版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022學年四川省巴中市名校中考聯考數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.將二次函數的圖象先向左平移1個單位,再向下平移2個單位,所得圖象對應的函數表達式是()A. B.C. D.2.在剛剛結束的中考英語聽力、口語測試中,某班口語成績情況如圖所示,則下列說法正確的是()A.中位數是9 B.眾數為16 C.平均分為7.78 D.方差為23.反比例函數y=(a>0,a為常數)和y=在第一象限內的圖象如圖所示,點M在y=的圖象上,MC⊥x軸于點C,交y=的圖象于點A;MD⊥y軸于點D,交y=的圖象于點B,當點M在y=的圖象上運動時,以下結論:①S△ODB=S△OCA;②四邊形OAMB的面積不變;③當點A是MC的中點時,則點B是MD的中點.其中正確結論的個數是()A.0 B.1 C.2 D.34.如圖是一個幾何體的主視圖和俯視圖,則這個幾何體是()A.三棱柱 B.正方體 C.三棱錐 D.長方體5.下列調查中,最適合采用全面調查(普查)方式的是()A.對重慶市初中學生每天閱讀時間的調查B.對端午節(jié)期間市場上粽子質量情況的調查C.對某批次手機的防水功能的調查D.對某校九年級3班學生肺活量情況的調查6.2cos30°的值等于()A.1 B. C. D.27.有四包真空包裝的火腿腸,每包以標準質量450g為基準,超過的克數記作正數,不足的克數記作負數.下面的數據是記錄結果,其中與標準質量最接近的是()A.+2 B.﹣3 C.+4 D.﹣18.下列運算正確的是()A.5a+2b=5(a+b) B.a+a2=a3C.2a3?3a2=6a5 D.(a3)2=a59.如圖,△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,△OAB與△OCD的面積分別是S1和S2,△OAB與△OCD的周長分別是C1和C2,則下列等式一定成立的是()A. B. C. D.10.如圖,點A、B、C、D在⊙O上,∠AOC=120°,點B是弧AC的中點,則∠D的度數是()A.60° B.35° C.30.5° D.30°二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在△ABC中,∠C=120°,AB=4cm,兩等圓⊙A與⊙B外切,則圖中兩個扇形的面積之和(即陰影部分)為cm2(結果保留π).12.如圖,Rt△ABC中,若∠C=90°,BC=4,tanA=,則AB=___.13.若點M(k﹣1,k+1)關于y軸的對稱點在第四象限內,則一次函數y=(k﹣1)x+k的圖象不經過第象限.14.如圖,長方體的底面邊長分別為1cm和3cm,高為6cm.如果用一根細線從點A開始經過4個側面纏繞一圈到達點B,那么所用細線最短需要_____cm.15.若使代數式有意義,則x的取值范圍是_____.16.一個圓的半徑為2,弦長是2,求這條弦所對的圓周角是_____.17.如圖,一次函數y=x﹣2的圖象與反比例函數y=(k>0)的圖象相交于A、B兩點,與x軸交與點C,若tan∠AOC=,則k的值為_____.三、解答題(共7小題,滿分69分)18.(10分)李寧準備完成題目;解二元一次方程組,發(fā)現系數“□”印刷不清楚.他把“□”猜成3,請你解二元一次方程組;張老師說:“你猜錯了”,我看到該題標準答案的結果x、y是一對相反數,通過計算說明原題中“□”是幾?19.(5分)如圖,建筑物BC上有一旗桿AB,從與BC相距40m的D處觀測旗桿頂部A的仰角為50°,觀測旗桿底部B的仰角為45°,求旗桿AB的高度.(參考數據:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)20.(8分)如圖,已知拋物線y=x2﹣4與x軸交于點A,B(點A位于點B的左側),C為頂點,直線y=x+m經過點A,與y軸交于點D.求線段AD的長;平移該拋物線得到一條新拋物線,設新拋物線的頂點為C′.若新拋物線經過點D,并且新拋物線的頂點和原拋物線的頂點的連線CC′平行于直線AD,求新拋物線對應的函數表達式.21.(10分)如圖,拋物線y=ax2﹣2ax+c(a≠0)與y軸交于點C(0,4),與x軸交于點A、B,點A坐標為(4,0).(1)求該拋物線的解析式;(2)拋物線的頂點為N,在x軸上找一點K,使CK+KN最小,并求出點K的坐標;(3)點Q是線段AB上的動點,過點Q作QE∥AC,交BC于點E,連接CQ.當△CQE的面積最大時,求點Q的坐標;(4)若平行于x軸的動直線l與該拋物線交于點P,與直線AC交于點F,點D的坐標為(2,0).問:是否存在這樣的直線l,使得△ODF是等腰三角形?若存在,請求出點P的坐標;若不存在,請說明理由.22.(10分)某學校要了解學生上學交通情況,選取七年級全體學生進行調查,根據調查結果,畫出扇形統計圖(如圖),圖中“公交車”對應的扇形圓心角為60°,“自行車”對應的扇形圓心角為120°,已知七年級乘公交車上學的人數為50人.(1)七年級學生中,騎自行車和乘公交車上學的學生人數哪個更多?多多少人?(2)如果全校有學生2400人,學校準備的600個自行車停車位是否足夠?23.(12分)端午節(jié)“賽龍舟,吃粽子”是中華民族的傳統習俗.節(jié)日期間,小邱家包了三種不同餡的粽子,分別是:紅棗粽子(記為A),豆沙粽子(記為B),肉粽子(記為C),這些粽子除了餡不同,其余均相同.粽子煮好后,小邱的媽媽給一個白盤中放入了兩個紅棗粽子,一個豆沙粽子和一個肉粽子;給一個花盤中放入了兩個肉粽子,一個紅棗粽子和一個豆沙粽子.根據以上情況,請你回答下列問題:假設小邱從白盤中隨機取一個粽子,恰好取到紅棗粽子的概率是多少?若小邱先從白盤里的四個粽子中隨機取一個粽子,再從花盤里的四個粽子中隨機取一個粽子,請用列表法或畫樹狀圖的方法,求小邱取到的兩個粽子中一個是紅棗粽子、一個是豆沙粽子的概率.24.(14分)如圖,熱氣球的探測器顯示,從熱氣球A看一棟髙樓頂部B的仰角為30°,看這棟高樓底部C的俯角為60°,熱氣球A與高樓的水平距離為120m,求這棟高樓BC的高度.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】
拋物線平移不改變a的值,由拋物線的頂點坐標即可得出結果.【詳解】解:原拋物線的頂點為(0,0),向左平移1個單位,再向下平移1個單位,那么新拋物線的頂點為(-1,-1),
可設新拋物線的解析式為:y=(x-h)1+k,
代入得:y=(x+1)1-1.
∴所得圖象的解析式為:y=(x+1)1-1;
故選:B.【點睛】本題考查二次函數圖象的平移規(guī)律;解決本題的關鍵是得到新拋物線的頂點坐標.2、A【解析】
根據中位數,眾數,平均數,方差等知識即可判斷;【詳解】觀察圖象可知,共有50個學生,從低到高排列后,中位數是25位與26位的平均數,即為1.故選A.【點睛】本題考查中位數,眾數,平均數,方差的定義,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.3、D【解析】
根據反比例函數的性質和比例系數的幾何意義逐項分析可得出解.【詳解】①由于A、B在同一反比例函數y=圖象上,由反比例系數的幾何意義可得S△ODB=S△OCA=1,正確;②由于矩形OCMD、△ODB、△OCA為定值,則四邊形MAOB的面積不會發(fā)生變化,正確;③連接OM,點A是MC的中點,則S△ODM=S△OCM=,因S△ODB=S△OCA=1,所以△OBD和△OBM面積相等,點B一定是MD的中點.正確;故答案選D.考點:反比例系數的幾何意義.4、A【解析】【分析】根據三視圖的知識使用排除法即可求得答案.【詳解】如圖,由主視圖為三角形,排除了B、D,由俯視圖為長方形,可排除C,故選A.【點睛】本題考查了由三視圖判斷幾何體的知識,做此類題時可利用排除法解答.5、D【解析】
A、對重慶市初中學生每天閱讀時間的調查,調查范圍廣適合抽樣調查,故A錯誤;B、對端午節(jié)期間市場上粽子質量情況的調查,調查具有破壞性,適合抽樣調查,故B錯誤;C、對某批次手機的防水功能的調查,調查具有破壞性,適合抽樣調查,故C錯誤;D、對某校九年級3班學生肺活量情況的調查,人數較少,適合普查,故D正確;故選D.6、C【解析】分析:根據30°角的三角函數值代入計算即可.詳解:2cos30°=2×=.故選C.點睛:此題主要考查了特殊角的三角函數值的應用,熟記30°、45°、60°角的三角函數值是解題關鍵.7、D【解析】試題解析:因為|+2|=2,|-3|=3,|+4|=4,|-1|=1,由于|-1|最小,所以從輕重的角度看,質量是-1的工件最接近標準工件.故選D.8、C【解析】
直接利用合并同類項法則以及單項式乘以單項式、冪的乘方運算法則分別化簡得出答案.【詳解】A、5a+2b,無法計算,故此選項錯誤;B、a+a2,無法計算,故此選項錯誤;C、2a3?3a2=6a5,故此選項正確;D、(a3)2=a6,故此選項錯誤.故選C.【點睛】此題主要考查了合并同類項以及單項式乘以單項式、冪的乘方運算,正確掌握運算法則是解題關鍵.9、D【解析】A選項,在△OAB∽△OCD中,OB和CD不是對應邊,因此它們的比值不一定等于相似比,所以A選項不一定成立;B選項,在△OAB∽△OCD中,∠A和∠C是對應角,因此,所以B選項不成立;C選項,因為相似三角形的面積比等于相似比的平方,所以C選項不成立;D選項,因為相似三角形的周長比等于相似比,所以D選項一定成立.故選D.10、D【解析】
根據圓心角、弧、弦的關系定理得到∠AOB=∠AOC,再根據圓周角定理即可解答.【詳解】連接OB,∵點B是弧的中點,∴∠AOB=∠AOC=60°,由圓周角定理得,∠D=∠AOB=30°,故選D.【點睛】此題考查了圓心角、弧、弦的關系定理,解題關鍵在于利用好圓周角定理.二、填空題(共7小題,每小題3分,滿分21分)11、.【解析】
圖中陰影部分的面積就是兩個扇形的面積,圓A,B的半徑為2cm,則根據扇形面積公式可得陰影面積.【詳解】(cm2).故答案為.考點:1、扇形的面積公式;2、兩圓相外切的性質.12、1.【解析】
在Rt△ABC中,已知tanA,BC的值,根據tanA=,可將AC的值求出,再由勾股定理可將斜邊AB的長求出.【詳解】解:Rt△ABC中,∵BC=4,tanA=∴則故答案為1.【點睛】考查解直角三角形以及勾股定理,熟練掌握銳角三角函數是解題的關鍵.13、一【解析】試題分析:首先確定點M所處的象限,然后確定k的符號,從而確定一次函數所經過的象限,得到答案.∵點M(k﹣1,k+1)關于y軸的對稱點在第四象限內,∴點M(k﹣1,k+1)位于第三象限,∴k﹣1<0且k+1<0,解得:k<﹣1,∴y=(k﹣1)x+k經過第二、三、四象限,不經過第一象限考點:一次函數的性質14、1【解析】
要求所用細線的最短距離,需將長方體的側面展開,進而根據“兩點之間線段最短”得出結果.【詳解】解:將長方體展開,連接A、B′,∵AA′=1+3+1+3=8(cm),A′B′=6cm,根據兩點之間線段最短,AB′==1cm.故答案為1.考點:平面展開-最短路徑問題.15、x≠﹣2【解析】
直接利用分式有意義則其分母不為零,進而得出答案.【詳解】∵分式有意義,∴x的取值范圍是:x+2≠0,解得:x≠?2.故答案是:x≠?2.【點睛】本題考查了分式有意義的條件,解題的關鍵是熟練的掌握分式有意義的條件.16、60°或120°【解析】
首先根據題意畫出圖形,過點O作OD⊥AB于點D,通過垂徑定理,即可推出∠AOD的度數,求得∠AOB的度數,然后根據圓周角定理,即可推出∠AMB和∠ANB的度數.【詳解】解:如圖:連接OA,過點O作OD⊥AB于點D,OA=2,AB=,AD=BD=,AD:OA=:2,∠AOD=,∠AOB=,∠AMB=,∠ANB=.故答案為:或.【點睛】本題主要考查垂徑定理與圓周角定理,注意弦所對的圓周角有兩個,他們互為補角.17、1【解析】【分析】如圖,過點A作AD⊥x軸,垂足為D,根據題意設出點A的坐標,然后根據一次函數y=x﹣2的圖象與反比例函數y=(k>0)的圖象相交于A、B兩點,可以求得a的值,進而求得k的值即可.【詳解】如圖,過點A作AD⊥x軸,垂足為D,∵tan∠AOC==,∴設點A的坐標為(1a,a),∵一次函數y=x﹣2的圖象與反比例函數y=(k>0)的圖象相交于A、B兩點,∴a=1a﹣2,得a=1,∴1=,得k=1,故答案為:1.【點睛】本題考查了正切,反比例函數與一次函數的交點問題,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數形結合的思想解答.三、解答題(共7小題,滿分69分)18、(1);(2)-1【解析】
(1)②+①得出4x=-4,求出x,把x的值代入①求出y即可;(2)把x=-y代入x-y=4求出y,再求出x,最后把x、y代入②求出答案即可.【詳解】解:(1)①+②得,.將時代入①得,,∴.(2)設“□”為a,∵x、y是一對相反數,∴把x=-y代入x-y=4得:-y-y=4,解得:y=-2,即x=2,所以方程組的解是,代入ax+y=-8得:2a-2=-8,解得:a=-1,即原題中“□”是-1.【點睛】本題考查了解二元一次方程組,也考查了二元一次方程組的解,能得出關于a的方程是解(2)的關鍵.19、7.6m.【解析】
利用CD及正切函數的定義求得BC,AC長,把這兩條線段相減即為AB長【詳解】解:由題意,∠BDC=45°,∠ADC=50°,∠ACD=90°,CD=40m.∵在Rt△BDC中,tan∠BDC=BCCD∴BC=CD=40m.∵在Rt△ADC中,tan∠ADC=ACCD∴tan50∴AB≈7.6(m).答:旗桿AB的高度約為7.6m.【點睛】此題主要考查了解直角三角形的應用,正確應用銳角三角函數關系是解題關鍵.20、(1)1;(1)y=x1﹣4x+1或y=x1+6x+1.【解析】
(1)解方程求出點A的坐標,根據勾股定理計算即可;(1)設新拋物線對應的函數表達式為:y=x1+bx+1,根據二次函數的性質求出點C′的坐標,根據題意求出直線CC′的解析式,代入計算即可.【詳解】解:(1)由x1﹣4=0得,x1=﹣1,x1=1,∵點A位于點B的左側,∴A(﹣1,0),∵直線y=x+m經過點A,∴﹣1+m=0,解得,m=1,∴點D的坐標為(0,1),∴AD==1;(1)設新拋物線對應的函數表達式為:y=x1+bx+1,y=x1+bx+1=(x+)1+1﹣,則點C′的坐標為(﹣,1﹣),∵CC′平行于直線AD,且經過C(0,﹣4),∴直線CC′的解析式為:y=x﹣4,∴1﹣=﹣﹣4,解得,b1=﹣4,b1=6,∴新拋物線對應的函數表達式為:y=x1﹣4x+1或y=x1+6x+1.【點睛】本題考查的是拋物線與x軸的交點、待定系數法求函數解析式,掌握二次函數的性質、拋物線與x軸的交點的求法是解題的關鍵.21、(1)y=﹣;(1)點K的坐標為(,0);(2)點P的坐標為:(1+,1)或(1﹣,1)或(1+,2)或(1﹣,2).【解析】試題分析:(1)把A、C兩點坐標代入拋物線解析式可求得a、c的值,可求得拋物線解析;(1)可求得點C關于x軸的對稱點C′的坐標,連接C′N交x軸于點K,再求得直線C′K的解析式,可求得K點坐標;(2)過點E作EG⊥x軸于點G,設Q(m,0),可表示出AB、BQ,再證明△BQE≌△BAC,可表示出EG,可得出△CQE關于m的解析式,再根據二次函數的性質可求得Q點的坐標;(4)分DO=DF、FO=FD和OD=OF三種情況,分別根據等腰三角形的性質求得F點的坐標,進一步求得P點坐標即可.試題解析:(1)∵拋物線經過點C(0,4),A(4,0),∴,解得,∴拋物線解析式為y=﹣x1+x+4;(1)由(1)可求得拋物線頂點為N(1,),如圖1,作點C關于x軸的對稱點C′(0,﹣4),連接C′N交x軸于點K,則K點即為所求,設直線C′N的解析式為y=kx+b,把C′、N點坐標代入可得,解得,∴直線C′N的解析式為y=x-4,令y=0,解得x=,∴點K的坐標為(,0);(2)設點Q(m,0),過點E作EG⊥x軸于點G,如圖1,由﹣x1+x+4=0,得x1=﹣1,x1=4,∴點B的坐標為(﹣1,0),AB=6,BQ=m+1,又∵QE∥AC,∴△BQE≌△BAC,∴,即,解得EG=;∴S△CQE=S△CBQ﹣S△EBQ=(CO-EG)·BQ=(m+1)(4-)==-(m-1)1+2.又∵﹣1≤m≤4,∴當m=1時,S△CQE有最大值2,此時Q(1,0);(4)存在.在△ODF中,(?。┤鬌O=DF,∵A(4,0),D(1,0),∴AD=OD=DF=1.又在Rt△AOC中,OA=OC=4,∴∠OAC=45°.∴∠DFA=∠OAC=45°.∴∠ADF=90°.此時,點F的坐標為(1,1).由﹣x1+x+4=1,得x1=1+,x1=1﹣.此時,點P的坐標為:P1(1+,1)或P1(1﹣,1);(ⅱ)若FO=FD,過點F作FM⊥x軸于點M.由等腰三角形的性質得:OM=OD=1,∴AM=2.∴在等腰直角△AMF中,MF=AM=2.∴F(1,2).由﹣x1+x+4=2,得x1=1+,x1=1﹣.此時,點P的坐標為:P2(1+,2)或P4(1﹣,2);(ⅲ)若OD=OF,∵OA=OC=4,且∠AOC=90°.∴AC=4.∴點O到AC的距離為1.而OF=OD=1<1,與OF≥1矛盾.∴在AC上不存在點使得OF=OD=1.此時,不存在這樣的直線l,使得△ODF是等腰三角形.綜上所述,存在這樣的直線l,使得△ODF是等腰三角形.所求點P的坐標為:(1+,1)或(1﹣,1)或(1+,2)或(1﹣,2).點睛:本題是二次函數綜合題,主要考查待定系數法、三角形全等的判定與性質、等腰三角形的性質等,能正確
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度綠色金融創(chuàng)新產品開發(fā)貸款合同3篇
- 2024質保協議書范本
- 2024葡萄品種專項銷售代理協議版B版
- 2024跨區(qū)域連鎖加盟門店承包合同
- 2024版最正式的借款合同
- 二零二五年度電商綠色物流合作協議3篇
- 2024軟件許可合同 with 軟件功能與技術支持服務
- 二零二五年度陜西省旅游項目開發(fā)合作合同2篇
- 西安文理學院《汽車試驗技術及性能試驗》2023-2024學年第一學期期末試卷
- 2025年度國際貿易供應鏈合同解析3篇
- 工業(yè)機器人論文3000字(合集4篇)
- 2024年全國統一高考數學試卷(新高考Ⅱ)含答案
- 【中小企業(yè)融資難問題探究的國內外綜述5800字】
- DL∕T 2138-2020 電力專利價值評估規(guī)范
- 深圳市購物中心租金調查
- 我國無菌包裝行業(yè)消費量已超千億包-下游需求仍存擴容潛力
- 大數據管理與考核制度大全
- 大學面試后感謝信
- 2022屆上海高考語文調研試測卷詳解(有《畏齋記》“《江表傳》曰…”譯文)
- SBT11229-2021互聯網舊貨交易平臺建設和管理規(guī)范
- 如何打造頂尖理財顧問團隊
評論
0/150
提交評論