2023-2024學年湖南省永州市新田縣中考聯(lián)考數學試卷含解析_第1頁
2023-2024學年湖南省永州市新田縣中考聯(lián)考數學試卷含解析_第2頁
2023-2024學年湖南省永州市新田縣中考聯(lián)考數學試卷含解析_第3頁
2023-2024學年湖南省永州市新田縣中考聯(lián)考數學試卷含解析_第4頁
2023-2024學年湖南省永州市新田縣中考聯(lián)考數學試卷含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年湖南省永州市新田縣中考聯(lián)考數學試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.隨著生活水平的提高,小林家購置了私家車,這樣他乘坐私家車上學比乘坐公交車上學所需的時間少用了15分鐘,現已知小林家距學校8千米,乘私家車平均速度是乘公交車平均速度的2.5倍,若設乘公交車平均每小時走x千米,根據題意可列方程為()A. B. C. D.2.已知函數的圖象與x軸有交點.則的取值范圍是()A.k<4 B.k≤4 C.k<4且k≠3 D.k≤4且k≠33.已知,代數式的值為()A.-11 B.-1 C.1 D.114.如圖,在菱形ABCD中,∠A=60°,E是AB邊上一動點(不與A、B重合),且∠EDF=∠A,則下列結論錯誤的是()A.AE=BF B.∠ADE=∠BEFC.△DEF是等邊三角形 D.△BEF是等腰三角形5.如圖,若△ABC內接于半徑為R的⊙O,且∠A=60°,連接OB、OC,則邊BC的長為()A. B. C. D.6.在平面直角坐標系xOy中,對于任意三點A,B,C的“矩面積”,給出如下定義:“水平底”a:任意兩點橫坐標差的最大值,“鉛垂高”h:任意兩點縱坐標差的最大值,則“矩面積”S=ah.例如:三點坐標分別為A(1,2),B(﹣3,1),C(2,﹣2),則“水平底”a=5,“鉛垂高”h=4,“矩面積”S=ah=1.若D(1,2)、E(﹣2,1)、F(0,t)三點的“矩面積”為18,則t的值為()A.﹣3或7B.﹣4或6C.﹣4或7D.﹣3或67.對于反比例函數y=﹣2xA.圖象分布在第二、四象限B.當x>0時,y隨x的增大而增大C.圖象經過點(1,﹣2)D.若點A(x1,y1),B(x2,y2)都在圖象上,且x1<x2,則y1<y28.已知函數y=(k-1)x2-4x+4的圖象與x軸只有一個交點,則k的取值范圍是()A.k≤2且k≠1 B.k<2且k≠1C.k=2 D.k=2或19.如圖,正六邊形ABCDEF內接于⊙O,半徑為4,則這個正六邊形的邊心距OM和BC的長分別為()A.2,π3 B.23,π C.3,2π3 D.2310.如圖,菱形OABC的頂點C的坐標為(3,4),頂點A在x軸的正半軸上.反比例函數(x>0)的圖象經過頂點B,則k的值為A.12 B.20 C.24 D.3211.某種品牌手機經過二、三月份再次降價,每部售價由1000元降到810元,則平均每月降價的百分率為()A.20% B.11% C.10% D.9.5%12.計算:得()A.- B.- C.- D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,邊長為6cm的正三角形內接于⊙O,則陰影部分的面積為(結果保留π)_____.14.在臨桂新區(qū)建設中,需要修一段全長2400m的道路,為了盡量減少施工對縣城交通工具所造成的影響,實際工作效率比原計劃提高了20%,結果提前8天完成任務,求原計劃每天修路的長度.若設原計劃每天修路xm,則根據題意可得方程.15.如圖,函數y=(x<0)的圖像與直線y=-x交于A點,將線段OA繞O點順時針旋轉30°,交函數y=(x<0)的圖像于B點,得到線段OB,若線段AB=3-,則k=_______________________.16.的算術平方根為______.17.計算tan260°﹣2sin30°﹣cos45°的結果為_____.18.從1,2,3,4,5,6,7,8這八個數中,任意抽取一個數,這個數恰好是合數的概率是__________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在方格紙上建立平面直角坐標系,每個小正方形的邊長為1.(1)在圖1中畫出△AOB關于x軸對稱的△A1OB1,并寫出點A1,B1的坐標;(2)在圖2中畫出將△AOB繞點O順時針旋轉90°的△A2OB2,并求出線段OB掃過的面積.20.(6分)如圖,在平面直角坐標系xOy中,拋物線y=ax2+bx+c經過A、B、C三點,已知點A(﹣3,0),B(0,3),C(1,0).(1)求此拋物線的解析式.(2)點P是直線AB上方的拋物線上一動點,(不與點A、B重合),過點P作x軸的垂線,垂足為F,交直線AB于點E,作PD⊥AB于點D.動點P在什么位置時,△PDE的周長最大,求出此時P點的坐標.21.(6分)近幾年購物的支付方式日益增多,某數學興趣小組就此進行了抽樣調查.調查結果顯示,支付方式有:A微信、B支付寶、C現金、D其他,該小組對某超市一天內購買者的支付方式進行調查統(tǒng)計,得到如下兩幅不完整的統(tǒng)計圖.請你根據統(tǒng)計圖提供的信息,解答下列問題:本次一共調查了多少名購買者?請補全條形統(tǒng)計圖;在扇形統(tǒng)計圖中A種支付方式所對應的圓心角為度.若該超市這一周內有1600名購買者,請你估計使用A和B兩種支付方式的購買者共有多少名?22.(8分)“食品安全”受到全社會的廣泛關注,濟南市某中學對部分學生就食品安全知識的了解程度,采用隨機抽樣調查的方式,并根據收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.請你根據統(tǒng)計圖中所提供的信息解答下列問題:(1)接受問卷調查的學生共有人,扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角為;(2)請補全條形統(tǒng)計圖;(3)若該中學共有學生900人,請根據上述調查結果,估計該中學學生中對食品安全知識達到“了解”和“基本了解”程度的總人數;(4)若從對食品安全知識達到“了解”程度的2個女生和2個男生中隨機抽取2人參加食品安全知識競賽,請用樹狀圖或列表法求出恰好抽到1個男生和1個女生的概率.23.(8分)目前“微信”、“支付寶”、“共享單車”和“網購”給我們的生活帶來了很多便利,初二數學小組在校內對“你最認可的四大新生事物”進行調查,隨機調查了人(每名學生必選一種且只能從這四種中選擇一種)并將調查結果繪制成如下不完整的統(tǒng)計圖.根據圖中信息求出,;請你幫助他們將這兩個統(tǒng)計圖補全;根據抽樣調查的結果,請估算全校2000名學生中,大約有多少人最認可“微信”這一新生事物?24.(10分)濟南某中學在參加“創(chuàng)文明城,點贊泉城”書畫比賽中,楊老師從全校30個班中隨機抽取了4個班(用A,B,C,D表示),對征集到的作鼎的數量進行了分析統(tǒng)計,制作了兩幅不完整的統(tǒng)計圖.請根據以上信息,回答下列問題:(l)楊老師采用的調查方式是______(填“普查”或“抽樣調查”);(2)請補充完整條形統(tǒng)計圖,并計算扇形統(tǒng)計圖中C班作品數量所對應的圓心角度數______.(3)請估計全校共征集作品的件數.(4)如果全枝征集的作品中有5件獲得一等獎,其中有3名作者是男生,2名作者是女生,現要在獲得一樣等獎的作者中選取兩人參加表彰座談會,請你用列表或樹狀圖的方法,求恰好選取的兩名學生性別相同的概率.25.(10分)為實施“農村留守兒童關愛計劃”,某校結全校各班留守兒童的人數情況進行了統(tǒng)計,發(fā)現各班留守兒童人數只有1名、2名、3名、4名、5名、6名共六種情況,并制成如下兩幅不完整的統(tǒng)計圖:求該校平均每班有多少名留守兒童?并將該條形統(tǒng)計圖補充完整;某愛心人士決定從只有2名留守兒童的這些班級中,任選兩名進行生活資助,請用列表法或畫樹狀圖的方法,求出所選兩名留守兒童來自同一個班級的概率.26.(12分)某中學七、八年級各選派10名選手參加知識競賽,計分采用10分制,選手得分均為整數,成績達到6分或6分以上為合格,達到9分或10分為優(yōu)秀,這次競賽后,七、八年級兩支代表隊選手成績分布的條形統(tǒng)計圖和成績統(tǒng)計分析表如下,其中七年級代表隊得6分、10分的選手人數分別為a、b.隊別平均分中位數方差合格率優(yōu)秀率七年級6.7m3.4190%n八年級7.17.51.6980%10%(1)請依據圖表中的數據,求a、b的值;(2)直接寫出表中的m、n的值;(3)有人說七年級的合格率、優(yōu)秀率均高于八年級;所以七年級隊成績比八年級隊好,但也有人說八年級隊成績比七年級隊好.請你給出兩條支持八年級隊成績好的理由.27.(12分)A,B兩地相距20km.甲、乙兩人都由A地去B地,甲騎自行車,平均速度為10km/h;乙乘汽車,平均速度為40km/h,且比甲晚1.5h出發(fā).設甲的騎行時間為x(h)(0≤x≤2)(1)根據題意,填寫下表:時間x(h)與A地的距離0.51.8_____甲與A地的距離(km)520乙與A地的距離(km)012(2)設甲,乙兩人與A地的距離為y1(km)和y2(km),寫出y1,y2關于x的函數解析式;(3)設甲,乙兩人之間的距離為y,當y=12時,求x的值.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】分析:根據乘私家車平均速度是乘公交車平均速度的2.5倍,乘坐私家車上學比乘坐公交車上學所需的時間少用了15分鐘,利用時間得出等式方程即可.詳解:設乘公交車平均每小時走x千米,根據題意可列方程為:.故選D.點睛:此題主要考查了由實際問題抽象出分式方程,解題關鍵是正確找出題目中的相等關系,用代數式表示出相等關系中的各個部分,列出方程即可.2、B【解析】試題分析:若此函數與x軸有交點,則,Δ≥0,即4-4(k-3)≥0,解得:k≤4,當k=3時,此函數為一次函數,題目要求仍然成立,故本題選B.考點:函數圖像與x軸交點的特點.3、D【解析】

根據整式的運算法則,先利用已知求出a的值,再將a的值帶入所要求解的代數式中即可得到此題答案.【詳解】解:由題意可知:,原式故選:D.【點睛】此題考查整式的混合運算,解題的關鍵在于利用整式的運算法則進行化簡求得代數式的值4、D【解析】

連接BD,可得△ADE≌△BDF,然后可證得DE=DF,AE=BF,即可得△DEF是等邊三角形,然后可證得∠ADE=∠BEF.【詳解】連接BD,∵四邊形ABCD是菱形,

∴AD=AB,∠ADB=∠ADC,AB∥CD,

∵∠A=60°,

∴∠ADC=120°,∠ADB=60°,

同理:∠DBF=60°,

即∠A=∠DBF,

∴△ABD是等邊三角形,

∴AD=BD,

∵∠ADE+∠BDE=60°,∠BDE+∠BDF=∠EDF=60°,

∴∠ADE=∠BDF,

∵在△ADE和△BDF中,,

∴△ADE≌△BDF(ASA),

∴DE=DF,AE=BF,故A正確;

∵∠EDF=60°,

∴△EDF是等邊三角形,

∴C正確;

∴∠DEF=60°,

∴∠AED+∠BEF=120°,

∵∠AED+∠ADE=180°-∠A=120°,

∴∠ADE=∠BEF;

故B正確.

∵△ADE≌△BDF,

∴AE=BF,

同理:BE=CF,

但BE不一定等于BF.

故D錯誤.

故選D.【點睛】本題考查了菱形的性質、等邊三角形的判定與性質以及全等三角形的判定與性質,解題的關鍵是正確尋找全等三角形解決問題.5、D【解析】

延長BO交圓于D,連接CD,則∠BCD=90°,∠D=∠A=60°;又BD=2R,根據銳角三角函數的定義得BC=R.【詳解】解:延長BO交⊙O于D,連接CD,則∠BCD=90°,∠D=∠A=60°,∴∠CBD=30°,∵BD=2R,∴DC=R,∴BC=R,故選D.【點睛】此題綜合運用了圓周角定理、直角三角形30°角的性質、勾股定理,注意:作直徑構造直角三角形是解決本題的關鍵.6、C【解析】

由題可知“水平底”a的長度為3,則由“矩面積”為18可知“鉛垂高”h=6,再分>2或t<1兩種情況進行求解即可.【詳解】解:由題可知a=3,則h=18÷3=6,則可知t>2或t<1.當t>2時,t-1=6,解得t=7;當t<1時,2-t=6,解得t=-4.綜上,t=-4或7.故選擇C.【點睛】本題考查了平面直角坐標系的內容,理解題意是解題關鍵.7、D【解析】

根據反比例函數圖象的性質對各選項分析判斷后利用排除法求解.【詳解】A.k=?2<0,∴它的圖象在第二、四象限,故本選項正確;B.k=?2<0,當x>0時,y隨x的增大而增大,故本選項正確;C.∵-2D.若點A(x1,y1),B(x2,y2)都在圖象上,,若x1<0<x2,則y2<y1,故本選項錯誤.故選:D.【點睛】考查了反比例函數的圖象與性質,掌握反比例函數的性質是解題的關鍵.8、D【解析】

當k+1=0時,函數為一次函數必與x軸有一個交點;當k+1≠0時,函數為二次函數,根據條件可知其判別式為0,可求得k的值.【詳解】當k-1=0,即k=1時,函數為y=-4x+4,與x軸只有一個交點;當k-1≠0,即k≠1時,由函數與x軸只有一個交點可知,∴△=(-4)2-4(k-1)×4=0,解得k=2,綜上可知k的值為1或2,故選D.【點睛】本題主要考查函數與x軸的交點,掌握二次函數與x軸只有一個交點的條件是解題的關鍵,解決本題時注意考慮一次函數和二次函數兩種情況.9、D【解析】試題分析:連接OB,∵OB=4,∴BM=2,∴OM=23,BC=故選D.考點:1正多邊形和圓;2.弧長的計算.10、D【解析】

如圖,過點C作CD⊥x軸于點D,∵點C的坐標為(3,4),∴OD=3,CD=4.∴根據勾股定理,得:OC=5.∵四邊形OABC是菱形,∴點B的坐標為(8,4).∵點B在反比例函數(x>0)的圖象上,∴.故選D.11、C【解析】

設二,三月份平均每月降價的百分率為,則二月份為,三月份為,然后再依據第三個月售價為1,列出方程求解即可.【詳解】解:設二,三月份平均每月降價的百分率為.根據題意,得=1.解得,(不合題意,舍去).答:二,三月份平均每月降價的百分率為10%【點睛】本題主要考查一元二次方程的應用,關于降價百分比的問題:若原數是a,每次降價的百分率為a,則第一次降價后為a(1-x);第二次降價后后為a(1-x)2,即:原數x(1-降價的百分率)2=后兩次數.12、B【解析】

同級運算從左向右依次計算,計算過程中注意正負符號的變化.【詳解】-故選B.【點睛】本題考查的是有理數的混合運算,熟練掌握運算法則是解題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、(4π﹣3)cm1【解析】

連接OB、OC,作OH⊥BC于H,根據圓周角定理可知∠BOC的度數,根據等邊三角形的性質可求出OB、OH的長度,利用陰影面積=S扇形OBC-S△OBC即可得答案【詳解】:連接OB、OC,作OH⊥BC于H,則BH=HC=BC=3,∵△ABC為等邊三角形,∴∠A=60°,由圓周角定理得,∠BOC=1∠A=110°,∵OB=OC,∴∠OBC=30°,∴OB==1,OH=,∴陰影部分的面積=﹣×6×=4π﹣3,故答案為:(4π﹣3)cm1.【點睛】本題主要考查圓周角定理及等邊三角形的性質,在同圓或等圓中,同弧或等弧所對的圓周角等于圓心角的一半;熟練掌握圓周角定理是解題關鍵.14、.【解析】試題解析:∵原計劃用的時間為:實際用的時間為:∴可列方程為:故答案為15、-3【解析】

作AC⊥x軸于C,BD⊥x軸于D,AE⊥BD于E點,設A點坐標為(3a,-a),則OC=-3a,AC=-a,利用勾股定理計算出OA=-2a,得到∠AOC=30°,再根據旋轉的性質得到OA=OB,∠BOD=60°,易證得Rt△OAC≌Rt△BOD,OD=AC=-a,BD=OC=-3a,于是有AE=OC-OD=-3a+a,BE=BD-AC=-3a+a,即AE=BE,則△ABE為等腰直角三角形,利用等腰直角三角形的性質得到3-=(-3a+a),求出a=1,確定A點坐標為(3,-),然后把A(3,-)代入函數y=即可得到k的值.【詳解】作AC⊥x軸與C,BD⊥x軸于D,AE⊥BD于E點,如圖,點A在直線y=-x上,可設A點坐標為(3a,-a),在Rt△OAC中,OC=-3a,AC=-a,∴OA==-2a,∴∠AOC=30°,∵直線OA繞O點順時針旋轉30°得到OB,∴OA=OB,∠BOD=60°,∴∠OBD=30°,∴Rt△OAC≌Rt△BOD,∴OD=AC=-a,BD=OC=-3a,∵四邊形ACDE為矩形,∴AE=OC-OD=-3a+a,BE=BD-AC=-3a+a,∴AE=BE,∴△ABE為等腰直角三角形,∴AB=AE,即3-=(-3a+a),解得a=1,∴A點坐標為(3,-),而點A在函數y=的圖象上,∴k=3×(-)=-3.故答案為-3.【點睛】本題是反比例函數綜合題:點在反比例函數圖象上,則點的橫縱坐標滿足其解析式;利用勾股定理、旋轉的性質以及等腰直角三角形的性質進行線段的轉換與計算.16、【解析】

首先根據算術平方根的定義計算先=2,再求2的算術平方根即可.【詳解】∵=2,∴的算術平方根為.【點睛】本題考查了算術平方根,屬于簡單題,熟悉算數平方根的概念是解題關鍵.17、1【解析】

分別算三角函數,再化簡即可.【詳解】解:原式=-2×-×=1.【點睛】本題考查掌握簡單三角函數值,較基礎.18、.【解析】

根據合數定義,用合數的個數除以數的總數即為所求的概率.【詳解】∵在1,2,3,4,5,6,7,8這八個數中,合數有4、6、8這3個,∴這個數恰好是合數的概率是.故答案為:.【點睛】本題考查了概率的求法.如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率P(A);找到合數的個數是解題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)A1(﹣1,﹣2),B1(2,﹣1);(2).【解析】

(1)根據軸對稱性質解答點關于x軸對稱橫坐標不變,縱坐標互為相反數;(2)根據旋轉變換的性質、扇形面積公式計算.【詳解】(1)如圖所示:A1(﹣1,﹣2),B1(2,﹣1);(2)將△AOB繞點O順時針旋轉90°的△A2OB2如圖所示:線段OB掃過的面積為:【點睛】此題主要考查了圖形的旋轉以及位似變換和軸對稱變換等知識,根據題意得出對應點坐標位置是解題關鍵.20、(1)y=﹣x2﹣2x+1;(2)(﹣,)【解析】

(1)將A(-1,0),B(0,1),C(1,0)三點的坐標代入y=ax2+bx+c,運用待定系數法即可求出此拋物線的解析式;(2)先證明△AOB是等腰直角三角形,得出∠BAO=45°,再證明△PDE是等腰直角三角形,則PE越大,△PDE的周長越大,再運用待定系數法求出直線AB的解析式為y=x+1,則可設P點的坐標為(x,-x2-2x+1),E點的坐標為(x,x+1),那么PE=(-x2-2x+1)-(x+1)=-(x+)2+,根據二次函數的性質可知當x=-時,PE最大,△PDE的周長也最大.將x=-代入-x2-2x+1,進而得到P點的坐標.【詳解】解:(1)∵拋物線y=ax2+bx+c經過點A(﹣1,0),B(0,1),C(1,0),∴,解得,∴拋物線的解析式為y=﹣x2﹣2x+1;(2)∵A(﹣1,0),B(0,1),∴OA=OB=1,∴△AOB是等腰直角三角形,∴∠BAO=45°.∵PF⊥x軸,∴∠AEF=90°﹣45°=45°,又∵PD⊥AB,∴△PDE是等腰直角三角形,∴PE越大,△PDE的周長越大.設直線AB的解析式為y=kx+b,則,解得,即直線AB的解析式為y=x+1.設P點的坐標為(x,﹣x2﹣2x+1),E點的坐標為(x,x+1),則PE=(﹣x2﹣2x+1)﹣(x+1)=﹣x2﹣1x=﹣(x+)2+,所以當x=﹣時,PE最大,△PDE的周長也最大.當x=﹣時,﹣x2﹣2x+1=﹣(﹣)2﹣2×(﹣)+1=,即點P坐標為(﹣,)時,△PDE的周長最大.【點睛】本題是二次函數的綜合題型,其中涉及到的知識點有運用待定系數法求二次函數、一次函數的解析式,等腰直角三角形的判定與性質,二次函數的性質,三角形的周長,綜合性較強,難度適中.21、(1)本次一共調查了200名購買者;(2)補全的條形統(tǒng)計圖見解析,A種支付方式所對應的圓心角為108;(3)使用A和B兩種支付方式的購買者共有928名.【解析】分析:(1)根據B的數量和所占的百分比可以求得本次調查的購買者的人數;(2)根據統(tǒng)計圖中的數據可以求得選擇A和D的人數,從而可以將條形統(tǒng)計圖補充完整,求得在扇形統(tǒng)計圖中A種支付方式所對應的圓心角的度數;(3)根據統(tǒng)計圖中的數據可以計算出使用A和B兩種支付方式的購買者共有多少名.詳解:(1)56÷28%=200,即本次一共調查了200名購買者;(2)D方式支付的有:200×20%=40(人),A方式支付的有:200-56-44-40=60(人),補全的條形統(tǒng)計圖如圖所示,在扇形統(tǒng)計圖中A種支付方式所對應的圓心角為:360°×=108°,(3)1600×=928(名),答:使用A和B兩種支付方式的購買者共有928名.點睛:本題考查扇形統(tǒng)計圖、條形統(tǒng)計圖、用樣本估計總體,解答本題的關鍵是明確題意,利用數形結合的思想解答.22、(1)60,90°;(2)補圖見解析;(3)300;(4).【解析】分析:(1)根據了解很少的人數除以了解很少的人數所占的百分百求出抽查的總人數,再用“基本了解”所占的百分比乘以360°,即可求出“基本了解”部分所對應扇形的圓心角的度數;(2)用調查的總人數減去“基本了解”“了解很少”和“基本了解”的人數,求出了解的人數,從而補全統(tǒng)計圖;(3)用總人數乘以“了解”和“基本了解”程度的人數所占的比例,即可求出達到“了解”和“基本了解”程度的總人數;(4)根據題意列出表格,再根據概率公式即可得出答案.詳解:(1)60;90°.(2)補全的條形統(tǒng)計圖如圖所示.(3)對食品安全知識達到“了解”和“基本了解”的學生所占比例為,由樣本估計總體,該中學學生中對食品安全知識達到“了解”和“基本了解”程度的總人數為.(4)列表法如表所示,男生男生女生女生男生男生男生男生女生男生女生男生男生男生男生女生男生女生女生男生女生男生女生女生女生女生男生女生男生女生女生女生所有等可能的情況一共12種,其中選中1個男生和1個女生的情況有8種,所以恰好選中1個男生和1個女生的概率是.點睛:本題考查了條形統(tǒng)計圖、扇形統(tǒng)計圖以及用列表法或樹狀圖法求概率,根據題意求出總人數是解題的關鍵;注意運用概率公式:概率=所求情況數與總情況數之比.23、(1)100,35;(2)補全圖形,如圖;(3)800人【解析】

(1)由共享單車人數及其百分比求得總人數m,用支付寶人數除以總人數可得百分比n的值;(2)總人數乘以網購人數的百分比可得其人數,用微信人數除以總人數求得百分比即可補全兩個圖形;(3)總人數乘以樣本中微信人數所占的百分比可得答案.【詳解】解:(1)∵被調查總人數為m=10÷10%=100人,∴用支付寶人數所占百分比n%=,∴m=100,n=35.(2)網購人數為100×15%=15人,微信人數所占百分比為,補全圖形如圖:(3)估算全校2000名學生中,最認可“微信”這一新生事物的人數為2000×40%=800人.【點睛】本題考查條形統(tǒng)計圖和扇形統(tǒng)計圖的信息關聯(lián)問題,樣本估計總體問題,從不同的統(tǒng)計圖得到必要的信息是解決問題的關鍵.24、(1)抽樣調查(2)150°(3)180件(4)【解析】分析:(1)楊老師從全校30個班中隨機抽取了4個班,屬于抽樣調查.(2)由題意得:所調查的4個班征集到的作品數為:6÷=24(件),C班作品的件數為:24-4-6-4=10(件);繼而可補全條形統(tǒng)計圖;(3)先求出抽取的4個班每班平均征集的數量,再乘以班級總數可得;(4)首先根據題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與兩名學生性別相同的情況,再利用概率公式即可求得答案.詳解:(1)楊老師從全校30個班中隨機抽取了4個班,屬于抽樣調查.故答案為抽樣調查.(2)所調查的4個班征集到的作品數為:6÷=24件,C班有24﹣(4+6+4)=10件,補全條形圖如圖所示,扇形統(tǒng)計圖中C班作品數量所對應的圓心角度數360°×=150°;故答案為150°;(3)∵平均每個班=6件,∴估計全校共征集作品6×30=180件.(4)畫樹狀圖得:∵共有20種等可能的結果,兩名學生性別相同的有8種情況,∴恰好選取的兩名學生性別相同的概率為.點睛:本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論