2022屆湖南省邵陽市北塔區(qū)重點中學中考聯(lián)考數(shù)學試卷含解析_第1頁
2022屆湖南省邵陽市北塔區(qū)重點中學中考聯(lián)考數(shù)學試卷含解析_第2頁
2022屆湖南省邵陽市北塔區(qū)重點中學中考聯(lián)考數(shù)學試卷含解析_第3頁
2022屆湖南省邵陽市北塔區(qū)重點中學中考聯(lián)考數(shù)學試卷含解析_第4頁
2022屆湖南省邵陽市北塔區(qū)重點中學中考聯(lián)考數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022屆湖南省邵陽市北塔區(qū)重點中學中考聯(lián)考數(shù)學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.的絕對值是()A.8 B.﹣8 C. D.﹣2.如圖,已知△ABC中,∠ABC=45°,F(xiàn)是高AD和BE的交點,CD=4,則線段DF的長度為()A. B.4 C. D.3.tan45o的值為()A. B.1 C. D.4.函數(shù)y=的自變量x的取值范圍是()A.x≠2 B.x<2 C.x≥2 D.x>25.﹣18的倒數(shù)是()A.18 B.﹣18 C.- D.6.如圖所示,在方格紙上建立的平面直角坐標系中,將△ABC繞點O按順時針方向旋轉90°,得到△A′B′O,則點A′的坐標為()A.(3,1) B.(3,2) C.(2,3) D.(1,3)7.如圖是一次數(shù)學活動課制作的一個轉盤,盤面被等分成四個扇形區(qū)域,并分別標有數(shù)字6、7、8、1.若轉動轉盤一次,轉盤停止后(當指針恰好指在分界線上時,不記,重轉),指針所指區(qū)域的數(shù)字是奇數(shù)的概率為()A.12 B.14 C.18.“趕陀螺”是一項深受人們喜愛的運動.如圖所示是一個陀螺的立體結構圖.已知底面圓的直徑AB=8cm,圓柱的高BC=6cm,圓錐的高CD=3cm,則這個陀螺的表面積是()A.68πcm2 B.74πcm2 C.84πcm2 D.100πcm29.汽車剎車后行駛的距離s(單位:m)關于行駛的時間t(單位:s)的函數(shù)解析式是s=20t﹣5t2,汽車剎車后停下來前進的距離是()A.10mB.20mC.30mD.40m10.如圖,AB是⊙O的直徑,CD是⊙O的弦,∠ACD=30°,則∠BAD為()A.30° B.50° C.60° D.70°二、填空題(共7小題,每小題3分,滿分21分)11.如圖,將一幅三角板的直角頂點重合放置,其中∠A=30°,∠CDE=45°.若三角板ACB的位置保持不動,將三角板DCE繞其直角頂點C順時針旋轉一周.當△DCE一邊與AB平行時,∠ECB的度數(shù)為_________________________.12.關于的分式方程的解為正數(shù),則的取值范圍是___________.13.已知m=,n=,那么2016m﹣n=_____.14.如果a是不為1的有理數(shù),我們把稱為a的差倒數(shù)如:2的差倒數(shù)是,-1的差倒數(shù)是,已知,是的差倒數(shù),是的差倒數(shù),是的差倒數(shù),…,依此類推,則___________.15.如圖,點A,B,C在⊙O上,四邊形OABC是平行四邊形,OD⊥AB于點E,交⊙O于點D,則∠BAD=_______°.16.如圖,矩形OABC的邊OA,OC分別在軸、軸上,點B在第一象限,點D在邊BC上,且∠AOD=30°,四邊形OA′B′D與四邊形OABD關于直線OD對稱(點A′和A,B′和B分別對應),若AB=1,反比例函數(shù)的圖象恰好經過點A′,B,則的值為_________.17.已知關于的一元二次方程的兩個實數(shù)根分別是x=-2,x=4,則的值為________.三、解答題(共7小題,滿分69分)18.(10分)給出如下定義:對于⊙O的弦MN和⊙O外一點P(M,O,N三點不共線,且點P,O在直線MN的異側),當∠MPN+∠MON=180°時,則稱點P是線段MN關于點O的關聯(lián)點.圖1是點P為線段MN關于點O的關聯(lián)點的示意圖.在平面直角坐標系xOy中,⊙O的半徑為1.(1)如圖2,已知M(,),N(,﹣),在A(1,0),B(1,1),C(,0)三點中,是線段MN關于點O的關聯(lián)點的是;(2)如圖3,M(0,1),N(,﹣),點D是線段MN關于點O的關聯(lián)點.①∠MDN的大小為;②在第一象限內有一點E(m,m),點E是線段MN關于點O的關聯(lián)點,判斷△MNE的形狀,并直接寫出點E的坐標;③點F在直線y=﹣x+2上,當∠MFN≥∠MDN時,求點F的橫坐標x的取值范圍.19.(5分)一道選擇題有四個選項.(1)若正確答案是,從中任意選出一項,求選中的恰好是正確答案的概率;(2)若正確答案是,從中任意選擇兩項,求選中的恰好是正確答案的概率.20.(8分)某公司為了擴大經營,決定購進6臺機器用于生產某活塞.現(xiàn)有甲、乙兩種機器供選擇,其中每種機器的價格和每臺機器日生產活塞的數(shù)量如下表所示.經過預算,本次購買機器所耗資金不能超過34萬元.甲乙價格(萬元/臺)75每臺日產量(個)10060(1)按該公司要求可以有幾種購買方案?如果該公司購進的6臺機器的日生產能力不能低于380個,那么為了節(jié)約資金應選擇什么樣的購買方案?21.(10分)(5分)計算:(122.(10分)2019年我市在“展銷會”期間,對周邊道路進行限速行駛.道路AB段為監(jiān)測區(qū),C、D為監(jiān)測點(如圖).已知C、D、B在同一條直線上,且,CD=400米,,.求道路AB段的長;(精確到1米)如果AB段限速為60千米/時,一輛車通過AB段的時間為90秒,請判斷該車是否超速,并說明理由.(參考數(shù)據:,,)23.(12分)如圖,在平面直角坐標系xOy中,已知點A(3,0),點B(0,3),點O為原點.動點C、D分別在直線AB、OB上,將△BCD沿著CD折疊,得△B'CD.(Ⅰ)如圖1,若CD⊥AB,點B'恰好落在點A處,求此時點D的坐標;(Ⅱ)如圖2,若BD=AC,點B'恰好落在y軸上,求此時點C的坐標;(Ⅲ)若點C的橫坐標為2,點B'落在x軸上,求點B'的坐標(直接寫出結果即可).24.(14分)均衡化驗收以來,樂陵每個學校都高樓林立,校園環(huán)境美如畫,軟件、硬件等設施齊全,小明想要測量學校食堂和食堂正前方一棵樹的高度,他從食堂樓底M處出發(fā),向前走6米到達A處,測得樹頂端E的仰角為30°,他又繼續(xù)走下臺階到達C處,測得樹的頂端的仰角是60°,再繼續(xù)向前走到大樹底D處,測得食堂樓頂N的仰角為45°,已如A點離地面的高度AB=4米,∠BCA=30°,且B、C、D三點在同一直線上.(1)求樹DE的高度;(2)求食堂MN的高度.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】

根據絕對值的計算法則解答.如果用字母a表示有理數(shù),則數(shù)a絕對值要由字母a本身的取值來確定:①當a是正有理數(shù)時,a的絕對值是它本身a;②當a是負有理數(shù)時,a的絕對值是它的相反數(shù)﹣a;③當a是零時,a的絕對值是零.【詳解】解:.故選【點睛】此題重點考查學生對絕對值的理解,熟練掌握絕對值的計算方法是解題的關鍵.2、B【解析】

求出AD=BD,根據∠FBD+∠C=90°,∠CAD+∠C=90°,推出∠FBD=∠CAD,根據ASA證△FBD≌△CAD,推出CD=DF即可.【詳解】解:∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEB=∠ADC=90°,∴∠EAF+∠AFE=90°,∠FBD+∠BFD=90°,∵∠AFE=∠BFD,∴∠EAF=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABC,∴AD=BD,在△ADC和△BDF中,∴△ADC≌△BDF,∴DF=CD=4,故選:B.【點睛】此題主要考查了全等三角形的判定,關鍵是找出能使三角形全等的條件.3、B【解析】

解:根據特殊角的三角函數(shù)值可得tan45o=1,故選B.【點睛】本題考查特殊角的三角函數(shù)值.4、D【解析】

根據被開放式的非負性和分母不等于零列出不等式即可解題.【詳解】解:∵函數(shù)y=有意義,∴x-20,即x>2故選D【點睛】本題考查了根式有意義的條件,屬于簡單題,注意分母也不能等于零是解題關鍵.5、C【解析】

根據乘積為1的兩個數(shù)互為倒數(shù),可得一個數(shù)的倒數(shù).【詳解】∵-18=1,∴﹣18的倒數(shù)是,故選C.【點睛】本題考查了倒數(shù),分子分母交換位置是求一個數(shù)的倒數(shù)的關鍵.6、D【解析】

解決本題抓住旋轉的三要素:旋轉中心O,旋轉方向順時針,旋轉角度90°,通過畫圖得A′.【詳解】由圖知A點的坐標為(-3,1),根據旋轉中心O,旋轉方向順時針,旋轉角度90°,畫圖,從而得A′點坐標為(1,3).故選D.7、A【解析】

轉盤中4個數(shù),每轉動一次就要4種可能,而其中是奇數(shù)的有2種可能.然后根據概率公式直接計算即可【詳解】奇數(shù)有兩種,共有四種情況,將轉盤轉動一次,求得到奇數(shù)的概率為:P(奇數(shù))=24=1【點睛】此題主要考查了幾何概率,正確應用概率公式是解題關鍵.8、C【解析】試題分析:∵底面圓的直徑為8cm,高為3cm,∴母線長為5cm,∴其表面積=π×4×5+42π+8π×6=84πcm2,故選C.考點:圓錐的計算;幾何體的表面積.9、B【解析】

利用配方法求二次函數(shù)最值的方法解答即可.【詳解】∵s=20t-5t2=-5(t-2)2+20,∴汽車剎車后到停下來前進了20m.故選B.【點睛】此題主要考查了利用配方法求最值的問題,根據已知得出頂點式是解題關鍵.10、C【解析】試題分析:連接BD,∵∠ACD=30°,∴∠ABD=30°,∵AB為直徑,∴∠ADB=90°,∴∠BAD=90°﹣∠ABD=60°.故選C.考點:圓周角定理二、填空題(共7小題,每小題3分,滿分21分)11、15°、30°、60°、120°、150°、165°【解析】分析:根據CD∥AB,CE∥AB和DE∥AB三種情況分別畫出圖形,然后根據每種情況分別進行計算得出答案,每種情況都會出現(xiàn)銳角和鈍角兩種情況.詳解:①、∵CD∥AB,∴∠ACD=∠A=30°,∵∠ACD+∠ACE=∠DCE=90°,∠ECB+∠ACE=∠ACB=90°,∴∠ECB=∠ACD=30°;CD∥AB時,∠BCD=∠B=60°,∠ECB=∠BCD+∠EDC=60°+90°=150°②如圖1,CE∥AB,∠ACE=∠A=30°,∠ECB=∠ACB+∠ACE=90°+30°=120°;CE∥AB時,∠ECB=∠B=60°.③如圖2,DE∥AB時,延長CD交AB于F,則∠BFC=∠D=45°,在△BCF中,∠BCF=180°-∠B-∠BFC,=180°-60°-45°=75°,∴ECB=∠BCF+∠ECF=75°+90°=165°或∠ECB=90°-75°=15°.點睛:本題主要考查的是平行線的性質與判定,屬于中等難度的題型.解決這個問題的關鍵就是根據題意得出圖形,然后分兩種情況得出角的度數(shù).12、且.【解析】

方程兩邊同乘以x-1,化為整數(shù)方程,求得x,再列不等式得出m的取值范圍.【詳解】方程兩邊同乘以x-1,得,m-1=x-1,解得x=m-2,∵分式方程的解為正數(shù),∴x=m-2>0且x-1≠0,即m-2>0且m-2-1≠0,∴m>2且m≠1,故答案為m>2且m≠1.13、1【解析】

根據積的乘方的性質將m的分子轉化為以3和5為底數(shù)的冪的積,然后化簡從而得到m=n,再根據任何非零數(shù)的零次冪等于1解答.【詳解】解:∵m===,∴m=n,∴2016m-n=20160=1.故答案為:1【點睛】本題考查了同底數(shù)冪的除法,積的乘方的性質,難點在于轉化m的分母并得到m=n.14、.【解析】

利用規(guī)定的運算方法,分別算得a1,a2,a3,a4…找出運算結果的循環(huán)規(guī)律,利用規(guī)律解決問題.【詳解】∵a1=4a2=,a3=,a4=,…數(shù)列以4,?三個數(shù)依次不斷循環(huán),∵2019÷3=673,∴a2019=a3=,故答案為:.【點睛】此題考查規(guī)律型:數(shù)字的變化類,倒數(shù),解題關鍵在于掌握運算法則找到規(guī)律.15、15【解析】

根據圓的基本性質得出四邊形OABC為菱形,∠AOB=60°,然后根據同弧所對的圓心角與圓周角之間的關系得出答案.【詳解】解:∵OABC為平行四邊形,OA=OC=OB,∴四邊形OABC為菱形,∠AOB=60°,∵OD⊥AB,∴∠BOD=30°,∴∠BAD=30°÷2=15°.故答案為:15.【點睛】本題主要考查的是圓的基本性質問題,屬于基礎題型.根據題意得出四邊形OABC為菱形是解題的關鍵.16、【解析】

解:∵四邊形ABCO是矩形,AB=1,∴設B(m,1),∴OA=BC=m,∵四邊形OA′B′D與四邊形OABD關于直線OD對稱,∴OA′=OA=m,∠A′OD=∠AOD=30°,∴∠A′OA=60°,過A′作A′E⊥OA于E,∴OE=m,A′E=m,∴A′(m,m),∵反比例函數(shù)y=(k≠0)的圖象恰好經過點A′,B,∴m?m=m,∴m=,∴k=.【點睛】本題考查反比例函數(shù)圖象上點的坐標特征;矩形的性質,利用數(shù)形結合思想解題是關鍵.17、-10【解析】

根據根與系數(shù)的關系得出-2+4=-m,-2×4=n,求出即可.【詳解】∵關于x的一元二次方程的兩個實數(shù)根分別為x=-2,x=4,∴?2+4=?m,?2×4=n,解得:m=?2,n=?8,∴m+n=?10,故答案為:-10【點睛】此題考查根與系數(shù)的關系,掌握運算法則是解題關鍵三、解答題(共7小題,滿分69分)18、(1)C;(2)①60;②E(,1);③點F的橫坐標x的取值范圍≤xF≤.【解析】

(1)由題意線段MN關于點O的關聯(lián)點的是以線段MN的中點為圓心,為半徑的圓上,所以點C滿足條件;

(2)①如圖3-1中,作NH⊥x軸于H.求出∠MON的大小即可解決問題;

②如圖3-2中,結論:△MNE是等邊三角形.由∠MON+∠MEN=180°,推出M、O、N、E四點共圓,可得∠MNE=∠MOE=60°,由此即可解決問題;

③如圖3-3中,由②可知,△MNE是等邊三角形,作△MNE的外接圓⊙O′,首先證明點E在直線y=-x+2上,設直線交⊙O′于E、F,可得F(,),觀察圖形即可解決問題;【詳解】(1)由題意線段MN關于點O的關聯(lián)點的是以線段MN的中點為圓心,為半徑的圓上,所以點C滿足條件,

故答案為C.

(2)①如圖3-1中,作NH⊥x軸于H.

∵N(,-),

∴tan∠NOH=,

∴∠NOH=30°,

∠MON=90°+30°=120°,

∵點D是線段MN關于點O的關聯(lián)點,

∴∠MDN+∠MON=180°,

∴∠MDN=60°.

故答案為60°.

②如圖3-2中,結論:△MNE是等邊三角形.

理由:作EK⊥x軸于K.

∵E(,1),

∴tan∠EOK=,

∴∠EOK=30°,

∴∠MOE=60°,

∵∠MON+∠MEN=180°,

∴M、O、N、E四點共圓,

∴∠MNE=∠MOE=60°,

∵∠MEN=60°,

∴∠MEN=∠MNE=∠NME=60°,

∴△MNE是等邊三角形.③如圖3-3中,由②可知,△MNE是等邊三角形,作△MNE的外接圓⊙O′,

易知E(,1),

∴點E在直線y=-x+2上,設直線交⊙O′于E、F,可得F(,),

觀察圖象可知滿足條件的點F的橫坐標x的取值范圍≤xF≤.【點睛】此題考查一次函數(shù)綜合題,直線與圓的位置關系,等邊三角形的判定和性質,銳角三角函數(shù),解題的關鍵是理解題意,靈活運用所學知識解決問題,屬于中考壓軸題.19、(1);(2)【解析】

(1)直接利用概率公式求解;

(2)畫樹狀圖展示所有12種等可能的結果數(shù),再找出選中的恰好是正確答案A,B的結果數(shù),然后根據概率公式求解.【詳解】解:(1)選中的恰好是正確答案A的概率為;

(2)畫樹狀圖:

共有12種等可能的結果數(shù),其中選中的恰好是正確答案A,B的結果數(shù)為2,

所以選中的恰好是正確答案A,B的概率=.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數(shù)目m,然后利用概率公式計算事件A或事件B的概率.20、(1)有3種購買方案①購乙6臺,②購甲1臺,購乙5臺,③購甲2臺,購乙4臺(2)購買甲種機器1臺,購買乙種機器5臺,【解析】

(1)設購買甲種機器x臺(x≥0),則購買乙種機器(6-x)臺,根據買機器所耗資金不能超過34萬元,即購買甲種機器的錢數(shù)+購買乙種機器的錢數(shù)≤34萬元.就可以得到關于x的不等式,就可以求出x的范圍.

(2)該公司購進的6臺機器的日生產能力不能低于380個,就是已知不等關系:甲種機器生產的零件數(shù)+乙種機器生產的零件數(shù)≤380件.根據(1)中的三種方案,可以計算出每種方案的需要資金,從而選擇出合適的方案.【詳解】解:(1)設購買甲種機器x臺(x≥0),則購買乙種機器(6-x)臺依題意,得7x+5(6-x)≤34解這個不等式,得x≤2,即x可取0,1,2三個值.∴該公司按要求可以有以下三種購買方案:方案一:不購買甲種機器,購買乙種機器6臺.方案二:購買甲種機器l1臺,購買乙種機器5臺.方案三:購買甲種機器2臺,購買乙種機器4臺(2)根據題意,100x+60(6-x)≥380解之得x>由(1)得x≤2,即≤x≤2.∴x可取1,2倆值.即有以下兩種購買方案:購買甲種機器1臺,購買乙種機器5臺,所耗資金為1×7+5×5=32萬元;購買甲種機器2臺,購買乙種機器4臺,所耗資金為2×7+4×5=34萬元.∴為了節(jié)約資金應選擇購買甲種機器1臺,購買乙種機器5臺,.【點睛】解決本題的關鍵是讀懂題意,找到符合題意的不等關系式,正確確定各種情況,確定各種方案.21、8+23【解析】試題分析:利用負整數(shù)指數(shù)冪,零指數(shù)冪、絕對值、特殊角的三角函數(shù)值的定義解答.試題解析:原式=9+1-(2-3)+2×3考點:1.實數(shù)的運算;2.零指數(shù)冪;3.負整數(shù)指數(shù)冪;4.特殊角的三角函數(shù)值.22、(1)AB≈1395米;(2)沒有超速.【解析】

(1)先根據tan∠ADC=2求出AC,再根據∠ABC=35°結合正弦值求解即可(2)根據速度的計算公式求解即可.【詳解】解:(1)∵AC⊥BC,∴∠C=90°,∵tan∠ADC==2,∵CD=400,∴AC=800,在Rt△ABC中,∵∠ABC=35°,AC=800,∴AB==≈1395米;(2)∵AB=1395,∴該車的速度==55.8km/h<60千米/時,故沒有超速.【點睛】此題重點考察學生對三角函數(shù)值的實際應用,熟練掌握三角函數(shù)值的實際應用是解題的關鍵.23、(1)D(0,);(1)C(11﹣6,11﹣18);(3)B'(1+,0),(1﹣,0).【解析】

(1)設OD為x,則BD=AD=3,在RT△ODA中應用勾股定理即可求解;(1)由題意易證△BDC∽△BOA,再利用A、B坐標及BD=AC可求解出BD長度,再由特殊角的三角函數(shù)即可求解;(3)過點C作CE⊥AO于E,由A、B坐標及C的橫坐標為1,利用相似可求解出BC、CE、OC等長度;分點B’在A點右邊和左邊兩種情況進行討論,由翻折的對稱性可知BC=B’C,再利用特殊角的三角函數(shù)可逐一求解.【詳解】(Ⅰ)設OD為x,∵點A(3,0),點B(0,),∴AO=3,BO=∴AB=6∵折疊∴BD=DA在Rt△ADO中,OA1+OD1=DA1.∴9+OD1=(﹣OD)1.∴OD=∴D(0,)(Ⅱ)∵折疊∴∠BDC=∠CDO=90°∴CD∥O

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論