2022屆貴州省畢節(jié)織金縣聯(lián)考中考數(shù)學模擬預測試卷含解析_第1頁
2022屆貴州省畢節(jié)織金縣聯(lián)考中考數(shù)學模擬預測試卷含解析_第2頁
2022屆貴州省畢節(jié)織金縣聯(lián)考中考數(shù)學模擬預測試卷含解析_第3頁
2022屆貴州省畢節(jié)織金縣聯(lián)考中考數(shù)學模擬預測試卷含解析_第4頁
2022屆貴州省畢節(jié)織金縣聯(lián)考中考數(shù)學模擬預測試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022屆貴州省畢節(jié)織金縣聯(lián)考中考數(shù)學模擬預測試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.超市店慶促銷,某種書包原價每個x元,第一次降價打“八折”,第二次降價每個又減10元,經(jīng)兩次降價后售價為90元,則得到方程()A.0.8x﹣10=90 B.0.08x﹣10=90 C.90﹣0.8x=10 D.x﹣0.8x﹣10=902.對于反比例函數(shù),下列說法不正確的是()A.點(﹣2,﹣1)在它的圖象上 B.它的圖象在第一、三象限C.當x>0時,y隨x的增大而增大 D.當x<0時,y隨x的增大而減小3.圖1~圖4是四個基本作圖的痕跡,關于四條弧①、②、③、④有四種說法:?、偈且設為圓心,任意長為半徑所畫的??;?、谑且訮為圓心,任意長為半徑所畫的?。换、凼且訟為圓心,任意長為半徑所畫的??;?、苁且訮為圓心,任意長為半徑所畫的??;其中正確說法的個數(shù)為()A.4 B.3 C.2 D.14.計算3–(–9)的結果是()A.12 B.–12 C.6 D.–65.如圖,正六邊形A1B1C1D1E1F1的邊長為2,正六邊形A2B2C2D2E2F2的外接圓與正六邊形A1B1C1D1E1F1的各邊相切,正六邊形A3B3C3D3E3F3的外接圓與正六邊形A2B2C2D2E2F2的各邊相切,…按這樣的規(guī)律進行下去,A11B11C11D11E11F11的邊長為()A. B. C. D.6.如圖所示,有一條線段是()的中線,該線段是().A.線段GH B.線段AD C.線段AE D.線段AF7.下列因式分解正確的是()A. B.C. D.8.對于有理數(shù)x、y定義一種運算“Δ”:xΔy=ax+by+c,其中a、b、c為常數(shù),等式右邊是通常的加法與乘法運算,已知3Δ5=15,4Δ7=28,則1Δ1的值為()A.-1 B.-11 C.1 D.119.如果,那么的值為()A.1 B.2 C. D.10.如圖,⊙O的半徑OA=6,以A為圓心,OA為半徑的弧交⊙O于B、C點,則BC=()A.6 B.6 C.3 D.3二、填空題(本大題共6個小題,每小題3分,共18分)11.若關于x、y的二元一次方程組的解是,則關于a、b的二元一次方程組的解是_______.12.分解因式(xy﹣1)2﹣(x+y﹣2xy)(2﹣x﹣y)=_____.13.如圖,□ABCD中,E是BA的中點,連接DE,將△DAE沿DE折疊,使點A落在□ABCD內部的點F處.若∠CBF=25°,則∠FDA的度數(shù)為_________.14.有4根細木棒,長度分別為2cm、3cm、4cm、5cm,從中任選3根,恰好能搭成一個三角形的概率是__________.15.有一個正六面體,六個面上分別寫有1~6這6個整數(shù),投擲這個正六面體一次,向上一面的數(shù)字是2的倍數(shù)或3的倍數(shù)的概率是____.16.如圖,將矩形ABCD繞點C沿順時針方向旋轉90°到矩形A′B′CD′的位置,AB=2,AD=4,則陰影部分的面積為_____.三、解答題(共8題,共72分)17.(8分)已知BD平分∠ABF,且交AE于點D.(1)求作:∠BAE的平分線AP(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);(2)設AP交BD于點O,交BF于點C,連接CD,當AC⊥BD時,求證:四邊形ABCD是菱形.18.(8分)已知,關于x的方程x2+2x-k=0有兩個不相等的實數(shù)根.(1)求k的取值范圍;(2)若x1,x2是這個方程的兩個實數(shù)根,求的值;(3)根據(jù)(2)的結果你能得出什么結論?19.(8分)隨著通訊技術迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷某校數(shù)學興趣小組設計了“你最喜歡的溝通方式”調查問卷每人必選且只選一種,在全校范圍內隨機調查了部分學生,將統(tǒng)計結果繪制了如下兩幅不完整的統(tǒng)計圖,請結合圖中所給的信息解答下列問題:這次統(tǒng)計共抽查了______名學生;在扇形統(tǒng)計圖中,表示“QQ”的扇形圓心角的度數(shù)為______;將條形統(tǒng)計圖補充完整;該校共有1500名學生,請估計該校最喜歡用“微信”進行溝通的學生有多少名.20.(8分)甲、乙兩名隊員的10次射擊訓練,成績分別被制成下列兩個統(tǒng)計圖.并整理分析數(shù)據(jù)如下表:平均成績/環(huán)中位數(shù)/環(huán)眾數(shù)/環(huán)方差甲771.2乙78(1)求,,的值;分別運用表中的四個統(tǒng)計量,簡要分析這兩名隊員的射擊訓練成績.若選派其中一名參賽,你認為應選哪名隊員?21.(8分)(1)計算:3tan30°+|2﹣|+()﹣1﹣(3﹣π)0﹣(﹣1)2018.(2)先化簡,再求值:(x﹣)÷,其中x=,y=﹣1.22.(10分)在同一時刻兩根木竿在太陽光下的影子如圖所示,其中木竿AB=2m,它的影子BC=1.6m,木竿PQ落在地面上的影子PM=1.8m,落在墻上的影子MN=1.1m,求木竿PQ的長度.23.(12分)已知,四邊形ABCD中,E是對角線AC上一點,DE=EC,以AE為直徑的⊙O與邊CD相切于點D,點B在⊙O上,連接OB.求證:DE=OE;若CD∥AB,求證:BC是⊙O的切線;在(2)的條件下,求證:四邊形ABCD是菱形.24.《楊輝算法》中有這么一道題:“直田積八百六十四步,只云長闊共六十步,問長多幾何?”意思是:一塊矩形田地的面積為864平方步,只知道它的長與寬共60步,問它的長比寬多了多少步?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】試題分析:設某種書包原價每個x元,根據(jù)題意列出方程解答即可.設某種書包原價每個x元,可得:0.8x﹣10=90考點:由實際問題抽象出一元一次方程.2、C【解析】

由題意分析可知,一個點在函數(shù)圖像上則代入該點必定滿足該函數(shù)解析式,點(-2,-1)代入可得,x=-2時,y=-1,所以該點在函數(shù)圖象上,A正確;因為2大于0所以該函數(shù)圖象在第一,三象限,所以B正確;C中,因為2大于0,所以該函數(shù)在x>0時,y隨x的增大而減小,所以C錯誤;D中,當x<0時,y隨x的增大而減小,正確,故選C.考點:反比例函數(shù)【點睛】本題屬于對反比例函數(shù)的基本性質以及反比例函數(shù)的在各個象限單調性的變化3、C【解析】

根據(jù)基本作圖的方法即可得到結論.【詳解】解:(1)?、偈且設為圓心,任意長為半徑所畫的弧,正確;(2)弧②是以P為圓心,大于點P到直線的距離為半徑所畫的弧,錯誤;(3)弧③是以A為圓心,大于AB的長為半徑所畫的弧,錯誤;(4)?、苁且訮為圓心,任意長為半徑所畫的弧,正確.故選C.【點睛】此題主要考查了基本作圖,解決問題的關鍵是掌握基本作圖的方法.4、A【解析】

根據(jù)有理數(shù)的減法,即可解答.【詳解】故選A.【點睛】本題考查了有理數(shù)的減法,解決本題的關鍵是熟記減去一個數(shù)等于加上這個數(shù)的相反數(shù).5、A【解析】分析:連接OE1,OD1,OD2,如圖,根據(jù)正六邊形的性質得∠E1OD1=60°,則△E1OD1為等邊三角形,再根據(jù)切線的性質得OD2⊥E1D1,于是可得OD2=E1D1=×2,利用正六邊形的邊長等于它的半徑得到正六邊形A2B2C2D2E2F2的邊長=×2,同理可得正六邊形A3B3C3D3E3F3的邊長=()2×2,依此規(guī)律可得正六邊形A11B11C11D11E11F11的邊長=()10×2,然后化簡即可.詳解:連接OE1,OD1,OD2,如圖,∵六邊形A1B1C1D1E1F1為正六邊形,∴∠E1OD1=60°,∴△E1OD1為等邊三角形,∵正六邊形A2B2C2D2E2F2的外接圓與正六邊形A1B1C1D1E1F1的各邊相切,∴OD2⊥E1D1,∴OD2=E1D1=×2,∴正六邊形A2B2C2D2E2F2的邊長=×2,同理可得正六邊形A3B3C3D3E3F3的邊長=()2×2,則正六邊形A11B11C11D11E11F11的邊長=()10×2=.故選A.點睛:本題考查了正多邊形與圓的關系:把一個圓分成n(n是大于2的自然數(shù))等份,依次連接各分點所得的多邊形是這個圓的內接正多邊形,這個圓叫做這個正多邊形的外接圓.記住正六邊形的邊長等于它的半徑.6、B【解析】

根據(jù)三角形一邊的中點與此邊所對頂點的連線叫做三角形的中線逐一判斷即可得.【詳解】根據(jù)三角形中線的定義知:線段AD是△ABC的中線.故選B.【點睛】本題考查了三角形的中線,解題的關鍵是掌握三角形一邊的中點與此邊所對頂點的連線叫做三角形的中線.7、C【解析】

依據(jù)因式分解的定義以及提公因式法和公式法,即可得到正確結論.【詳解】解:D選項中,多項式x2-x+2在實數(shù)范圍內不能因式分解;

選項B,A中的等式不成立;

選項C中,2x2-2=2(x2-1)=2(x+1)(x-1),正確.

故選C.【點睛】本題考查因式分解,解決問題的關鍵是掌握提公因式法和公式法的方法.8、B【解析】

先由運算的定義,寫出3△5=25,4△7=28,得到關于a、b、c的方程組,用含c的代數(shù)式表示出a、b.代入2△2求出值.【詳解】由規(guī)定的運算,3△5=3a+5b+c=25,4a+7b+c=28所以3a+5b+c=解這個方程組,得a所以2△2=a+b+c=-35-2c+24+c+c=-2.故選B.【點睛】本題考查了新運算、三元一次方程組的解法.解決本題的關鍵是根據(jù)新運算的意義,正確的寫出3△5=25,4△7=28,2△2.9、D【解析】

先對原分式進行化簡,再尋找化簡結果與已知之間的關系即可得出答案.【詳解】故選:D.【點睛】本題主要考查分式的化簡求值,掌握分式的基本性質是解題的關鍵.10、A【解析】試題分析:根據(jù)垂徑定理先求BC一半的長,再求BC的長.解:如圖所示,設OA與BC相交于D點.∵AB=OA=OB=6,∴△OAB是等邊三角形.又根據(jù)垂徑定理可得,OA平分BC,利用勾股定理可得BD=所以BC=2BD=.故選A.點睛:本題主要考查垂徑定理和勾股定理.解題的關鍵在于要利用好題中的條件圓O與圓A的半徑相等,從而得出△OAB是等邊三角形,為后繼求解打好基礎.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】分析:利用關于x、y的二元一次方程組的解是可得m、n的數(shù)值,代入關于a、b的方程組即可求解,利用整體的思想找到兩個方程組的聯(lián)系再求解的方法更好.詳解:∵關于x、y的二元一次方程組的解是,∴將解代入方程組可得m=﹣1,n=2∴關于a、b的二元一次方程組整理為:解得:點睛:本題考查二元一次方程組的求解,重點是整體考慮的數(shù)學思想的理解運用在此題體現(xiàn)明顯.12、(y﹣1)1(x﹣1)1.【解析】解:令x+y=a,xy=b,則(xy﹣1)1﹣(x+y﹣1xy)(1﹣x﹣y)=(b﹣1)1﹣(a﹣1b)(1﹣a)=b1﹣1b+1+a1﹣1a﹣1ab+4b=(a1﹣1ab+b1)+1b﹣1a+1=(b﹣a)1+1(b﹣a)+1=(b﹣a+1)1;即原式=(xy﹣x﹣y+1)1=[x(y﹣1)﹣(y﹣1)]1=[(y﹣1)(x﹣1)]1=(y﹣1)1(x﹣1)1.故答案為(y﹣1)1(x﹣1)1.點睛:因式分解的方法:(1)提取公因式法.ma+mb+mc=m(a+b+c).(1)公式法:完全平方公式,平方差公式.(3)十字相乘法.因式分解的時候,要注意整體換元法的靈活應用,訓練將一個式子看做一個整體,利用上述方法因式分解的能力.13、50°【解析】

延長BF交CD于G,根據(jù)折疊的性質和平行四邊形的性質,證明△BCG≌△DAE,從而∠7=∠6=25°,進而可求∠FDA得度數(shù).【詳解】延長BF交CD于G由折疊知,BE=CF,∠1=∠2,∠7=∠8,∴∠3=∠4.∵∠1+∠2=∠3+∠4,∴∠1=∠2=∠3=∠4,∵CD∥AB,∴∠3=∠5,∴∠1=∠5,在△BCG和△DAE中∵∠1=∠5,∠C=∠A,BC=AD,∴△BCG≌△DAE,∴∠7=∠6=25°,∴∠8=∠7=25°,∴FDA=50°.故答案為50°.【點睛】本題考查了折疊的性質,平行四邊形的性質,全等三角形的判定與性質.證明△BCG≌△DAE是解答本題的關鍵.14、【解析】

根據(jù)題意,使用列舉法可得從有4根細木棒中任取3根的總共情況數(shù)目以及能搭成一個三角形的情況數(shù)目,根據(jù)概率的計算方法,計算可得答案.【詳解】根據(jù)題意,從有4根細木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4種取法,而能搭成一個三角形的有2、3、4;3、4、5,2、4、5,三種,得P=.故其概率為:.【點睛】本題考查概率的計算方法,使用列舉法解題時,注意按一定順序,做到不重不漏.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.15、23【解析】∵投擲這個正六面體一次,向上的一面有6種情況,向上一面的數(shù)字是2的倍數(shù)或3的倍數(shù)的有2、3、4、6共4種情況,∴其概率是=.【點睛】此題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率P(A)=.16、【解析】試題解析:連接∵四邊形ABCD是矩形,∴CE=BC=4,∴CE=2CD,由勾股定理得:∴陰影部分的面積是S=S扇形CEB′?S△CDE故答案為三、解答題(共8題,共72分)17、(1)見解析:(2)見解析.【解析】試題分析:(1)根據(jù)角平分線的作法作出∠BAE的平分線AP即可;(2)先證明△ABO≌△CBO,得到AO=CO,AB=CB,再證明△ABO≌△ADO,得到BO=DO.由對角線互相平分的四邊形是平行四邊形及有一組鄰邊相等的平行四邊形是菱形即可證明四邊形ABCD是菱形.試題解析:(1)如圖所示:(2)如圖:在△ABO和△CBO中,∵∠ABO=∠CBO,OB=OB,∠AOB=∠COB=90°,∴△ABO≌△CBO(ASA),∴AO=CO,AB=CB.在△ABO和△ADO中,∵∠OAB=∠OAD,OA=OA,∠AOB=∠AOD=90°,∴△ABO≌△ADO(ASA),∴BO=DO.∵AO=CO,BO=DO,∴四邊形ABCD是平行四邊形,∵AB=CB,∴平行四邊形ABCD是菱形.考點:1.菱形的判定;2.作圖—基本作圖.18、(1)k>-1;(2)2;(3)k>-1時,的值與k無關.【解析】

(1)由題意得該方程的根的判別式大于零,列出不等式解答即可.(2)將要求的代數(shù)式通分相加轉化為含有兩根之和與兩根之積的形式,再根據(jù)根與系數(shù)的關系代數(shù)求值即可.(3)結合(1)和(2)結論可見,k>-1時,的值為定值2,與k無關.【詳解】(1)∵方程有兩個不等實根,∴△>0,即4+4k>0,∴k>-1(2)由根與系數(shù)關系可知x1+x2=-2,x1x2=-k,∴(3)由(1)可知,k>-1時,的值與k無關.【點睛】本題考查了一元二次方程的根的判別式,根與系數(shù)的關系等知識,熟練掌握相關知識點是解答關鍵.19、(1)100,108°;(2)答案見解析;(3)600人.【解析】

(1)先利用QQ計算出宗人數(shù),再用百分比計算度數(shù);(2)按照扇形圖補充條形圖;(3)利用微信溝通所占百分比計算總人數(shù).【詳解】解:(1)喜歡用電話溝通的人數(shù)為20,所占百分比為20%,∴此次共抽查了:20÷20%=100人.喜歡用QQ溝通所占比例為:,∴QQ的扇形圓心角的度數(shù)為:360°×=108°.(2)喜歡用短信的人數(shù)為:100×5%=5人喜歡用微信的人數(shù)為:100-20-5-30-5=40補充圖形,如圖所示:(3)喜歡用微信溝通所占百分比為:×100%=40%.∴該校共有1500名學生,估計該校最喜歡用“微信”進行溝通的學生有:1500×40%=600人.【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用.讀懂統(tǒng)計圖,從統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù).20、(1)a=7,b=7.5,c=4.2;(2)見解析.【解析】

(1)利用平均數(shù)的計算公式直接計算平均分即可;將乙的成績從小到大重新排列,用中位數(shù)的定義直接寫出中位數(shù)即可;根據(jù)乙的平均數(shù)利用方差的公式計算即可;(2)結合平均數(shù)和中位數(shù)、眾數(shù)、方差三方面的特點進行分析.【詳解】(1)甲的平均成績a==7(環(huán)),∵乙射擊的成績從小到大重新排列為:3、4、6、7、7、8、8、8、9、10,∴乙射擊成績的中位數(shù)b==7.5(環(huán)),其方差c=×[(3-7)2+(4-7)2+(6-7)2+2×(7-7)2+3×(8-7)2+(9-7)2+(10-7)2]=×(16+9+1+3+4+9)=4.2;(2)從平均成績看甲、乙二人的成績相等均為7環(huán),從中位數(shù)看甲射中7環(huán)以上的次數(shù)小于乙,從眾數(shù)看甲射中7環(huán)的次數(shù)最多而乙射中8環(huán)的次數(shù)最多,從方差看甲的成績比乙的成績穩(wěn)定;綜合以上各因素,若選派一名隊員參加比賽的話,可選擇乙參賽,因為乙獲得高分的可能更大.【點睛】本題考查的是條形統(tǒng)計圖和方差、平均數(shù)、中位數(shù)、眾數(shù)的綜合運用.熟練掌握平均數(shù)的計算,理解方差的概念,能夠根據(jù)計算的數(shù)據(jù)進行綜合分析.21、(1)3;(2)x﹣y,1.【解析】

(1)根據(jù)特殊角的三角函數(shù)值、絕對值、負整數(shù)指數(shù)冪、零指數(shù)冪可以解答本題;(2)根據(jù)分式的減法和除法可以化簡題目中的式子,然后將x、y的值代入化簡后的式子即可解答本題.【詳解】(1)3tan30°+|2-|+()-1-(3-π)0-(-1)2018=3×+2-+3-1-1,=+2?+3-1-1,=3;(2)(x﹣)÷,=,==x-y,當x=,y=-1時,原式=?+1=1.【點睛】本題考查特殊角的三角函數(shù)值、絕對值、負整數(shù)指數(shù)冪、零指數(shù)冪、分式的化簡求值,解答本題的關鍵是明確它們各自的計算方法.22、木竿PQ的長度為3.35米.【解析】

過N點作ND⊥PQ于D,則四邊形DPMN為矩形,根據(jù)矩形的性質得出DP,DN的長,然后根據(jù)同一時刻物高與影長成正比求出QD的長,即可得出PQ的長.試題解析:【詳解】解:過N點作ND⊥PQ于D,則四邊形DPMN為矩形,∴DN=PM=1.8m,DP=MN=1.1m,∴,∴QD==2.25,∴PQ=QD+DP=2.25+1.1=3.35(m).答:木竿PQ的長度為3.35米.【點睛】本題考查了相似三角形的應用,作出輔助線,根據(jù)同一時刻物高與影長成正比列出比例式是解決此題的關鍵.23、(1)證明見解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論