![科技英語閱讀與寫作_第1頁](http://file4.renrendoc.com/view12/M06/3E/31/wKhkGWbM9LqAZG7BAADj6_ytdZE351.jpg)
![科技英語閱讀與寫作_第2頁](http://file4.renrendoc.com/view12/M06/3E/31/wKhkGWbM9LqAZG7BAADj6_ytdZE3512.jpg)
![科技英語閱讀與寫作_第3頁](http://file4.renrendoc.com/view12/M06/3E/31/wKhkGWbM9LqAZG7BAADj6_ytdZE3513.jpg)
![科技英語閱讀與寫作_第4頁](http://file4.renrendoc.com/view12/M06/3E/31/wKhkGWbM9LqAZG7BAADj6_ytdZE3514.jpg)
![科技英語閱讀與寫作_第5頁](http://file4.renrendoc.com/view12/M06/3E/31/wKhkGWbM9LqAZG7BAADj6_ytdZE3515.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
龍終建了科技之冬
科技英語閱讀與寫作
題目:CellSegmentationinDigitalHolographic
Images
學院:____________電子工程學院_________
專業(yè):信號與信息處理
姓名:_________________________________
學號:_____________1602120898___________
Partner:
姓名:_______________張潤東_____________
學號:1601120188
CELLSEGMENTATIONINDIGITALHOLOGRAPHICIMAGES
NohaEl-Zehiry'OliverHayden2andAliKamen1
,MedicalImagingTechnologies,SiemensHealthcare,Princeton,NJ,USA
2In-VitroDXandBioscience,SiemensHealthcare,Erlangen,Germany
ABSTRACT
DigitalHolographicMicroscopy(DHM)isbecomingrecentlyverypopularfor
cellimaging.①(1)Themainadvantageofdigitalholographicmicroscopyover
classicalmicroscopytechniquesisthatitdoesnotonlyprovidetheprojectedimageof
theobjectbutalsoprovidesthreedimensionalinformationoftheobject'soptical
thickness.DHMtechnologycouldbethecoreofalabel-freeimagingfbrhematology
applications.Inanidealframework,abloodsamplecanbeimagedusingDHM,
machinelearningapproachescan(beusedfor)thecellextraction,differentiationand
consequentlycomputingalltherelevantbloodstatisticssuchastheMeanCorpuscular
Volume(MCV),theRedBloodCell(RBC)count,RedBloodCellDistributionWidth
(RDW)._Themostvitalcomponentinsuchaframeworkisaccurateextractionofthe
cells.(2)(2)Thispaperpresentsanovelapproachtocellsegmentationinwhicha
probabilisticboostingtreeclassifieristrainedtodetectthecentersofthecellsusing
Haar-Featu】es?Thedetectedcellcentersareusedtotriggeramarker-controlledpower
watershedsegmentationtocomputethecellboundaries.Additionally,wepresenta
comprehensiveevaluationofsegmentationmethodsfbrcellextractionindigital
holographicimages.
1.INTRODUCTION
DigitalHolographicMicroscopy(DHM)hasreceivedalotofattentionrecently
incellimaging[1,2,3].(3)DHM,ifassociatedwithproperimageprocessing
algorithms,canserveasthefundamentalbuildingblockinalabelfreecelldiagnostics
workflow.Insuchaworkflow,accuratecellextractionisavitalsteptoperformthe
analysis.Therefore,thoroughinvestigationofcellsegmentationinDHMimagesisa
persistentnecessity.CurrentDHMapplicationstudiessuchas[1,2]usesimple
segmentationtoolsorutilizegenericcellsegmentationtools[4](that)arenot
designedforDHMandtheaccuracyoftheirperformanceforDHMwasnotassessed
intheliterature.Onenotableexceptionisthecellsegmentationapproachpresentedby
Yietal.in[3].Thealgorithmin[3]usesasequenceofmorphologicaloperationson
thephaseimagetogeneratemarkersformaker-controlledwatershedsegmentation.
Theapproachisrelativelycomplicatedandthemaindisadvantageisitssensitivityto
theparametersofthemorphologicaloperatorssuchasthesizeofthestructure
elementusedineveryoperation.Wewillovercomethisproblem.Inthispaper,we
presentatwo-stepsegmentationapproach:Celldetectiontolocalizethecentersofthe
cellsandcellsegmentationtodelineatetheboundariesofthecells.Qualitativeand
quantitativeassessmentofoursegmentationmethodispresented.Moreover,we
introduceacomparisontothestate-of-theartcellsegmentationmethods[3]and[4].
⑷Therestofthepaperisorganizedasfollows:Section2presentsthedetailsof
ourproposedsegmentationmethods,section3introducestheexperimentalresultsand
thecomparisontoothersegmentationmethods,thenaconcludingdiscussionis
Fig.I.PipelineofCellExtractionAlgorithm.Left:originalimagesuperimposedbytheprobabilitymapofapixel
beingacellcenter.Middle:Resultofaggregationoftheprobabilitymapresponseandgeneratingtheinternal
markers.Left:Segmentationresults.
2.METHODS
Markercontrolledwatershedhasbeenusedrepeatedlyforcellsegmentation[4,3,
5,6].Robustmarkergenerationisnecessarytoobtainqualitysegmentationresults.
Mostoftheprevioussegmentationmethods[3,4]useasequenceofmorphological
operationstoidentifythebestpossiblesetofmarkers.Onekeyproblemwithsuch
approachesis(that)itrequiresthetuningofmanyparametersforthestepswithinthe
morphologicaloperationchain.@(5)Itislesslikelytohavedsinglesetof
parametersthatcouldworkefficientlyforalltheimages.Ontheotherhand,tuning
theparametersforeachsingleimageiscompletelyimpracticalandnegatesthehigh
throughputadvantageassociatedwithDHMtechnology.Motivatedbytheprevious
drawbacks,wepresentanewcellsegmentationapproach.Thenoveltyofour
approachistwo-fold:First,robustmarkergeneration(using)cellcenterdetection.0
⑹Second,weusepowerwatershedforthecellsegmentationwhichhasbeenproven
moreefficientthanconventionalwatershedingeneralsegmentationproblems[7].
Figure1showsthepipelineofourcellextractionapproach.
2.1.RobustMarkerGeneration
(7)Weconsiderthemarkergenerationproblemasanobjectdetectionproblem
whereweaimatfindingthepositionsofcellcenters.Forthispurpose,weusea
machinelearningbasedapproachinsteadofmorphologicaloperationstominimizethe
sensitivitytoparameters9choice.Inthiscontext,weuseProbabilisticBoostingTree
(PBT)learningframework[8].Inthelearningphase,thePBTconstructsatree(in
which)eachnodecombinesasetofweakclassifiersintoastrongclassifier.Intesting
phase,theconditionalprobabilityiscomputedateachnodeandtheprobabilityis
propagatedtothesourceofthetreetoprovidetheoverallprobability.Inourtraining,
weusetheHaarfeatures[9]toformtheweakclassifiers.?⑻Intesting,we
computetheprobabilityofeachpixelintheimagebeingacenterofacell,the
probabilitymapisthresholdedtokeeponlythepixelsthataremorelikelytobeacell
center.
2.2.AggregationoftheDetectionResponses
Aftercomputingtheprobabilitymapandapplyingthethreshold,wegetahigh
responseinsideeachcell.However,theresponseisnotnecessarilysmoothand
connectedwhichmayleadtofalseidentificationofonecellasmultiplecells.
Therefore,toaggregatetheseresponse,weapplyaclusteringsteponthethresholded
probabilitymap.Theclusteringservestwopurposes,first,itaggregatedthecell
responsesinasinglecell.Second,itprovidesalargersetofpixelstoformasthe
internalmarkerforthesegmentation.Thepixelsofeachclusteraremergedintoa
singleconnectedcomponentthatservesasaninternalmarkerforthecell
segmentationstep.Themiddle
imageinFigure1showsasampleofthemarkerscomputedafterclustering.Theseare
usedasinternalcellmarkers,externalcellmarkershighlightingthebackgroundare
obtainedbyapplyingwatershedtransformontheinternalmarkers.
2.3.CellSegmentationusingPowerWatershed
Thepowerwatershedsegmentationreviewedinthissectionwaspresentedby
Couprieetal.in[7].Theformulationisperformedonadiscretegraph.Agraph
g={V,E}consistsofasetofverticesvEVandasetofedgeseG£QVxV.An
edgeincidenttovertices片andvjisdenotedey.Inourformulation,eachpixelis
identifiedwithanode,片.Aweightedgraphisagraphinwhicheveryedgee,is
assignedaweight
w.⑼Theseededsegmentationenergyin-7]wasgivenas
ngnE啕叫一叼/+£共產(chǎn)?+£嗚皿一1R
s.t.x(F)=1.x(B)=0.
s,=1ifX,>I,0ifXa<(1)
wherex^and與arethebinarylabelsassociatedwithvertices,andrespectively.F
andBrepresentthesetsofforegroundandbackgroundmarkers.(Itwasshownin[7]
that)whenpooandq>1,thisleadstoamoregeneralwatershed,namely,power
watershedthatyieldedbetterresults.Cellsegmentationcouldbenefitfbrthe
improvementsassociatedwithpowerwatershed.InSection3,wewillpresentthe
comparisonbetweenthesegmentationresultsusingpowerwatershed!andwatershed
thathasbeenusedinthevastliteraturefbrcellsegmentation.
DonorDonorDataDonorOverall
12Set34
TP97.4%97.8%97.3%96.5%97.2%
FP6.8%4.3%3.7%5.7%5%
Table1.Resultsofthedetectionofthecellcenter.TPandFParethetruepositiveandfalse
positiverates,respectively.
3.EXPERIMENTALRESULTS
Inadditiontothenovelsegmentationapproach,weconsidertheevaluationand
comparisonofsegmentationmethodsforDHMasamajorcontributionofthepaper.
Wechoseasubsetofsegmentationmethodsthatweconsiderrepresentativeofthe
currentsegmentationmethods.Qualitativeandquantitativecomparisonwillbe
presentedinthissection.
3.1.DataDescriptionandCellDetection
ThedatasetisacquiredusingtheQModHolographicandFluorescence
Microscope[10].Thecellswereilluminatedwithalightsourceofwavelength=
550nmandthemagnificationobjectiveis60x1.Thenumberofdonorsusedinthis
studyis4.Thenumberofimagesforeachdonor(variesfrom)6-9imageswithatotal
of28images.Eachimagecontainsmultiplecellsvaryingfrom10-30withatotalof
615cells,lbevaluatetheaccuracyofthedetectionalgorithm,weusen-foldleaveone
outcrossvalidation.Specifically,wedid4training/testingsets.Foreachsetweleave
outalltheimagesassociatedwithagivendonorandtraintheclassifierontheimages
oftherestofthedonors.Fortesting,wetestonlyontheunseendatafromtheleftout
donor.(10)Weexcludevllthecellsthataretouchingtheboundariesoftheimageto
ensurethattheevaluationisperformedonlyonvalidcellcandidates.
Theprobabilisticboostingtreeoutputsaprobabilitymapofeachpixel(being)a
cellcenter.Wethresholdtheprobabilitymapatp=0:75toconsideronlythepixels
thatarehighlikelytobecells.(11)Thethresholddoesnotprovideasinglecellcenter
butratheraclusterofpointsinthecenterofthecellasdepictedinthefirstimageof
Figure1.Inthisimage,theprobabilitymapissuperimposedontheoriginalimage
withthelostprobabilityinredandthehighestprobabilityinblue.Table1showsthe
(12)resultforthedetectionsystem.
3.2.CellSegmentation
Wechosearepresentativesubsetofcellsegmentationmethodstocompare
againstMl[4]andM2[3].Moreover,todecoupletheeffectofeachcontribution(the
machinelearningdetectioncomponentandthepowerwatershedsegmentation
component),wepresenttwonovelmethodsM3thatbenefitsfromdetection
componentonlyandM4thatbenefitsfromthepowerwatershedsegmentation
componentonly.ThedescriptionsofmethodsMl-M5aresummarizedasfollows:
l.CellProfiler[4](Ml):CellProfiler(isconsideredas)oneofthebenchmarksin
cellsegmentationandhasbeenrepeatedlyusedbyotherresearchgroupsto
obtainthesegmentationandprovideanalysis.
2.MarkerControlledWatershedforDHM(M2)[3]:Dedicatedcellsegmentation
forDHMtechnologywasonlydiscussedin[3].Themethodusesa
complicatedworkflowtogeneratethemarkersforthewatershedsegmentation.
Theworkflowissummarizedasfollows:(1)Imageisnormalized,(2)Otsu's
thresholdisappliedtoobtainIbin,(3)Holesarefilledusingmorphological
constructiontoIbin,(4)GradientimageIgradiscomputedusingSobel
operator.(5)MorphologicalopeningisappliedtoIbintoobtainlopen.(6)
Morphologicalerosion(13)isappliedtolopentoobtainlerode.(7)
Morphologicalreconstructionisappliedwithlopenasthemaskandlerodeas
amarkertoobtain\rec.(8)ComputeIsubasIopen-Irec.(9)Apply
morphologicaldilationonlerodetoobtainIdilate(10)Obtaintheinternal
markersbycombiningIsubandIdilate.(11)Applywatershedtransformonthe
internalmarkerstogeneratetheexternalmarkers.(12)Applymarkercontrolled
watershedsegmentationusingthemarkersgeneratedin(11).Mostofthe
previousstepsrequiretuningofstructureelementparameterswhichmakesthe
workflowerrorprone.Althoughtheworkflowwascarefullycraftedwith
specificparametersprovidedbytheauthorsin[3]toavoidmergingtouching
cellsoreliminatingsmallcomponents,asinglesetofparametersdoesnotwork
wellinallscenarios.Wetestedseveralcombinationsofparameterstotryto
achievethebestresultsforourdataset.Afterseveralexperiments,wefigured
thattheparametersprovidedbytheauthorsin[3]workbest.(14)Hence,for
thecomparison,weusetheparameterselectionin⑶.Onecanarguethatthe
improvementover[3]isduetoperformingthesegmentationusingpower
watershedratherthanthegenerationoftheaccuratemarkers.So,(15)itis
worthclarifyingthattheimprovementisduetoacombinationofbothfactors.
Todecoupletheeffectofeachcomponent.Wealsocompareagainsttwoother
workflows(M3andM4).
3.MachineLearningMarkerGenerationwithWatershed(M3):Inthismethod,
weusethemarkersgeneratedbythemachinelearningbasedcellcenter
detectionto
triggerwatershedsegmentation.
4.MorphologicalMarkerGenerationwithPowerWatershed(M4):Inthismethod,
wegeneratethemarkersusingthemorphologicalworkflow(M2)andapply
powerwatershedforthesegmentationinsteadofwatershed.
5.MachineLearningMarkerGenerationwithPowerwatershed(M5):Thisisthe
proposedworkflowwhichtakesadvantageofrobustmarkergenerationaswell
asmoreaccuratesegmentationusingpowerwatershed.
Figure2showsasampleofourresults.Thegallerydepictstheresultsofthefive
algorithmsforthreedifferentimagesfromdifferentdonors.Thethirdcolumnshows
thatallthealgorithmsworkcomparablywellifthecellsaresparselydistributedinthe
image.This,however,isnotverypracticalasitdoesnotefficientlyutilizethefull
fieldofview.Inpractice,thecellsmaybeveryclosetoeachother.Insuchscenarios,
mostofthemorphologicalbasedapproacheswouldfailinaccuratelyextractingthe
cells.Intheyellowboxes,weshowanexamplewheretwocellsaretouching.The
algorithmin[4]mergesthetwocellsinoneentity.Thecarefullycrafted
morphologicalworkflowin[3]managedtoseparatethetwocellsasshowninthe
secondrowand(16)sodidallthealgorithmswedevelopedasshowninthethird,
fourthandfifthrows.Whenthecellsslightlyoverlaps,itbecomesmorechallenging
andmorphologicalbasedmethodsfailtoaccuratelyextractthecellsasshowninthe
examplesinthegreenboxes.Ontheotherhand,M4andM5cansuccessfullyextract
thecellsduetotherobustnessofthecellcenterdetectioncomponent.Itisworth
notingthathighthroughputsystemsrequireafullutilizationofthefieldofview
whichresultsinmultipleoccurrencesofsuchtouchingorslightlyoverlappingcells.A
limitationofthecurrentapproachisthatwhentheoverlapbetweenthecellsislarge,
theboundariescannotbedelineatedaccuratelyasdepictedintheblueboxes.However,
eveninsuchscenario,ouralgorithmismoreaccuratethan[4]and[3]becauseitstill
identifiedtwocellswhichisimportantforan
accuratecellcount.
至
,€s£
K
c
-5*>方
u6
d胃
_M
M至
-
主
?
|國
SS
CJ
M
Oq
co
ld
—
1
0
生
一
里
6i國
U9s
36b
-*
I0M
豈¥
o
d
.
Fig.2.Sampleofthesegmentationresultsobtainedusingthefivedifferentalgorithms.
Forquantitativeassessment,wechosethemostcommonmetricsfor
segmentationevaluation,namely,thesensitivity,specificity,DiceandJaccard
similarityindexdefinedas:
TP
Sensitivity
TP+F.V?
TN
Specificity⑵
TN+FP'
TTP
DiceSimilarityIndex
JaccardSimilarityIndex
TP+FP+N
whereTP,FP,TNandFNrefertothetruepositives,falsepositives,truenegativesand
falsenegatives,respectively.
Table2showstheresultsforthemethodsM1-M5.Thequantitativeassessment
showsthateachcomponentweintroduced(contributedto)improvingthe
segmentationresults.However,(17)itisevidentthattherobustlocalizationofthecells
usingthecelldetectionframeworkplayedamorecrucialrole.Whilethesensitivity
improvedby10%whenusingourmachinelearningmarkergeneration,itonly
improved2%whenusingpowerwatershedinsteadofwatershed.
M1M2M3M4M5
Sensitivity88.7083.3792.9484.5894.83
Specificity98.1898.5797.4498.9298.44
Jaccard80.9577.5581.5380.0686.51
Dice89.3288.8489.7488.8492.66
Table2.QuantitativeComparisonbetweenthedifferentSegmentationMethods.
4.CONCLUSIONANDFUTUREWORK
Thepaperpresentedanovelapproachforcellsegmentationindigital
holographicmicroscopicimages.Therobustmarkergenerationpresentedinthepaper
outperformsthemorphologicalworkflowformarkergenerationthatiscommonly
usedtoinitiatewatershedsegmentation.Weintroducedthepowerwatershedtothe
cellsegmentationproblemandpresentedquantitativeevidencethatitworksbetter
thanwatershed.Thepaperpresentedaquantitativecomparisonoftheproposed
approachtothecommonmethodsusedforcellsegmentation.Onelimitationofour
approachandallthemethods(M1-M5)isthatitisnotcapableofproperlysegmenting
overlappingcells.Inthefuture,weplantoaddpostprocessingthatidentifiesthe
overlappingcellsandformulatesalayeredsegmentationalgorithmtoseparate
properlytheoverlappingcells.
一、語法分析
(1)Themainadvantageofdigitalholographicmicroscopyoverclassicalmicroscopy
techniquesisthatitdoesnotonlyprovidetheprojectedimageoftheobjectbut
alsoprovidesthreedimensionalinformationoftheobject'sopticalthickness.
本句主語為Themainadvantage,ofdigitalholographicmicroscopy作為后置定
語修飾主語,advantage...over為固定搭配表示與…相比的優(yōu)勢含義,表語由
that引導的表語從句充當,其中notonly…butalso…表示不僅而且的意思,并
且of+n具有形容詞的含義。
(2)Thispaperpresentsanovelapproachtocellsegmentationinwhichaprobabilistic
boostingtreeclassifieristrainedtodetectthecentersofthecellsusing
Haar-Features.
本句主句為Thispaperpresentsanapproach.present:提出,approachto…:固定
搭配,…的方法,inwhich引導定語從句修飾approach,這時可與where互換,
classifieristrainedtodetect…不定式表目的,thecentersofthecellsusing
Haar-Features.using前省略的介詞by,表方式。
(3)DHM,ifassociatedwithproperimageprocessingalgorithms,canserveasthe
fundamentalbuildingblockinalabelfreecelldiagnosticsworkflow.
ifassociatedwithproperimageprocessingalgorithms在句中作條件狀語,可將
其放在句首:Ifassociatedwithproperimageprocessingalgorithms,DHMcan
serveasthefundamentalbuildingblockinalabelfreecelldiagnosticsworkflow.
連詞+分詞做狀語,省略了主語(If也可省略),主語是主句主語,serveas為
固定短語表示充當…,inalabelfreecelldiagnosticsworkflow介詞短語做狀語。
(4)Therestofthepaperisorganizedasfollows:Section2presentsthedetailsofour
proposedsegmentationmethods,section3introducestheexperimentalresultsand
thecomparisontoothersegmentationmethods,thenaconcludingdiscussionis
providedinsection4.
該段主要是對文章結構進行簡要說明,thepaperisorganizedasfollows采用了
organize的被動態(tài)以及短語asfollows,為避免重復,對每一部分的介紹使用了
不同動詞,分另II是present,introduce,provide;thecomparisontoother
segmentationmethods.comparisonto為compareto…的變形;引入最后一部分
使用了連詞then而不是finally.
(5)Itislesslikelytohaveasinglesetofparametersthatcouldworkefficientlyforall
theimages.
Itislikelytodo…表示做什么事很有可能,less含義與more相反,Itislesslikely
todo…表示做…不太可能,it為形式主語,真正主語為不定式。asetof:一套,
一副,that引導一個定語從句修飾parameters,work表示起作用,工作的意
思。
(6)Second,weusepowerwatershedforthecellsegmentationwhichhasbeenproven
moreefficientthanconventionalwatershedingeneralsegmentationproblems[7].
Second:其次;weusepowerwatershedforthecellsegmentation,use…for…:將...
用在…上;which引導定語從句修飾powerwatershed,句中使用現(xiàn)在完成時
的被動態(tài)hasbeenproven表示此事現(xiàn)在已經(jīng)被證明了;moreefficientthan…比
較級的運用,表示比…更有效。
(7)Weconsiderthemarkergenerationproblemasanobjectdetectionproblemwhere
weaimatfindingthepositionsofcellcenters.
consider…as…:將…視為…;where引導定語從句可將其替換成inwhich(如
(2));aimat*-:旨在…;of+n.做后置定語。
(8)Intesting,wecomputetheprobabilityofeachpixelintheimagebeingacenterof
acell,theprobabilitymapisthresholdedtokeeponlythepixelsthataremore
likelytobeacellcenter.
Intesting:在測試中,做狀語;ofeachpixel…做后置定語修飾probability,each
pixelbeingacenterofacell是分詞的獨立結構,分詞帶有自己的主語;the
pixelsthataremorelikelytobeacellcenter
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 宜賓市荒山土地承包合同范本
- 動漫作品授權合作合同范本
- 企業(yè)用人正式合同范例
- 淺析京劇發(fā)聲與民歌唱法美聲唱法的關系
- 加盟押金店合同范例
- 2025年度市政道路施工建設投資合作協(xié)議
- MW光伏電站項目EC總承包合同范本
- 三方合租協(xié)議合同范本
- 制砂機租賃合同范本
- 保險內(nèi)勤銷售合同范例
- 餐飲服務與管理(高職)PPT完整全套教學課件
- 成人學士學位英語1000個高頻必考詞匯匯總
- 2023年菏澤醫(yī)學??茖W校單招綜合素質(zhì)模擬試題及答案解析
- 常見食物的嘌呤含量表匯總
- 人教版數(shù)學八年級下冊同步練習(含答案)
- SB/T 10752-2012馬鈴薯雪花全粉
- 2023年湖南高速鐵路職業(yè)技術學院高職單招(英語)試題庫含答案解析
- 濕型砂中煤粉作用及檢測全解析
- 積累運用表示動作的詞語課件
- 機動車登記證書英文證書模板
- 第8課《山山水水》教學設計(新人教版小學美術六年級上冊)
評論
0/150
提交評論