![山東省青島開發(fā)區(qū)一中2025屆高三4月高考測試數(shù)學(xué)試題理試題含解析_第1頁](http://file4.renrendoc.com/view7/M00/24/16/wKhkGWbJTfWANBuPAAHCkLznmm8358.jpg)
![山東省青島開發(fā)區(qū)一中2025屆高三4月高考測試數(shù)學(xué)試題理試題含解析_第2頁](http://file4.renrendoc.com/view7/M00/24/16/wKhkGWbJTfWANBuPAAHCkLznmm83582.jpg)
![山東省青島開發(fā)區(qū)一中2025屆高三4月高考測試數(shù)學(xué)試題理試題含解析_第3頁](http://file4.renrendoc.com/view7/M00/24/16/wKhkGWbJTfWANBuPAAHCkLznmm83583.jpg)
![山東省青島開發(fā)區(qū)一中2025屆高三4月高考測試數(shù)學(xué)試題理試題含解析_第4頁](http://file4.renrendoc.com/view7/M00/24/16/wKhkGWbJTfWANBuPAAHCkLznmm83584.jpg)
![山東省青島開發(fā)區(qū)一中2025屆高三4月高考測試數(shù)學(xué)試題理試題含解析_第5頁](http://file4.renrendoc.com/view7/M00/24/16/wKhkGWbJTfWANBuPAAHCkLznmm83585.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
山東省青島開發(fā)區(qū)一中2025屆高三4月高考測試數(shù)學(xué)試題理試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知平面向量,滿足,,且,則()A.3 B. C. D.52.若復(fù)數(shù)滿足,則的虛部為()A.5 B. C. D.-53.的展開式中的項的系數(shù)為()A.120 B.80 C.60 D.404.我國古代數(shù)學(xué)著作《九章算術(shù)》中有如下問題:“今有器中米,不知其數(shù),前人取半,中人三分取一,后人四分取一,余米一斗五升(注:一斗為十升).問,米幾何?”下圖是解決該問題的程序框圖,執(zhí)行該程序框圖,若輸出的S=15(單位:升),則輸入的k的值為()?A.45 B.60 C.75 D.1005.已知的內(nèi)角、、的對邊分別為、、,且,,為邊上的中線,若,則的面積為()A. B. C. D.6.已知圓:,圓:,點(diǎn)、分別是圓、圓上的動點(diǎn),為軸上的動點(diǎn),則的最大值是()A. B.9 C.7 D.7.羽毛球混合雙打比賽每隊由一男一女兩名運(yùn)動員組成.某班級從名男生,,和名女生,,中各隨機(jī)選出兩名,把選出的人隨機(jī)分成兩隊進(jìn)行羽毛球混合雙打比賽,則和兩人組成一隊參加比賽的概率為()A. B. C. D.8.函數(shù)(且)的圖象可能為()A. B. C. D.9.已知,,那么是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件10.定義在R上的偶函數(shù)滿足,且在區(qū)間上單調(diào)遞減,已知是銳角三角形的兩個內(nèi)角,則的大小關(guān)系是()A. B.C. D.以上情況均有可能11.設(shè),則()A. B. C. D.12.已知是虛數(shù)單位,若,則()A. B.2 C. D.3二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線,點(diǎn)為拋物線上一動點(diǎn),過點(diǎn)作圓的切線,切點(diǎn)分別為,則線段長度的取值范圍為__________.14.的展開式中,項的系數(shù)是__________.15.過直線上一點(diǎn)作圓的兩條切線,切點(diǎn)分別為,,則的最小值是______.16.已知,,,,則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某大型公司為了切實保障員工的健康安全,貫徹好衛(wèi)生防疫工作的相關(guān)要求,決定在全公司范圍內(nèi)舉行一次普查,為此需要抽驗1000人的血樣進(jìn)行化驗,由于人數(shù)較多,檢疫部門制定了下列兩種可供選擇的方案.方案①:將每個人的血分別化驗,這時需要驗1000次.方案②:按個人一組進(jìn)行隨機(jī)分組,把從每組個人抽來的血混合在一起進(jìn)行檢驗,如果每個人的血均為陰性,則驗出的結(jié)果呈陰性,這個人的血只需檢驗一次(這時認(rèn)為每個人的血化驗次);否則,若呈陽性,則需對這個人的血樣再分別進(jìn)行一次化驗,這樣,該組個人的血總共需要化驗次.假設(shè)此次普查中每個人的血樣化驗呈陽性的概率為,且這些人之間的試驗反應(yīng)相互獨(dú)立.(1)設(shè)方案②中,某組個人的每個人的血化驗次數(shù)為,求的分布列;(2)設(shè),試比較方案②中,分別取2,3,4時,各需化驗的平均總次數(shù);并指出在這三種分組情況下,相比方案①,化驗次數(shù)最多可以平均減少多少次?(最后結(jié)果四舍五入保留整數(shù))18.(12分)如圖所示,在四棱錐中,∥,,點(diǎn)分別為的中點(diǎn).(1)證明:∥面;(2)若,且,面面,求二面角的余弦值.19.(12分)設(shè)函數(shù).(1)解不等式;(2)記的最大值為,若實數(shù)、、滿足,求證:.20.(12分)已知等比數(shù)列,其公比,且滿足,和的等差中項是1.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)若,是數(shù)列的前項和,求使成立的正整數(shù)的值.21.(12分)若關(guān)于的方程的兩根都大于2,求實數(shù)的取值范圍.22.(10分)在中,a,b,c分別是角A,B,C的對邊,并且.(1)已知_______________,計算的面積;請①,②,③這三個條件中任選兩個,將問題(1)補(bǔ)充完整,并作答.注意,只需選擇其中的一種情況作答即可,如果選擇多種情況作答,以第一種情況的解答計分.(2)求的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
先求出,再利用求出,再求.【詳解】解:由,所以,,,故選:B考查向量的數(shù)量積及向量模的運(yùn)算,是基礎(chǔ)題.2.C【解析】
把已知等式變形,再由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡得答案.【詳解】由(1+i)z=|3+4i|,得z,∴z的虛部為.故選C.本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的基本概念,是基礎(chǔ)題.3.A【解析】
化簡得到,再利用二項式定理展開得到答案.【詳解】展開式中的項為.故選:本題考查了二項式定理,意在考查學(xué)生的計算能力.4.B【解析】
根據(jù)程序框圖中程序的功能,可以列方程計算.【詳解】由題意,.故選:B.本題考查程序框圖,讀懂程序的功能是解題關(guān)鍵.5.B【解析】
延長到,使,連接,則四邊形為平行四邊形,根據(jù)余弦定理可求出,進(jìn)而可得的面積.【詳解】解:延長到,使,連接,則四邊形為平行四邊形,則,,,在中,則,得,.故選:B.本題考查余弦定理的應(yīng)用,考查三角形面積公式的應(yīng)用,其中根據(jù)中線作出平行四邊形是關(guān)鍵,是中檔題.6.B【解析】試題分析:圓的圓心,半徑為,圓的圓心,半徑是.要使最大,需最大,且最小,最大值為的最小值為,故最大值是;關(guān)于軸的對稱點(diǎn),,故的最大值為,故選B.考點(diǎn):圓與圓的位置關(guān)系及其判定.【思路點(diǎn)睛】先根據(jù)兩圓的方程求出圓心和半徑,要使最大,需最大,且最小,最大值為的最小值為,故最大值是,再利用對稱性,求出所求式子的最大值.7.B【解析】
根據(jù)組合知識,計算出選出的人分成兩隊混合雙打的總數(shù)為,然后計算和分在一組的數(shù)目為,最后簡單計算,可得結(jié)果.【詳解】由題可知:分別從3名男生、3名女生中選2人:將選中2名女生平均分為兩組:將選中2名男生平均分為兩組:則選出的人分成兩隊混合雙打的總數(shù)為:和分在一組的數(shù)目為所以所求的概率為故選:B本題考查排列組合的綜合應(yīng)用,對平均分組的問題要掌握公式,比如:平均分成組,則要除以,即,審清題意,細(xì)心計算,考驗分析能力,屬中檔題.8.D【解析】因為,故函數(shù)是奇函數(shù),所以排除A,B;取,則,故選D.考點(diǎn):1.函數(shù)的基本性質(zhì);2.函數(shù)的圖象.9.B【解析】
由,可得,解出即可判斷出結(jié)論.【詳解】解:因為,且.,解得.是的必要不充分條件.故選:.本題考查了向量數(shù)量積運(yùn)算性質(zhì)、三角函數(shù)求值、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于基礎(chǔ)題.10.B【解析】
由已知可求得函數(shù)的周期,根據(jù)周期及偶函數(shù)的對稱性可求在上的單調(diào)性,結(jié)合三角函數(shù)的性質(zhì)即可比較.【詳解】由可得,即函數(shù)的周期,因為在區(qū)間上單調(diào)遞減,故函數(shù)在區(qū)間上單調(diào)遞減,根據(jù)偶函數(shù)的對稱性可知,在上單調(diào)遞增,因為,是銳角三角形的兩個內(nèi)角,所以且即,所以即,.故選:.本題主要考查函數(shù)值的大小比較,根據(jù)函數(shù)奇偶性和單調(diào)性之間的關(guān)系是解決本題的關(guān)鍵.11.C【解析】試題分析:,.故C正確.考點(diǎn):復(fù)合函數(shù)求值.12.A【解析】
直接將兩邊同時乘以求出復(fù)數(shù),再求其模即可.【詳解】解:將兩邊同時乘以,得故選:A考查復(fù)數(shù)的運(yùn)算及其模的求法,是基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
連接,易得,可得四邊形的面積為,從而可得,進(jìn)而求出的取值范圍,可求得的范圍.【詳解】如圖,連接,易得,所以四邊形的面積為,且四邊形的面積為三角形面積的兩倍,所以,所以,當(dāng)最小時,最小,設(shè)點(diǎn),則,所以當(dāng)時,,則,當(dāng)點(diǎn)的橫坐標(biāo)時,,此時,因為隨著的增大而增大,所以的取值范圍為.故答案為:.本題考查直線與圓的位置關(guān)系的應(yīng)用,考查拋物線上的動點(diǎn)到定點(diǎn)的距離的求法,考查學(xué)生的計算求解能力,屬于中檔題.14.240【解析】
利用二項式展開式的通項公式,令x的指數(shù)等于3,計算展開式中含有項的系數(shù)即可.【詳解】由題意得:,只需,可得,代回原式可得,故答案:240.本題主要考查二項式展開式的通項公式及簡單應(yīng)用,相對不難.15.【解析】
由切線的性質(zhì),可知,切由直角三角形PAO,PBO,即可設(shè),進(jìn)而表示,由圖像觀察可知進(jìn)而求出x的范圍,再用的式子表示,整理后利用換元法與雙勾函數(shù)求出最小值.【詳解】由題可知,,設(shè),由切線的性質(zhì)可知,則顯然,則或(舍去)因為令,則,由雙勾函數(shù)單調(diào)性可知其在區(qū)間上單調(diào)遞增,所以故答案為:本題考查在以直線與圓的位置關(guān)系為背景下求向量數(shù)量積的最值問題,應(yīng)用函數(shù)形式表示所求式子,進(jìn)而利用分析函數(shù)單調(diào)性或基本不等式求得最值,屬于較難題.16.【解析】
由已知利用同角三角函數(shù)的基本關(guān)系式可求得,的值,由兩角差的正弦公式即可計算得的值.【詳解】,,,,,,,,.故答案為:本題主要考查了同角三角函數(shù)的基本關(guān)系、兩角差的正弦公式,需熟記公式,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)分布列見解析;(2)406.【解析】
(1)計算個人的血混合后呈陰性反應(yīng)的概率為,呈陽性反應(yīng)的概率為,得到分布列.(2)計算,代入數(shù)據(jù)計算比較大小得到答案.【詳解】(1)設(shè)每個人的血呈陰性反應(yīng)的概率為,則.所以個人的血混合后呈陰性反應(yīng)的概率為,呈陽性反應(yīng)的概率為.依題意可知,,所以的分布列為:(2)方案②中.結(jié)合(1)知每個人的平均化驗次數(shù)為:時,,此時1000人需要化驗的總次數(shù)為690次,時,,此時1000人需要化驗的總次數(shù)為604次,時,,此時1000人需要化驗的次數(shù)總為594次,即時化驗次數(shù)最多,時次數(shù)居中,時化驗次數(shù)最少,而采用方案①則需化驗1000次,故在這三種分組情況下,相比方案①,當(dāng)時化驗次數(shù)最多可以平均減少次.本題考查了分布列,數(shù)學(xué)期望,意在考查學(xué)生的計算能力和應(yīng)用能力.18.(1)證明見解析(2)【解析】
(1)根據(jù)題意,連接交于,連接,利用三角形全等得,進(jìn)而可得結(jié)論;(2)建立空間直角坐標(biāo)系,利用向量求得平面的法向量,進(jìn)而可得二面角的余弦值.【詳解】(1)證明:連接交于,連接,,≌,且,面面,面,(2)取中點(diǎn),連,.由,面面面,又由,以分別為軸建立如圖所示空間直角坐標(biāo)系,設(shè),則,,,,,,為面的一個法向量,設(shè)面的法向量為,依題意,即,令,解得,所以,平面的法向量,,又因二面角為銳角,故二面角的余弦值為.本題考查直線與平面平行的證明,考查二面角的余弦值的求法,解題時要認(rèn)真審題,注意中位線和向量法的合理運(yùn)用,屬于基礎(chǔ)題.19.(1)(2)證明見解析【解析】
(1)采用零點(diǎn)分段法:、、,由此求解出不等式的解集;(2)先根據(jù)絕對值不等式的幾何意義求解出的值,然后利用基本不等式及其變形完成證明.【詳解】(1)當(dāng)時,不等式為,解得當(dāng)時,不等式為,解得當(dāng)時,不等式為,解得∴原不等式的解集為(2)當(dāng)且僅當(dāng)即時取等號,∴,∴∵,∴,∴(當(dāng)且僅當(dāng)時取“”)同理可得,∴∴(當(dāng)且僅當(dāng)時取“”)本題考查絕對值不等式的解法以及利用基本不等式證明不等式,難度一般.(1)常見的絕對值不等式解法:零點(diǎn)分段法、圖象法、幾何意義法;(2)利用基本不等式完成證明時,注意說明取等號的條件.20.(Ⅰ).(Ⅱ).【解析】
(Ⅰ)由等差數(shù)列中項性質(zhì)和等比數(shù)列的通項公式,解方程可得首項和公比,可得所求通項公式;(Ⅱ),由數(shù)列的錯位相減法求和可得,解方程可得所求值.【詳解】(Ⅰ)等比數(shù)列,其公比,且滿足,和的等差中項是即有,解得:(Ⅱ)由(Ⅰ)知:則相減可得:化簡可得:,即為解得:本題考查等比數(shù)列的通項公式和求和公式的運(yùn)用,考查數(shù)列的錯位相減法求和,以及方程思想和運(yùn)算能力,屬于中檔題.21.【解析】
先令,根據(jù)題中條件得到,求解,即可得出結(jié)果.【詳解】因為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 蘇教版二年級下冊數(shù)學(xué)口算練習(xí)題
- 視頻會議系統(tǒng)合同范本
- 網(wǎng)絡(luò)布線及設(shè)備采購合同范本
- 安全協(xié)議書范本及員工責(zé)任書
- 滬科版數(shù)學(xué)九年級上冊22.3《相似三角形的性質(zhì)》聽評課記錄1
- 二零二五年度校園消毒防疫應(yīng)急預(yù)案合同
- 北師大版歷史七年級上冊第19課《北方的民族匯聚》聽課評課記錄
- 2025年子女撫養(yǎng)權(quán)變更法律援助與協(xié)議書模板
- 2025年度醫(yī)療事故快速調(diào)解專項協(xié)議
- 二零二五年度倉儲物流租賃合同電子版模板即點(diǎn)即用
- T∕CMATB 9002-2021 兒童肉類制品通用要求
- 工序勞務(wù)分包管理課件
- 暖通空調(diào)(陸亞俊編)課件
- 工藝評審報告
- 中國滑雪運(yùn)動安全規(guī)范
- 畢業(yè)論文-基于51單片機(jī)的智能LED照明燈的設(shè)計
- 酒廠食品召回制度
- DG-TJ 08-2343-2020 大型物流建筑消防設(shè)計標(biāo)準(zhǔn)
- 中職數(shù)學(xué)基礎(chǔ)模塊上冊第一章《集合》單元檢測試習(xí)題及參考答案
- 化學(xué)魯科版必修一期末復(fù)習(xí)98頁P(yáng)PT課件
- 《農(nóng)產(chǎn)品質(zhì)量安全檢測》PPT課件
評論
0/150
提交評論