳解】∵上邊的數(shù)為連續(xù)的奇數(shù)1,3,5,7,9,11,左邊的數(shù)為21,22,23,…,∴b=26=1.∵上邊的數(shù)與左邊的數(shù)的和正好等于右邊的數(shù),∴a=11+1=2.故選B.【點睛】本題考查了數(shù)字變化規(guī)律,觀察出上邊的數(shù)與左邊的數(shù)的和正好等于右邊的數(shù)是解題的關鍵.2、C【解析】
根據(jù)“上加下減”的原則求解即可.【詳解】將函數(shù)y=2x﹣2的圖象向上平移2個單位長度,所得圖象對應的函數(shù)解析式是y=2x.故選:C.【點睛】本題考查的是一次函數(shù)的圖象與幾何變換,熟知函數(shù)圖象變換的法則是解答此題的關鍵.3、D【解析】
直接利用合并同類項法則以及完全平方公式和整式的乘除運算法則分別計算即可得出答案.【詳解】解:A.﹣5x﹣2x=﹣7x,故此選項錯誤;B.(a+3)2=a2+6a+9,故此選項錯誤;C.(﹣a3)2=a6,故此選項錯誤;D.a(chǎn)2p÷a﹣p=a3p,正確.故選D.【點睛】本題主要考查了合并同類項以及完全平方公式和整式的乘除運算,正確掌握運算法則是解題的關鍵.4、B【解析】
解方程得:x=5或x=1.當x=1時,3+4=1,不能組成三角形;當x=5時,3+4>5,三邊能夠組成三角形.∴該三角形的周長為3+4+5=12,故選B.5、C【解析】
根據(jù)中位數(shù)的定義解答即可.【詳解】解:在這15個數(shù)中,處于中間位置的第8個數(shù)是1.1,所以中位數(shù)是1.1.
所以這些運動員跳高成績的中位數(shù)是1.1.
故選:C.【點睛】本題考查了中位數(shù)的意義.中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻?,最中間的那個數(shù)(最中間兩個數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù).6、A【解析】分析:根據(jù)只有符號不同的兩個數(shù)是互為相反數(shù)解答即可.詳解:的相反數(shù)是,即2.故選A.點睛:本題考查了相反數(shù)的定義,解答本題的關鍵是熟練掌握相反數(shù)的定義,正數(shù)的相反數(shù)是負數(shù),0的相反數(shù)是0,負數(shù)的相反數(shù)是正數(shù).7、D【解析】
根據(jù)軸對稱圖形的概念求解.如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸.【詳解】A、不是軸對稱圖形,故A不符合題意;B、不是軸對稱圖形,故B不符合題意;C、不是軸對稱圖形,故C不符合題意;D、是軸對稱圖形,故D符合題意.故選D.【點睛】本題主要考查軸對稱圖形的知識點.確定軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.8、C【解析】
解:中位數(shù)應該是15和17的平均數(shù)16,故C選項錯誤,其他選擇正確.故選C.【點睛】本題考查求中位數(shù),眾數(shù),方差,理解相關概念是本題的解題關鍵.9、C【解析】
根據(jù)平方根的定義,求數(shù)a的平方根,也就是求一個數(shù)x,使得x1=a,則x就是a的平方根,由此即可解決問題.【詳解】∵(±1)1=4,∴4的平方根是±1.故選D.【點睛】本題考查了平方根的定義.注意一個正數(shù)有兩個平方根,它們互為相反數(shù);0的平方根是0;負數(shù)沒有平方根.10、C【解析】試題分析:根據(jù)三視圖的意義,可知正視圖由5個面,左視圖有3個面,俯視圖有4個面,故可知主視圖的面積最大.故選C考點:三視圖二、填空題(本大題共6個小題,每小題3分,共18分)11、3n+1【解析】試題分析:由圖可知每個圖案一次增加3個基本圖形,第一個圖案有4個基本圖形,則第n個圖案的基礎圖形有4+3(n-1)=3n+1個考點:規(guī)律型12、1【解析】解:原式==xy+2x+2y,方程組:,解得:,當x=3,y=﹣1時,原式=﹣3+6﹣2=1.故答案為1.點睛:此題考查了分式的化簡求值,熟練掌握運算法則是解本題的關鍵.13、(2,﹣3)【解析】
根據(jù):對于拋物線y=a(x﹣h)2+k的頂點坐標是(h,k).【詳解】拋物線y=(x﹣2)2﹣3的頂點坐標是(2,﹣3).故答案為(2,﹣3)【點睛】本題考核知識點:拋物線的頂點.解題關鍵點:熟記求拋物線頂點坐標的公式.14、【解析】
根據(jù)已知得出數(shù)字分母與分子的變化規(guī)律,分子是連續(xù)的正整數(shù),分母是連續(xù)的奇數(shù),進而得出第n個數(shù)分子的規(guī)律是n,分母的規(guī)律是2n+1,進而得出這一組數(shù)的第n個數(shù)的值.【詳解】解:因為分子的規(guī)律是連續(xù)的正整數(shù),分母的規(guī)律是2n+1,
所以第n個數(shù)就應該是:,
故答案為.【點睛】此題主要考查了數(shù)字變化規(guī)律,這類題型在中考中經(jīng)常出現(xiàn).對于找規(guī)律的題目首先應找出哪些部分發(fā)生了變化,是按照什么規(guī)律變化的.解題的關鍵是把數(shù)據(jù)的分子分母分別用組數(shù)n表示出來.15、15°【解析】
根據(jù)平行四邊形的性質和圓的半徑相等得到△AOB為等邊三角形,根據(jù)等腰三角形的三線合一得到∠BOF=∠AOF=30°,根據(jù)圓周角定理計算即可.【詳解】解答:連接OB,∵四邊形ABCO是平行四邊形,∴OC=AB,又OA=OB=OC,∴OA=OB=AB,∴△AOB為等邊三角形.∵OF⊥OC,OC∥AB,∴OF⊥AB,∴∠BOF=∠AOF=30°.由圓周角定理得,故答案為15°.16、1【解析】
欲求m,可將該方程的已知根1代入兩根之積公式和兩根之和公式列出方程組,解方程組即可求出m值.【詳解】設方程的另一根為x1,又∵x=1,∴,解得m=1.故答案為1.【點睛】本題的考點是一元二次方程的根的分布與系數(shù)的關系,主要考查利用韋達定理解題.此題也可將x=1直接代入方程3x2-9x+m=0中求出m的值.三、解答題(共8題,共72分)17、(1)見解析;(1)1【解析】
(1)根據(jù)角平分線的作圖可得;
(1)由等腰三角形的三線合一,結合E為AB邊的中點證EF為△ABD的中位線可得.【詳解】(1)如圖,射線CF即為所求;(1)∵∠CAD=∠CDA,∴AC=DC,即△CAD為等腰三角形;又CF是頂角∠ACD的平分線,∴CF是底邊AD的中線,即F為AD的中點,∵E是AB的中點,∴EF為△ABD的中位線,∴EF=BD=1.【點睛】本題主要考查作圖-基本作圖和等腰三角形的性質、中位線定理,熟練掌握等腰三角形的性質、中位線定理是解題的關鍵.18、觀景亭D到南濱河路AC的距離約為248米.【解析】
過點D作DE⊥AC,垂足為E,設BE=x,根據(jù)AE=DE,列出方程即可解決問題.【詳解】過點D作DE⊥AC,垂足為E,設BE=x,在Rt△DEB中,tan∠DBE=,∵∠DBC=65°,∴DE=xtan65°.又∵∠DAC=45°,∴AE=DE.∴132+x=xtan65°,∴解得x≈115.8,∴DE≈248(米).∴觀景亭D到南濱河路AC的距離約為248米.19、(1);(2).【解析】
(1)將(-1,0)和(0,3)兩點代入二次函數(shù)y=-x2+bx+c,求得b和c;從而得出拋物線的解析式;
(2)令y=0,解得x1,x2,得出此二次函數(shù)的圖象與x軸的另一個交點的坐標,進而求出當函數(shù)值y>0時,自變量x的取值范圍.【詳解】解:(1)由二次函數(shù)的圖象經(jīng)過和兩點,得,解這個方程組,得,拋物線的解析式為,(2)令,得.解這個方程,得,.∴此二次函數(shù)的圖象與軸的另一個交點的坐標為.當時,.【點睛】本題考查的知識點是二次函數(shù)的三種形式及待定系數(shù)法求二次函數(shù)解析式及拋物線與坐標軸的交點,解題的關鍵是熟練的掌握二次函數(shù)的三種形式及待定系數(shù)法求二次函數(shù)解析式及拋物線與坐標軸的交點.20、(1)111,51;(2)11.【解析】
(1)設乙工程隊每天能完成綠化的面積是x(m2),根據(jù)在獨立完成面積為411m2區(qū)域的綠化時,甲隊比乙隊少用4天,列出方程,求解即可;(2)設應安排甲隊工作y天,根據(jù)這次的綠化總費用不超過8萬元,列出不等式,求解即可.【詳解】解:(1)設乙工程隊每天能完成綠化的面積是x(m2),根據(jù)題意得:解得:x=51,經(jīng)檢驗x=51是原方程的解,則甲工程隊每天能完成綠化的面積是51×2=111(m2),答:甲、乙兩工程隊每天能完成綠化的面積分別是111m2、51m2;(2)設應安排甲隊工作y天,根據(jù)題意得:1.4y+×1.25≤8,解得:y≥11,答:至少應安排甲隊工作11天.21、(1)AC=;(2).【解析】【分析】(1)過A作AE⊥BC,在直角三角形ABE中,利用銳角三角函數(shù)定義求出AC的長即可;(2)由DF垂直平分BC,求出BF的長,利用銳角三角函數(shù)定義求出DF的長,利用勾股定理求出BD的長,進而求出AD的長,即可求出所求.【詳解】(1)如圖,過點A作AE⊥BC,在Rt△ABE中,tan∠ABC=,AB=5,∴AE=3,BE=4,∴CE=BC﹣BE=5﹣4=1,在Rt△AEC中,根據(jù)勾股定理得:AC==;(2)∵DF垂直平分BC,∴BD=CD,BF=CF=,∵tan∠DBF=,∴DF=,在Rt△BFD中,根據(jù)勾股定理得:BD==,∴AD=5﹣=,則.【點睛】本題考查了解直角三角形的應用,正確添加輔助線、根據(jù)邊角關系熟練應用三角函數(shù)進行解答是解題的關鍵.22、(1)證明見解析;(2)四邊形BDCF是矩形,理由見解析.【解析】(1)證明:∵CF∥AB,∴∠DAE=∠CFE.又∵DE=CE,∠AED=∠FEC,∴△ADE≌△FCE,∴AD=CF.∵AD=DB,∴DB=CF.(2)四邊形BDCF是矩形.證明:由(1)知DB=CF,又DB∥CF,∴四邊形BDCF為平行四邊形.∵AC=BC,AD=DB,∴CD⊥AB.∴四邊形BDCF是矩形.23、(1)y1=(120-a)x(1≤x≤125,x為正整數(shù)),y2=100x-0.5x2(1≤x≤120,x為正整數(shù));(2)110-12
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年規(guī)范格式員工解聘協(xié)議范本
- 2024年培訓學校業(yè)務承接協(xié)議典范
- 2024年資格認證代理掛靠服務協(xié)議
- 2024年簡化場地租賃協(xié)議范例
- 2024年水產(chǎn)養(yǎng)殖協(xié)議范本及條款詳解
- DB11∕T 1694-2019 生活垃圾收集運輸節(jié)能規(guī)范
- 2024年設備分期付款購銷協(xié)議典范
- 2024年房產(chǎn)租賃業(yè)務協(xié)議參考
- 2024年停車場租賃模板協(xié)議
- 2024年度定制墻體租賃服務協(xié)議
- 朝花夕拾讀書分享會
- 心肌病和心肌炎課件
- 突發(fā)事件應急處理知識培訓
- 糖尿病??谱o士考試試題
- 人工智能概論-人工智能概述
- 鄉(xiāng)村旅游財務分析策劃方案
- 高校學生事務管理1
- (中職)ZZ030植物病蟲害防治賽項規(guī)程(7月19日更新)
- 2024年國能包神鐵路集團有限責任公司招聘筆試參考題庫附帶答案詳解
- 非甾體類抗炎藥課件
- 出入庫登記管理制度
評論
0/150
提交評論