科技英語閱讀與寫作_第1頁
科技英語閱讀與寫作_第2頁
科技英語閱讀與寫作_第3頁
科技英語閱讀與寫作_第4頁
科技英語閱讀與寫作_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

龍終建了科技之冬

科技英語閱讀與寫作

題目:CellSegmentationinDigitalHolographic

Images

學院:____________電子工程學院_________

專業(yè):信號與信息處理

姓名:_________________________________

學號:_____________1602120898___________

Partner:

姓名:_______________張潤東_____________

學號:1601120188

CELLSEGMENTATIONINDIGITALHOLOGRAPHICIMAGES

NohaEl-Zehiry'OliverHayden2andAliKamen1

,MedicalImagingTechnologies,SiemensHealthcare,Princeton,NJ,USA

2In-VitroDXandBioscience,SiemensHealthcare,Erlangen,Germany

ABSTRACT

DigitalHolographicMicroscopy(DHM)isbecomingrecentlyverypopularfor

cellimaging.①(1)Themainadvantageofdigitalholographicmicroscopyover

classicalmicroscopytechniquesisthatitdoesnotonlyprovidetheprojectedimageof

theobjectbutalsoprovidesthreedimensionalinformationoftheobject'soptical

thickness.DHMtechnologycouldbethecoreofalabel-freeimagingfbrhematology

applications.Inanidealframework,abloodsamplecanbeimagedusingDHM,

machinelearningapproachescan(beusedfor)thecellextraction,differentiationand

consequentlycomputingalltherelevantbloodstatisticssuchastheMeanCorpuscular

Volume(MCV),theRedBloodCell(RBC)count,RedBloodCellDistributionWidth

(RDW)._Themostvitalcomponentinsuchaframeworkisaccurateextractionofthe

cells.(2)(2)Thispaperpresentsanovelapproachtocellsegmentationinwhicha

probabilisticboostingtreeclassifieristrainedtodetectthecentersofthecellsusing

Haar-Featu】es?Thedetectedcellcentersareusedtotriggeramarker-controlledpower

watershedsegmentationtocomputethecellboundaries.Additionally,wepresenta

comprehensiveevaluationofsegmentationmethodsfbrcellextractionindigital

holographicimages.

1.INTRODUCTION

DigitalHolographicMicroscopy(DHM)hasreceivedalotofattentionrecently

incellimaging[1,2,3].(3)DHM,ifassociatedwithproperimageprocessing

algorithms,canserveasthefundamentalbuildingblockinalabelfreecelldiagnostics

workflow.Insuchaworkflow,accuratecellextractionisavitalsteptoperformthe

analysis.Therefore,thoroughinvestigationofcellsegmentationinDHMimagesisa

persistentnecessity.CurrentDHMapplicationstudiessuchas[1,2]usesimple

segmentationtoolsorutilizegenericcellsegmentationtools[4](that)arenot

designedforDHMandtheaccuracyoftheirperformanceforDHMwasnotassessed

intheliterature.Onenotableexceptionisthecellsegmentationapproachpresentedby

Yietal.in[3].Thealgorithmin[3]usesasequenceofmorphologicaloperationson

thephaseimagetogeneratemarkersformaker-controlledwatershedsegmentation.

Theapproachisrelativelycomplicatedandthemaindisadvantageisitssensitivityto

theparametersofthemorphologicaloperatorssuchasthesizeofthestructure

elementusedineveryoperation.Wewillovercomethisproblem.Inthispaper,we

presentatwo-stepsegmentationapproach:Celldetectiontolocalizethecentersofthe

cellsandcellsegmentationtodelineatetheboundariesofthecells.Qualitativeand

quantitativeassessmentofoursegmentationmethodispresented.Moreover,we

introduceacomparisontothestate-of-theartcellsegmentationmethods[3]and[4].

⑷Therestofthepaperisorganizedasfollows:Section2presentsthedetailsof

ourproposedsegmentationmethods,section3introducestheexperimentalresultsand

thecomparisontoothersegmentationmethods,thenaconcludingdiscussionis

Fig.I.PipelineofCellExtractionAlgorithm.Left:originalimagesuperimposedbytheprobabilitymapofapixel

beingacellcenter.Middle:Resultofaggregationoftheprobabilitymapresponseandgeneratingtheinternal

markers.Left:Segmentationresults.

2.METHODS

Markercontrolledwatershedhasbeenusedrepeatedlyforcellsegmentation[4,3,

5,6].Robustmarkergenerationisnecessarytoobtainqualitysegmentationresults.

Mostoftheprevioussegmentationmethods[3,4]useasequenceofmorphological

operationstoidentifythebestpossiblesetofmarkers.Onekeyproblemwithsuch

approachesis(that)itrequiresthetuningofmanyparametersforthestepswithinthe

morphologicaloperationchain.@(5)Itislesslikelytohavedsinglesetof

parametersthatcouldworkefficientlyforalltheimages.Ontheotherhand,tuning

theparametersforeachsingleimageiscompletelyimpracticalandnegatesthehigh

throughputadvantageassociatedwithDHMtechnology.Motivatedbytheprevious

drawbacks,wepresentanewcellsegmentationapproach.Thenoveltyofour

approachistwo-fold:First,robustmarkergeneration(using)cellcenterdetection.0

⑹Second,weusepowerwatershedforthecellsegmentationwhichhasbeenproven

moreefficientthanconventionalwatershedingeneralsegmentationproblems[7].

Figure1showsthepipelineofourcellextractionapproach.

2.1.RobustMarkerGeneration

(7)Weconsiderthemarkergenerationproblemasanobjectdetectionproblem

whereweaimatfindingthepositionsofcellcenters.Forthispurpose,weusea

machinelearningbasedapproachinsteadofmorphologicaloperationstominimizethe

sensitivitytoparameters9choice.Inthiscontext,weuseProbabilisticBoostingTree

(PBT)learningframework[8].Inthelearningphase,thePBTconstructsatree(in

which)eachnodecombinesasetofweakclassifiersintoastrongclassifier.Intesting

phase,theconditionalprobabilityiscomputedateachnodeandtheprobabilityis

propagatedtothesourceofthetreetoprovidetheoverallprobability.Inourtraining,

weusetheHaarfeatures[9]toformtheweakclassifiers.?⑻Intesting,we

computetheprobabilityofeachpixelintheimagebeingacenterofacell,the

probabilitymapisthresholdedtokeeponlythepixelsthataremorelikelytobeacell

center.

2.2.AggregationoftheDetectionResponses

Aftercomputingtheprobabilitymapandapplyingthethreshold,wegetahigh

responseinsideeachcell.However,theresponseisnotnecessarilysmoothand

connectedwhichmayleadtofalseidentificationofonecellasmultiplecells.

Therefore,toaggregatetheseresponse,weapplyaclusteringsteponthethresholded

probabilitymap.Theclusteringservestwopurposes,first,itaggregatedthecell

responsesinasinglecell.Second,itprovidesalargersetofpixelstoformasthe

internalmarkerforthesegmentation.Thepixelsofeachclusteraremergedintoa

singleconnectedcomponentthatservesasaninternalmarkerforthecell

segmentationstep.Themiddle

imageinFigure1showsasampleofthemarkerscomputedafterclustering.Theseare

usedasinternalcellmarkers,externalcellmarkershighlightingthebackgroundare

obtainedbyapplyingwatershedtransformontheinternalmarkers.

2.3.CellSegmentationusingPowerWatershed

Thepowerwatershedsegmentationreviewedinthissectionwaspresentedby

Couprieetal.in[7].Theformulationisperformedonadiscretegraph.Agraph

g={V,E}consistsofasetofverticesvEVandasetofedgeseG£QVxV.An

edgeincidenttovertices片andvjisdenotedey.Inourformulation,eachpixelis

identifiedwithanode,片.Aweightedgraphisagraphinwhicheveryedgee,is

assignedaweight

w.⑼Theseededsegmentationenergyin-7]wasgivenas

ngnE啕叫一叼/+£共產(chǎn)?+£嗚皿一1R

s.t.x(F)=1.x(B)=0.

s,=1ifX,>I,0ifXa<(1)

wherex^and與arethebinarylabelsassociatedwithvertices,andrespectively.F

andBrepresentthesetsofforegroundandbackgroundmarkers.(Itwasshownin[7]

that)whenpooandq>1,thisleadstoamoregeneralwatershed,namely,power

watershedthatyieldedbetterresults.Cellsegmentationcouldbenefitfbrthe

improvementsassociatedwithpowerwatershed.InSection3,wewillpresentthe

comparisonbetweenthesegmentationresultsusingpowerwatershed!andwatershed

thathasbeenusedinthevastliteraturefbrcellsegmentation.

DonorDonorDataDonorOverall

12Set34

TP97.4%97.8%97.3%96.5%97.2%

FP6.8%4.3%3.7%5.7%5%

Table1.Resultsofthedetectionofthecellcenter.TPandFParethetruepositiveandfalse

positiverates,respectively.

3.EXPERIMENTALRESULTS

Inadditiontothenovelsegmentationapproach,weconsidertheevaluationand

comparisonofsegmentationmethodsforDHMasamajorcontributionofthepaper.

Wechoseasubsetofsegmentationmethodsthatweconsiderrepresentativeofthe

currentsegmentationmethods.Qualitativeandquantitativecomparisonwillbe

presentedinthissection.

3.1.DataDescriptionandCellDetection

ThedatasetisacquiredusingtheQModHolographicandFluorescence

Microscope[10].Thecellswereilluminatedwithalightsourceofwavelength=

550nmandthemagnificationobjectiveis60x1.Thenumberofdonorsusedinthis

studyis4.Thenumberofimagesforeachdonor(variesfrom)6-9imageswithatotal

of28images.Eachimagecontainsmultiplecellsvaryingfrom10-30withatotalof

615cells,lbevaluatetheaccuracyofthedetectionalgorithm,weusen-foldleaveone

outcrossvalidation.Specifically,wedid4training/testingsets.Foreachsetweleave

outalltheimagesassociatedwithagivendonorandtraintheclassifierontheimages

oftherestofthedonors.Fortesting,wetestonlyontheunseendatafromtheleftout

donor.(10)Weexcludevllthecellsthataretouchingtheboundariesoftheimageto

ensurethattheevaluationisperformedonlyonvalidcellcandidates.

Theprobabilisticboostingtreeoutputsaprobabilitymapofeachpixel(being)a

cellcenter.Wethresholdtheprobabilitymapatp=0:75toconsideronlythepixels

thatarehighlikelytobecells.(11)Thethresholddoesnotprovideasinglecellcenter

butratheraclusterofpointsinthecenterofthecellasdepictedinthefirstimageof

Figure1.Inthisimage,theprobabilitymapissuperimposedontheoriginalimage

withthelostprobabilityinredandthehighestprobabilityinblue.Table1showsthe

(12)resultforthedetectionsystem.

3.2.CellSegmentation

Wechosearepresentativesubsetofcellsegmentationmethodstocompare

againstMl[4]andM2[3].Moreover,todecoupletheeffectofeachcontribution(the

machinelearningdetectioncomponentandthepowerwatershedsegmentation

component),wepresenttwonovelmethodsM3thatbenefitsfromdetection

componentonlyandM4thatbenefitsfromthepowerwatershedsegmentation

componentonly.ThedescriptionsofmethodsMl-M5aresummarizedasfollows:

l.CellProfiler[4](Ml):CellProfiler(isconsideredas)oneofthebenchmarksin

cellsegmentationandhasbeenrepeatedlyusedbyotherresearchgroupsto

obtainthesegmentationandprovideanalysis.

2.MarkerControlledWatershedforDHM(M2)[3]:Dedicatedcellsegmentation

forDHMtechnologywasonlydiscussedin[3].Themethodusesa

complicatedworkflowtogeneratethemarkersforthewatershedsegmentation.

Theworkflowissummarizedasfollows:(1)Imageisnormalized,(2)Otsu's

thresholdisappliedtoobtainIbin,(3)Holesarefilledusingmorphological

constructiontoIbin,(4)GradientimageIgradiscomputedusingSobel

operator.(5)MorphologicalopeningisappliedtoIbintoobtainlopen.(6)

Morphologicalerosion(13)isappliedtolopentoobtainlerode.(7)

Morphologicalreconstructionisappliedwithlopenasthemaskandlerodeas

amarkertoobtain\rec.(8)ComputeIsubasIopen-Irec.(9)Apply

morphologicaldilationonlerodetoobtainIdilate(10)Obtaintheinternal

markersbycombiningIsubandIdilate.(11)Applywatershedtransformonthe

internalmarkerstogeneratetheexternalmarkers.(12)Applymarkercontrolled

watershedsegmentationusingthemarkersgeneratedin(11).Mostofthe

previousstepsrequiretuningofstructureelementparameterswhichmakesthe

workflowerrorprone.Althoughtheworkflowwascarefullycraftedwith

specificparametersprovidedbytheauthorsin[3]toavoidmergingtouching

cellsoreliminatingsmallcomponents,asinglesetofparametersdoesnotwork

wellinallscenarios.Wetestedseveralcombinationsofparameterstotryto

achievethebestresultsforourdataset.Afterseveralexperiments,wefigured

thattheparametersprovidedbytheauthorsin[3]workbest.(14)Hence,for

thecomparison,weusetheparameterselectionin⑶.Onecanarguethatthe

improvementover[3]isduetoperformingthesegmentationusingpower

watershedratherthanthegenerationoftheaccuratemarkers.So,(15)itis

worthclarifyingthattheimprovementisduetoacombinationofbothfactors.

Todecoupletheeffectofeachcomponent.Wealsocompareagainsttwoother

workflows(M3andM4).

3.MachineLearningMarkerGenerationwithWatershed(M3):Inthismethod,

weusethemarkersgeneratedbythemachinelearningbasedcellcenter

detectionto

triggerwatershedsegmentation.

4.MorphologicalMarkerGenerationwithPowerWatershed(M4):Inthismethod,

wegeneratethemarkersusingthemorphologicalworkflow(M2)andapply

powerwatershedforthesegmentationinsteadofwatershed.

5.MachineLearningMarkerGenerationwithPowerwatershed(M5):Thisisthe

proposedworkflowwhichtakesadvantageofrobustmarkergenerationaswell

asmoreaccuratesegmentationusingpowerwatershed.

Figure2showsasampleofourresults.Thegallerydepictstheresultsofthefive

algorithmsforthreedifferentimagesfromdifferentdonors.Thethirdcolumnshows

thatallthealgorithmsworkcomparablywellifthecellsaresparselydistributedinthe

image.This,however,isnotverypracticalasitdoesnotefficientlyutilizethefull

fieldofview.Inpractice,thecellsmaybeveryclosetoeachother.Insuchscenarios,

mostofthemorphologicalbasedapproacheswouldfailinaccuratelyextractingthe

cells.Intheyellowboxes,weshowanexamplewheretwocellsaretouching.The

algorithmin[4]mergesthetwocellsinoneentity.Thecarefullycrafted

morphologicalworkflowin[3]managedtoseparatethetwocellsasshowninthe

secondrowand(16)sodidallthealgorithmswedevelopedasshowninthethird,

fourthandfifthrows.Whenthecellsslightlyoverlaps,itbecomesmorechallenging

andmorphologicalbasedmethodsfailtoaccuratelyextractthecellsasshowninthe

examplesinthegreenboxes.Ontheotherhand,M4andM5cansuccessfullyextract

thecellsduetotherobustnessofthecellcenterdetectioncomponent.Itisworth

notingthathighthroughputsystemsrequireafullutilizationofthefieldofview

whichresultsinmultipleoccurrencesofsuchtouchingorslightlyoverlappingcells.A

limitationofthecurrentapproachisthatwhentheoverlapbetweenthecellsislarge,

theboundariescannotbedelineatedaccuratelyasdepictedintheblueboxes.However,

eveninsuchscenario,ouralgorithmismoreaccuratethan[4]and[3]becauseitstill

identifiedtwocellswhichisimportantforan

accuratecellcount.

,€s£

K

c

-5*>方

u6

d胃

_M

M至

-

?

|國

SS

CJ

M

Oq

co

ld

1

0

6i國

U9s

36b

-*

I0M

豈¥

o

d

.

Fig.2.Sampleofthesegmentationresultsobtainedusingthefivedifferentalgorithms.

Forquantitativeassessment,wechosethemostcommonmetricsfor

segmentationevaluation,namely,thesensitivity,specificity,DiceandJaccard

similarityindexdefinedas:

TP

Sensitivity

TP+F.V?

TN

Specificity⑵

TN+FP'

TTP

DiceSimilarityIndex

JaccardSimilarityIndex

TP+FP+N

whereTP,FP,TNandFNrefertothetruepositives,falsepositives,truenegativesand

falsenegatives,respectively.

Table2showstheresultsforthemethodsM1-M5.Thequantitativeassessment

showsthateachcomponentweintroduced(contributedto)improvingthe

segmentationresults.However,(17)itisevidentthattherobustlocalizationofthecells

usingthecelldetectionframeworkplayedamorecrucialrole.Whilethesensitivity

improvedby10%whenusingourmachinelearningmarkergeneration,itonly

improved2%whenusingpowerwatershedinsteadofwatershed.

M1M2M3M4M5

Sensitivity88.7083.3792.9484.5894.83

Specificity98.1898.5797.4498.9298.44

Jaccard80.9577.5581.5380.0686.51

Dice89.3288.8489.7488.8492.66

Table2.QuantitativeComparisonbetweenthedifferentSegmentationMethods.

4.CONCLUSIONANDFUTUREWORK

Thepaperpresentedanovelapproachforcellsegmentationindigital

holographicmicroscopicimages.Therobustmarkergenerationpresentedinthepaper

outperformsthemorphologicalworkflowformarkergenerationthatiscommonly

usedtoinitiatewatershedsegmentation.Weintroducedthepowerwatershedtothe

cellsegmentationproblemandpresentedquantitativeevidencethatitworksbetter

thanwatershed.Thepaperpresentedaquantitativecomparisonoftheproposed

approachtothecommonmethodsusedforcellsegmentation.Onelimitationofour

approachandallthemethods(M1-M5)isthatitisnotcapableofproperlysegmenting

overlappingcells.Inthefuture,weplantoaddpostprocessingthatidentifiesthe

overlappingcellsandformulatesalayeredsegmentationalgorithmtoseparate

properlytheoverlappingcells.

一、語法分析

(1)Themainadvantageofdigitalholographicmicroscopyoverclassicalmicroscopy

techniquesisthatitdoesnotonlyprovidetheprojectedimageoftheobjectbut

alsoprovidesthreedimensionalinformationoftheobject'sopticalthickness.

本句主語為Themainadvantage,ofdigitalholographicmicroscopy作為后置定

語修飾主語,advantage...over為固定搭配表示與…相比的優(yōu)勢含義,表語由

that引導的表語從句充當,其中notonly…butalso…表示不僅而且的意思,并

且of+n具有形容詞的含義。

(2)Thispaperpresentsanovelapproachtocellsegmentationinwhichaprobabilistic

boostingtreeclassifieristrainedtodetectthecentersofthecellsusing

Haar-Features.

本句主句為Thispaperpresentsanapproach.present:提出,approachto…:固定

搭配,…的方法,inwhich引導定語從句修飾approach,這時可與where互換,

classifieristrainedtodetect…不定式表目的,thecentersofthecellsusing

Haar-Features.using前省略的介詞by,表方式。

(3)DHM,ifassociatedwithproperimageprocessingalgorithms,canserveasthe

fundamentalbuildingblockinalabelfreecelldiagnosticsworkflow.

ifassociatedwithproperimageprocessingalgorithms在句中作條件狀語,可將

其放在句首:Ifassociatedwithproperimageprocessingalgorithms,DHMcan

serveasthefundamentalbuildingblockinalabelfreecelldiagnosticsworkflow.

連詞+分詞做狀語,省略了主語(If也可省略),主語是主句主語,serveas為

固定短語表示充當…,inalabelfreecelldiagnosticsworkflow介詞短語做狀語。

(4)Therestofthepaperisorganizedasfollows:Section2presentsthedetailsofour

proposedsegmentationmethods,section3introducestheexperimentalresultsand

thecomparisontoothersegmentationmethods,thenaconcludingdiscussionis

providedinsection4.

該段主要是對文章結構進行簡要說明,thepaperisorganizedasfollows采用了

organize的被動態(tài)以及短語asfollows,為避免重復,對每一部分的介紹使用了

不同動詞,分另II是present,introduce,provide;thecomparisontoother

segmentationmethods.comparisonto為compareto…的變形;引入最后一部分

使用了連詞then而不是finally.

(5)Itislesslikelytohaveasinglesetofparametersthatcouldworkefficientlyforall

theimages.

Itislikelytodo…表示做什么事很有可能,less含義與more相反,Itislesslikely

todo…表示做…不太可能,it為形式主語,真正主語為不定式。asetof:一套,

一副,that引導一個定語從句修飾parameters,work表示起作用,工作的意

思。

(6)Second,weusepowerwatershedforthecellsegmentationwhichhasbeenproven

moreefficientthanconventionalwatershedingeneralsegmentationproblems[7].

Second:其次;weusepowerwatershedforthecellsegmentation,use…for…:將...

用在…上;which引導定語從句修飾powerwatershed,句中使用現(xiàn)在完成時

的被動態(tài)hasbeenproven表示此事現(xiàn)在已經(jīng)被證明了;moreefficientthan…比

較級的運用,表示比…更有效。

(7)Weconsiderthemarkergenerationproblemasanobjectdetectionproblemwhere

weaimatfindingthepositionsofcellcenters.

consider…as…:將…視為…;where引導定語從句可將其替換成inwhich(如

(2));aimat*-:旨在…;of+n.做后置定語。

(8)Intesting,wecomputetheprobabilityofeachpixelintheimagebeingacenterof

acell,theprobabilitymapisthresholdedtokeeponlythepixelsthataremore

likelytobeacellcenter.

Intesting:在測試中,做狀語;ofeachpixel…做后置定語修飾probability,each

pixelbeingacenterofacell是分詞的獨立結構,分詞帶有自己的主語;the

pixelsthataremorelikelytobeacellcenter

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論