新高考數(shù)學(xué)二輪復(fù)習(xí)培優(yōu)專題31 圓錐曲線大題綜合 (解析版)_第1頁
新高考數(shù)學(xué)二輪復(fù)習(xí)培優(yōu)專題31 圓錐曲線大題綜合 (解析版)_第2頁
新高考數(shù)學(xué)二輪復(fù)習(xí)培優(yōu)專題31 圓錐曲線大題綜合 (解析版)_第3頁
新高考數(shù)學(xué)二輪復(fù)習(xí)培優(yōu)專題31 圓錐曲線大題綜合 (解析版)_第4頁
新高考數(shù)學(xué)二輪復(fù)習(xí)培優(yōu)專題31 圓錐曲線大題綜合 (解析版)_第5頁
已閱讀5頁,還剩44頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

試卷第=page11頁,共=sectionpages33頁專題31圓錐曲線大題綜合1.(2023春·江蘇揚(yáng)州·高三統(tǒng)考開學(xué)考試)已知SKIPIF1<0為拋物線SKIPIF1<0的弦,點(diǎn)SKIPIF1<0在拋物線的準(zhǔn)線SKIPIF1<0上.當(dāng)SKIPIF1<0過拋物線焦點(diǎn)SKIPIF1<0且長度為SKIPIF1<0時,SKIPIF1<0中點(diǎn)SKIPIF1<0到SKIPIF1<0軸的距離為SKIPIF1<0.(1)求拋物線SKIPIF1<0的方程;(2)若SKIPIF1<0為直角,求證:直線SKIPIF1<0過定點(diǎn).【答案】(1)SKIPIF1<0(2)證明見解析【分析】(1)利用拋物線弦長公式,以及中點(diǎn)到SKIPIF1<0軸的距離公式,計(jì)算出SKIPIF1<0即可;(2)先設(shè)SKIPIF1<0,直線SKIPIF1<0的方程:SKIPIF1<0,聯(lián)立方程組,由韋達(dá)定理可得SKIPIF1<0,又因?yàn)镾KIPIF1<0為直角可得SKIPIF1<0,化簡求解可得SKIPIF1<0,所以得出直線過定點(diǎn)SKIPIF1<0.【詳解】(1)設(shè)SKIPIF1<0,則由題意得SKIPIF1<0,解得SKIPIF1<0,所以拋物線的方程為SKIPIF1<0(2)直線SKIPIF1<0過定點(diǎn)SKIPIF1<0,證明如下:設(shè)SKIPIF1<0,直線SKIPIF1<0的方程:SKIPIF1<0,將SKIPIF1<0代入SKIPIF1<0得SKIPIF1<0,則SKIPIF1<0,得SKIPIF1<0,由韋達(dá)定理可得SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,所以直線SKIPIF1<0過定點(diǎn)SKIPIF1<0.2.(2023·江蘇泰州·統(tǒng)考一模)已知雙曲線SKIPIF1<0的左頂點(diǎn)為SKIPIF1<0,過左焦點(diǎn)SKIPIF1<0的直線與SKIPIF1<0交于SKIPIF1<0兩點(diǎn).當(dāng)SKIPIF1<0軸時,SKIPIF1<0,SKIPIF1<0的面積為3.(1)求SKIPIF1<0的方程;(2)證明:以SKIPIF1<0為直徑的圓經(jīng)過定點(diǎn).【答案】(1)SKIPIF1<0(2)證明見解析【分析】(1)根據(jù)題意,可得SKIPIF1<0,SKIPIF1<0,進(jìn)而求解;(2)設(shè)SKIPIF1<0方程為SKIPIF1<0,SKIPIF1<0,聯(lián)立直線和雙曲線方程組,可得SKIPIF1<0,以SKIPIF1<0為直徑的圓的方程為SKIPIF1<0,由對稱性知以SKIPIF1<0為直徑的圓必過SKIPIF1<0軸上的定點(diǎn),進(jìn)而得到SKIPIF1<0,進(jìn)而求解.【詳解】(1)當(dāng)SKIPIF1<0軸時,SKIPIF1<0兩點(diǎn)的橫坐標(biāo)均為SKIPIF1<0,代入雙曲線方程,可得SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,由題意,可得SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0雙曲線SKIPIF1<0的方程為:SKIPIF1<0;(2)方法一:設(shè)SKIPIF1<0方程為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0以SKIPIF1<0為直徑的圓的方程為SKIPIF1<0,SKIPIF1<0由對稱性知以SKIPIF1<0為直徑的圓必過SKIPIF1<0軸上的定點(diǎn),令SKIPIF1<0,可得SKIPIF1<0,而SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0對SKIPIF1<0恒成立,SKIPIF1<0,SKIPIF1<0以SKIPIF1<0為直徑的圓經(jīng)過定點(diǎn)SKIPIF1<0;方法二:設(shè)SKIPIF1<0方程為SKIPIF1<0,SKIPIF1<0由對稱性知以SKIPIF1<0為直徑的圓必過SKIPIF1<0軸上的定點(diǎn).設(shè)以SKIPIF1<0為直徑的圓過SKIPIF1<0,SKIPIF1<0,而SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0對SKIPIF1<0恒成立,SKIPIF1<0,即以SKIPIF1<0為直徑的圓經(jīng)過定點(diǎn)SKIPIF1<0.3.(2023秋·浙江紹興·高三期末)在平面直角坐標(biāo)系SKIPIF1<0中,已知點(diǎn)SKIPIF1<0,直線PA與直線PB的斜率之積為SKIPIF1<0,記動點(diǎn)P的軌跡為曲線C.(1)求曲線C的方程;(2)若直線SKIPIF1<0與曲線C交于M,N兩點(diǎn),直線MA,NB與y軸分別交于E,F(xiàn)兩點(diǎn),若SKIPIF1<0,求證:直線l過定點(diǎn).【答案】(1)SKIPIF1<0(2)證明見解析【分析】(1)設(shè)P點(diǎn)坐標(biāo)為SKIPIF1<0,由SKIPIF1<0可得結(jié)果;(2)設(shè)SKIPIF1<0,聯(lián)立SKIPIF1<0,得SKIPIF1<0和SKIPIF1<0,再求出SKIPIF1<0的坐標(biāo),根據(jù)SKIPIF1<0得SKIPIF1<0,從而可得結(jié)果.【詳解】(1)設(shè)P點(diǎn)坐標(biāo)為SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,所以曲線C的方程為SKIPIF1<0.(2)設(shè)SKIPIF1<0,由SKIPIF1<0,消去SKIPIF1<0并整理得SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0對任意SKIPIF1<0都成立,SKIPIF1<0,故直線l過定點(diǎn)SKIPIF1<0.4.(2023秋·浙江·高三期末)已知點(diǎn)SKIPIF1<0是雙曲線SKIPIF1<0上一點(diǎn),B與A關(guān)于原點(diǎn)對稱,F(xiàn)是右焦點(diǎn),SKIPIF1<0.(1)求雙曲線的方程;(2)已知圓心在y軸上的圓C經(jīng)過點(diǎn)SKIPIF1<0,與雙曲線的右支交于點(diǎn)M,N,且直線SKIPIF1<0經(jīng)過F,求圓C的方程.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【分析】(1)由已知條件列方程求出SKIPIF1<0,即可求出雙曲線的方程;(2)討論直線SKIPIF1<0的斜率不存在時不滿足題意;當(dāng)斜率存在時設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,聯(lián)立雙曲線的方程,由韋達(dá)定理求出SKIPIF1<0的中點(diǎn)Q的坐標(biāo)以及SKIPIF1<0的坐標(biāo),根據(jù)勾股定理有SKIPIF1<0,代入解方程即可得出答案.【詳解】(1)由已知條件得:SKIPIF1<0雙曲線方程為:SKIPIF1<0.(2)若直線SKIPIF1<0的斜率不存在,則圓C的圓心不在y軸上,因此不成立.設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,由SKIPIF1<0消元得:SKIPIF1<0SKIPIF1<0∴SKIPIF1<0的中點(diǎn)Q的坐標(biāo)為SKIPIF1<0.設(shè)SKIPIF1<0,直線SKIPIF1<0,得SKIPIF1<0,又SKIPIF1<0,根據(jù)勾股定理有SKIPIF1<0∴SKIPIF1<0.化簡得SKIPIF1<0解得SKIPIF1<0或SKIPIF1<0(舍)∴SKIPIF1<0,∴圓C的方程為SKIPIF1<0.5.(2023春·廣東揭陽·高三校考階段練習(xí))已知拋物線SKIPIF1<0的焦點(diǎn)為F,點(diǎn)F關(guān)于直線SKIPIF1<0的對稱點(diǎn)恰好在y軸上.(1)求拋物線E的標(biāo)準(zhǔn)方程;(2)直線SKIPIF1<0與拋物線E交于A,B兩點(diǎn),線段AB的垂直平分線與x軸交于點(diǎn)C,若SKIPIF1<0,求SKIPIF1<0的最大值.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【分析】(1)由題意得SKIPIF1<0,設(shè)F關(guān)于直線SKIPIF1<0的對稱點(diǎn)為SKIPIF1<0,根據(jù)題意列出方程組,解之即可求解;(2)將直線方程與拋物線方程聯(lián)立,利用韋達(dá)定理和弦長公式,并求得線段AB的垂直平分線方程為SKIPIF1<0,進(jìn)而得到SKIPIF1<0,利用函數(shù)的單調(diào)性即可求解.【詳解】(1)由題意得SKIPIF1<0,設(shè)F關(guān)于直線SKIPIF1<0的對稱點(diǎn)為SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,∴拋物線E的標(biāo)準(zhǔn)方程為SKIPIF1<0.(2)由SKIPIF1<0可得SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴線段AB的中點(diǎn)坐標(biāo)為SKIPIF1<0,則線段AB的垂直平分線方程為SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,故SKIPIF1<0,又SKIPIF1<0,得SKIPIF1<0.∴SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,易知函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,∴當(dāng)SKIPIF1<0時,SKIPIF1<0取得最小值,此時SKIPIF1<0,故SKIPIF1<0的最大值為SKIPIF1<0.6.(2023·湖南邵陽·統(tǒng)考二模)已知雙曲線SKIPIF1<0的右頂點(diǎn)為SKIPIF1<0,左焦點(diǎn)SKIPIF1<0到其漸近線SKIPIF1<0的距離為2,斜率為SKIPIF1<0的直線SKIPIF1<0交雙曲線SKIPIF1<0于A,B兩點(diǎn),且SKIPIF1<0.(1)求雙曲線SKIPIF1<0的方程;(2)過點(diǎn)SKIPIF1<0的直線SKIPIF1<0與雙曲線SKIPIF1<0交于P,Q兩點(diǎn),直線SKIPIF1<0,SKIPIF1<0分別與直線SKIPIF1<0相交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),試問:以線段SKIPIF1<0為直徑的圓是否過定點(diǎn)?若過定點(diǎn),求出定點(diǎn)的坐標(biāo);若不過定點(diǎn),請說明理由.【答案】(1)SKIPIF1<0(2)以線段SKIPIF1<0為直徑的圓過定點(diǎn)SKIPIF1<0和SKIPIF1<0.【分析】(1)根據(jù)點(diǎn)到直線的距離公式即可求解SKIPIF1<0,進(jìn)而聯(lián)立直線與雙曲線方程,根據(jù)弦長公式即可求解SKIPIF1<0,(2)聯(lián)立直線與曲線的方程得韋達(dá)定理,根據(jù)圓的對稱性可判斷若有定點(diǎn)則在SKIPIF1<0軸上,進(jìn)而根據(jù)垂直關(guān)系得向量的坐標(biāo)運(yùn)算,即可求解.【詳解】(1)∵雙曲線SKIPIF1<0的左焦點(diǎn)SKIPIF1<0到雙曲線SKIPIF1<0的一條漸近線SKIPIF1<0的距離為SKIPIF1<0,而SKIPIF1<0,∴SKIPIF1<0.∴雙曲線SKIPIF1<0的方程為SKIPIF1<0.依題意直線SKIPIF1<0的方程為SKIPIF1<0.由SKIPIF1<0消去y整理得:SKIPIF1<0,依題意:SKIPIF1<0,SKIPIF1<0,點(diǎn)A,B的橫坐標(biāo)分別為SKIPIF1<0,則SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0.∴SKIPIF1<0,∴SKIPIF1<0.即SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍去),且SKIPIF1<0時,SKIPIF1<0,∴雙曲線SKIPIF1<0的方程為SKIPIF1<0.(2)依題意直線SKIPIF1<0的斜率不等于0,設(shè)直線SKIPIF1<0的方程為SKIPIF1<0.由SKIPIF1<0消去SKIPIF1<0整理得:SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0.設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0.直線SKIPIF1<0的方程為SKIPIF1<0,令SKIPIF1<0得:SKIPIF1<0,∴SKIPIF1<0.同理可得SKIPIF1<0.由對稱性可知,若以線段SKIPIF1<0為直徑的圓過定點(diǎn),則該定點(diǎn)一定在SKIPIF1<0軸上,設(shè)該定點(diǎn)為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.解得SKIPIF1<0或SKIPIF1<0.故以線段SKIPIF1<0為直徑的圓過定點(diǎn)SKIPIF1<0和SKIPIF1<0.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:本題解題的關(guān)鍵是根據(jù)圓的對稱性可判斷定點(diǎn)在坐標(biāo)軸上,結(jié)合向量垂直的坐標(biāo)運(yùn)算化簡求解就可,對計(jì)算能力要求較高.7.(2023春·湖南長沙·高三雅禮中學(xué)??茧A段練習(xí))定義:一般地,當(dāng)SKIPIF1<0且SKIPIF1<0時,我們把方程SKIPIF1<0表示的橢圓SKIPIF1<0稱為橢圓SKIPIF1<0的相似橢圓.(1)如圖,已知SKIPIF1<0為SKIPIF1<0上的動點(diǎn),延長SKIPIF1<0至點(diǎn)SKIPIF1<0,使得SKIPIF1<0的垂直平分線與SKIPIF1<0交于點(diǎn)SKIPIF1<0,記點(diǎn)SKIPIF1<0的軌跡為曲線SKIPIF1<0,求SKIPIF1<0的方程;(2)在條件(1)下,已知橢圓SKIPIF1<0是橢圓SKIPIF1<0的相似橢圓,SKIPIF1<0是橢圓SKIPIF1<0的左?右頂點(diǎn).點(diǎn)SKIPIF1<0是SKIPIF1<0上異于四個頂點(diǎn)的任意一點(diǎn),當(dāng)SKIPIF1<0(SKIPIF1<0為曲線SKIPIF1<0的離心率)時,設(shè)直線SKIPIF1<0與橢圓SKIPIF1<0交于點(diǎn)SKIPIF1<0,直線SKIPIF1<0與橢圓SKIPIF1<0交于點(diǎn)SKIPIF1<0,求SKIPIF1<0的值.【答案】(1)SKIPIF1<0(2)5【分析】(1)由圖可知SKIPIF1<0是SKIPIF1<0的中位線,由此可得SKIPIF1<0長為定值,因?yàn)辄c(diǎn)SKIPIF1<0在SKIPIF1<0的垂直平分線上,所以SKIPIF1<0,根據(jù)橢圓定義求解析式即可;(2)假設(shè)出點(diǎn)SKIPIF1<0坐標(biāo),表示直線SKIPIF1<0與直線SKIPIF1<0的斜率,并找出兩斜率關(guān)系,最后表示出兩直線方程,分別與橢圓C聯(lián)立方程,利用弦長公式和韋達(dá)定理求出SKIPIF1<0的值.【詳解】(1)連接SKIPIF1<0,易知SKIPIF1<0且SKIPIF1<0,SKIPIF1<0,又點(diǎn)SKIPIF1<0在SKIPIF1<0的垂直平分線上,SKIPIF1<0,SKIPIF1<0,滿足橢圓定義,SKIPIF1<0,SKIPIF1<0曲線SKIPIF1<0的方程為SKIPIF1<0.(2)由(1)知橢圓SKIPIF1<0方程為SKIPIF1<0,則離心率SKIPIF1<0,SKIPIF1<0楄圓SKIPIF1<0的標(biāo)準(zhǔn)方程為SKIPIF1<0,設(shè)SKIPIF1<0為橢圓SKIPIF1<0異于四個頂點(diǎn)的任意一點(diǎn),直線SKIPIF1<0斜率SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0.設(shè)直線SKIPIF1<0的斜率為SKIPIF1<0,則直線SKIPIF1<0的斜率為SKIPIF1<0.SKIPIF1<0直線SKIPIF1<0為SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,同理可得SKIPIF1<0,SKIPIF1<0.8.(2023·湖北武漢·統(tǒng)考模擬預(yù)測)過坐標(biāo)原點(diǎn)SKIPIF1<0作圓SKIPIF1<0的兩條切線,設(shè)切點(diǎn)為SKIPIF1<0,直線SKIPIF1<0恰為拋物SKIPIF1<0的準(zhǔn)線.(1)求拋物線SKIPIF1<0的標(biāo)準(zhǔn)方程;(2)設(shè)點(diǎn)SKIPIF1<0是圓SKIPIF1<0上的動點(diǎn),拋物線SKIPIF1<0上四點(diǎn)SKIPIF1<0滿足:SKIPIF1<0,設(shè)SKIPIF1<0中點(diǎn)為SKIPIF1<0.(i)求直線SKIPIF1<0的斜率;(ii)設(shè)SKIPIF1<0面積為SKIPIF1<0,求SKIPIF1<0的最大值.【答案】(1)SKIPIF1<0(2)(i)0;(ii)48【分析】(1)設(shè)直線SKIPIF1<0與SKIPIF1<0軸交于SKIPIF1<0,由幾何性質(zhì)易得:SKIPIF1<0,即可解決;(2)設(shè)SKIPIF1<0,(i)中,由于SKIPIF1<0中點(diǎn)SKIPIF1<0在拋物線SKIPIF1<0上,得SKIPIF1<0,將SKIPIF1<0,代入聯(lián)立得SKIPIF1<0點(diǎn)縱坐標(biāo)為SKIPIF1<0,即可解決;(ⅱ)由(i)得點(diǎn)SKIPIF1<0,SKIPIF1<0,又點(diǎn)SKIPIF1<0在圓SKIPIF1<0上,得SKIPIF1<0,可得:SKIPIF1<0即可解決.【詳解】(1)設(shè)直線SKIPIF1<0與SKIPIF1<0軸交于SKIPIF1<0.由幾何性質(zhì)易得:SKIPIF1<0與SKIPIF1<0相似,所以SKIPIF1<0,SKIPIF1<0,即:SKIPIF1<0,解得:SKIPIF1<0.所以拋物線SKIPIF1<0的標(biāo)準(zhǔn)方程為:SKIPIF1<0.(2)設(shè)SKIPIF1<0(i)由題意,SKIPIF1<0中點(diǎn)SKIPIF1<0在拋物線SKIPIF1<0上,即SKIPIF1<0,又SKIPIF1<0,將SKIPIF1<0代入,得:SKIPIF1<0,同理:SKIPIF1<0,有SKIPIF1<0,此時SKIPIF1<0點(diǎn)縱坐標(biāo)為SKIPIF1<0,所以直線SKIPIF1<0的斜率為0.(ⅱ)因?yàn)镾KIPIF1<0,所以點(diǎn)SKIPIF1<0,此時SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,又因?yàn)辄c(diǎn)SKIPIF1<0在圓SKIPIF1<0上,有SKIPIF1<0,即SKIPIF1<0,代入上式可得:SKIPIF1<0,由SKIPIF1<0,所以SKIPIF1<0時,SKIPIF1<0取到最大價SKIPIF1<0.所以SKIPIF1<0的最大值為48.9.(2023·山東·濰坊一中校聯(lián)考模擬預(yù)測)已知SKIPIF1<0為拋物線SKIPIF1<0的焦點(diǎn),SKIPIF1<0為坐標(biāo)原點(diǎn),SKIPIF1<0為SKIPIF1<0的準(zhǔn)線SKIPIF1<0上的一點(diǎn),直線SKIPIF1<0的斜率為SKIPIF1<0的面積為1.(1)求SKIPIF1<0的方程;(2)過點(diǎn)SKIPIF1<0作一條直線SKIPIF1<0,交SKIPIF1<0于SKIPIF1<0兩點(diǎn),試問在SKIPIF1<0上是否存在定點(diǎn)SKIPIF1<0,使得直線SKIPIF1<0與SKIPIF1<0的斜率之和等于直線SKIPIF1<0斜率的平方?若存在,求出點(diǎn)SKIPIF1<0的坐標(biāo);若不存在,請說明理由.【答案】(1)SKIPIF1<0(2)存在,SKIPIF1<0或SKIPIF1<0【分析】(1)設(shè)點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,根據(jù)直線SKIPIF1<0的斜率為SKIPIF1<0,得到SKIPIF1<0,再根據(jù)SKIPIF1<0的面積為SKIPIF1<0求出SKIPIF1<0,即可得解;(2)假設(shè)存在點(diǎn)SKIPIF1<0,使得直線SKIPIF1<0與SKIPIF1<0的斜率之和等于直線SKIPIF1<0斜率的平方.設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,聯(lián)立直線與拋物線方程,消元列出韋達(dá)定理,又SKIPIF1<0,SKIPIF1<0,化簡SKIPIF1<0,即可得到方程,求出SKIPIF1<0的值,即可得解.【詳解】(1)解:由題意知SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,則直線SKIPIF1<0的斜率為SKIPIF1<0.因?yàn)橹本€SKIPIF1<0的斜率為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0的面積SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍去),故拋物線SKIPIF1<0的方程為SKIPIF1<0.(2)解:假設(shè)存在點(diǎn)SKIPIF1<0,使得直線SKIPIF1<0與SKIPIF1<0的斜率之和等于直線SKIPIF1<0斜率的平方.由(1)得SKIPIF1<0,拋物線SKIPIF1<0的準(zhǔn)線SKIPIF1<0的方程為SKIPIF1<0.設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,聯(lián)立SKIPIF1<0得SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.因?yàn)镾KIPIF1<0,SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0.故存在定點(diǎn)SKIPIF1<0,使得直線SKIPIF1<0與SKIPIF1<0的斜率之和等于直線SKIPIF1<0斜率的平方,其坐標(biāo)為SKIPIF1<0或SKIPIF1<0.10.(2023·山東菏澤·統(tǒng)考一模)如圖,橢圓SKIPIF1<0的焦點(diǎn)分別為SKIPIF1<0為橢圓SKIPIF1<0上一點(diǎn),SKIPIF1<0的面積最大值為SKIPIF1<0.(1)求橢圓SKIPIF1<0的方程;(2)若SKIPIF1<0分別為橢圓SKIPIF1<0的上?下頂點(diǎn),不垂直坐標(biāo)軸的直線SKIPIF1<0交橢圓SKIPIF1<0于SKIPIF1<0(SKIPIF1<0在上方,SKIPIF1<0在下方,且均不與SKIPIF1<0點(diǎn)重合)兩點(diǎn),直線SKIPIF1<0的斜率分別為SKIPIF1<0,且SKIPIF1<0,求SKIPIF1<0面積的最大值.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【分析】(1)根據(jù)條件,得到關(guān)于SKIPIF1<0的方程,即可得到結(jié)果;(2)根據(jù)題意設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,聯(lián)立直線與橢圓方程,結(jié)合韋達(dá)定理,再由SKIPIF1<0列出方程,代入計(jì)算,即可得到結(jié)果.【詳解】(1)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故橢圓的方程為SKIPIF1<0;(2)依題意設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,SKIPIF1<0,聯(lián)立方程組SKIPIF1<0,消元得:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0得:SKIPIF1<0,兩邊同除SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0;將SKIPIF1<0代入上式得:SKIPIF1<0整理得:SKIPIF1<0所以SKIPIF1<0或SKIPIF1<0(舍),SKIPIF1<0SKIPIF1<0SKIPIF1<0當(dāng)SKIPIF1<0時等號成立,滿足條件,所以SKIPIF1<0面積的最大值為SKIPIF1<0.11.(2023·福建泉州·統(tǒng)考三模)已知橢圓SKIPIF1<0的左、右頂點(diǎn)分別為A,B.直線l與C相切,且與圓SKIPIF1<0交于M,N兩點(diǎn),M在N的左側(cè).(1)若SKIPIF1<0,求l的斜率;(2)記直線SKIPIF1<0的斜率分別為SKIPIF1<0,證明:SKIPIF1<0為定值.【答案】(1)SKIPIF1<0;(2)證明過程見解析.【分析】(1)根據(jù)圓弦長公式,結(jié)合點(diǎn)到直線距離公式、橢圓切線的性質(zhì)進(jìn)行求解即可;(2)根據(jù)直線斜率公式,結(jié)合一元二次方程根與系數(shù)關(guān)系進(jìn)行求解即可.【詳解】(1)當(dāng)直線l不存在斜率時,方程為SKIPIF1<0,顯然與圓也相切,不符合題意,設(shè)直線l的斜率為SKIPIF1<0,方程為SKIPIF1<0,與橢圓方程聯(lián)立,得SKIPIF1<0,因?yàn)橹本€l與C相切,所以有SKIPIF1<0,圓SKIPIF1<0的圓心坐標(biāo)為SKIPIF1<0,半徑為SKIPIF1<0,圓心SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0,因?yàn)镾KIPIF1<0,所以有SKIPIF1<0;(2)SKIPIF1<0,由SKIPIF1<0,設(shè)SKIPIF1<0,則有SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,把SKIPIF1<0,SKIPIF1<0代入上式,得SKIPIF1<0,而SKIPIF1<0,所以SKIPIF1<0.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:利用一元二次方程根與系數(shù)關(guān)系,結(jié)合橢圓切線的性質(zhì)進(jìn)行求解是解題的關(guān)鍵.12.(2023·江蘇南通·統(tǒng)考模擬預(yù)測)已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0三個點(diǎn)在橢圓SKIPIF1<0,橢圓外一點(diǎn)SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,(SKIPIF1<0為坐標(biāo)原點(diǎn)).(1)求SKIPIF1<0的值;(2)證明:直線SKIPIF1<0與SKIPIF1<0斜率之積為定值.【答案】(1)SKIPIF1<0(2)證明見解析【分析】(1)設(shè)SKIPIF1<0,根據(jù)向量關(guān)系用SKIPIF1<0表示SKIPIF1<0,代入橢圓方程即可求解;(2)用SKIPIF1<0表示SKIPIF1<0,代入斜率公式即可求解.【詳解】(1)設(shè)SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0解得SKIPIF1<0,又因?yàn)镾KIPIF1<0,所以SKIPIF1<0解得SKIPIF1<0,因?yàn)辄c(diǎn)SKIPIF1<0在橢圓上,所以SKIPIF1<0,即SKIPIF1<0.(2)設(shè)直線SKIPIF1<0與SKIPIF1<0斜率分別為SKIPIF1<0,SKIPIF1<0SKIPIF1<0是定值.13.(2023·浙江嘉興·統(tǒng)考模擬預(yù)測)已知拋物線SKIPIF1<0,過焦點(diǎn)SKIPIF1<0的直線交拋物線SKIPIF1<0于SKIPIF1<0,SKIPIF1<0兩點(diǎn),且SKIPIF1<0.(1)求拋物線SKIPIF1<0的方程;(2)若點(diǎn)SKIPIF1<0,直線SKIPIF1<0,SKIPIF1<0分別交準(zhǔn)線SKIPIF1<0于SKIPIF1<0,SKIPIF1<0兩點(diǎn),證明:以線段SKIPIF1<0為直徑的圓過定點(diǎn).【答案】(1)SKIPIF1<0(2)證明見解析【分析】(1)設(shè)SKIPIF1<0,聯(lián)立拋物線方程,由根與系數(shù)的關(guān)系及拋物線的定義,根據(jù)SKIPIF1<0建立方程求出SKIPIF1<0得解;(2)由直線方程求出SKIPIF1<0的坐標(biāo),計(jì)算SKIPIF1<0,設(shè)SKIPIF1<0是以線段SKIPIF1<0為直徑的圓上任意一點(diǎn),根據(jù)SKIPIF1<0化簡SKIPIF1<0,根據(jù)對稱性令SKIPIF1<0可得解.【詳解】(1)設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則聯(lián)立SKIPIF1<0得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0由SKIPIF1<0得SKIPIF1<0,即SKIPIF1<0所以SKIPIF1<0,化簡得SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,所以拋物線SKIPIF1<0的方程為SKIPIF1<0.(2)由(1)知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,易得SKIPIF1<0,SKIPIF1<0,由題意知SKIPIF1<0,SKIPIF1<0,所以令SKIPIF1<0得SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0設(shè)SKIPIF1<0是以線段SKIPIF1<0為直徑的圓上得任意一點(diǎn),則有SKIPIF1<0,即SKIPIF1<0,由對稱性令SKIPIF1<0得SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0所以以線段SKIPIF1<0為直徑的圓經(jīng)過定點(diǎn),定點(diǎn)坐標(biāo)為SKIPIF1<0與SKIPIF1<0.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:求出SKIPIF1<0的點(diǎn)的坐標(biāo),計(jì)算出SKIPIF1<0為定值SKIPIF1<0,是解題的關(guān)鍵之一,其次寫出以SKIPIF1<0為直徑的圓的方程,根據(jù)圓的方程SKIPIF1<0,由對稱性,令SKIPIF1<0求定點(diǎn)是解題的關(guān)鍵.14.(2023·江蘇連云港·統(tǒng)考模擬預(yù)測)已知橢圓E:SKIPIF1<0的焦距為SKIPIF1<0,且經(jīng)過點(diǎn)SKIPIF1<0.(1)求橢圓E的標(biāo)準(zhǔn)方程:(2)過橢圓E的左焦點(diǎn)SKIPIF1<0作直線l與橢圓E相交于A,B兩點(diǎn)(點(diǎn)A在x軸上方),過點(diǎn)A,B分別作橢圓的切線,兩切線交于點(diǎn)M,求SKIPIF1<0的最大值.【答案】(1)SKIPIF1<0(2)2【分析】(1)由待定系數(shù)法求解析式;(2)設(shè)出直線方程,由韋達(dá)定理法及導(dǎo)數(shù)法求得兩切線方程,即可聯(lián)立兩切線方程解得交點(diǎn)M,再由弦長公式及兩點(diǎn)距離公式表示出SKIPIF1<0,進(jìn)而討論最值.【詳解】(1)由題意得SKIPIF1<0,所以SKIPIF1<0,即橢圓方程為SKIPIF1<0;(2)當(dāng)直線l斜率為0時,A,B分別為橢圓的左右頂點(diǎn),此時切線平行無交點(diǎn).故設(shè)直線l:SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.SKIPIF1<0SKIPIF1<0不妨設(shè)SKIPIF1<0在x軸上方,則SKIPIF1<0在x軸下方.橢圓在x軸上方對應(yīng)方程為SKIPIF1<0,SKIPIF1<0,則A處切線斜率為SKIPIF1<0,得切線方程為SKIPIF1<0,整理得SKIPIF1<0.同理可得B處的切線方程為SKIPIF1<0.由SKIPIF1<0得SKIPIF1<0SKIPIF1<0,代入①得SKIPIF1<0,所以SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0設(shè)SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0的最大值是2.另解:當(dāng)直線l的斜率存在時,設(shè)l:SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0橢圓在x軸上方的部分方程為SKIPIF1<0,SKIPIF1<0,則過SKIPIF1<0的切線方程為SKIPIF1<0,即SKIPIF1<0,同理可得過SKIPIF1<0的切線方程為SKIPIF1<0.由SKIPIF1<0得SKIPIF1<0設(shè)SKIPIF1<0,則SKIPIF1<0,所以直線l的方程為SKIPIF1<0,所以SKIPIF1<0.SKIPIF1<0,SKIPIF1<0令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,當(dāng)SKIPIF1<0時,即SKIPIF1<0時,SKIPIF1<0取得最大值,為2.【點(diǎn)睛】直線與圓錐曲線問題,一般設(shè)出直線,聯(lián)立直線與圓錐曲線方程,結(jié)合韋達(dá)定理表示出所求的內(nèi)容,進(jìn)而進(jìn)行進(jìn)一步討論.15.(2023春·江蘇常州·高三校聯(lián)考開學(xué)考試)已知點(diǎn)SKIPIF1<0在橢圓SKIPIF1<0上,SKIPIF1<0的長軸長為SKIPIF1<0,直線SKIPIF1<0與SKIPIF1<0交于SKIPIF1<0兩點(diǎn),直線SKIPIF1<0的斜率之積為SKIPIF1<0.(1)求證:SKIPIF1<0為定值;(2)若直線SKIPIF1<0與SKIPIF1<0軸交于點(diǎn)SKIPIF1<0,求SKIPIF1<0的值.【答案】(1)證明見解析(2)SKIPIF1<0【分析】(1)根據(jù)題意求出橢圓方程為SKIPIF1<0,將橢圓,及相關(guān)直線、點(diǎn)進(jìn)行平移,將SKIPIF1<0看作方程SKIPIF1<0的兩不等實(shí)根,進(jìn)而可得SKIPIF1<0,代入直線方程化簡即可;(2)聯(lián)立直線與橢圓方程,結(jié)合韋達(dá)定理得SKIPIF1<0,化簡SKIPIF1<0,代入韋達(dá)定理即可求解.【詳解】(1)由題意知SKIPIF1<0橢圓方程為SKIPIF1<0.將橢圓平移至SKIPIF1<0即SKIPIF1<0,此時SKIPIF1<0點(diǎn)平移至SKIPIF1<0分別平移至SKIPIF1<0,設(shè)直線SKIPIF1<0方程為SKIPIF1<0代入橢圓SKIPIF1<0,整理得SKIPIF1<0,兩邊同除以SKIPIF1<0SKIPIF1<0,SKIPIF1<0令SKIPIF1<0,則SKIPIF1<0可看作關(guān)于SKIPIF1<0的一元二次方程,SKIPIF1<0的兩不等實(shí)根,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0直線SKIPIF1<0方程為SKIPIF1<0,SKIPIF1<0的斜率為定值SKIPIF1<0,即SKIPIF1<0的定值SKIPIF1<0.(2)設(shè)SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<016.(2023春·江蘇蘇州·高三統(tǒng)考開學(xué)考試)已知拋物線SKIPIF1<0的焦點(diǎn)也是離心率為SKIPIF1<0的橢圓SKIPIF1<0的一個焦點(diǎn)F.(1)求拋物線與橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)過F的直線SKIPIF1<0交拋物線于A、B,交橢圓于C、D,且A在B左側(cè),C在D左側(cè),A在C左側(cè).設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.①當(dāng)SKIPIF1<0時,是否存在直線l,使得a,b,c成等差數(shù)列?若存在,求出直線l的方程;若不存在,說明理由;②若存在直線SKIPIF1<0,使得a,b,c成等差數(shù)列,求SKIPIF1<0的范圍.【答案】(1)拋物線的標(biāo)準(zhǔn)方程是SKIPIF1<0,橢圓的標(biāo)準(zhǔn)方程為SKIPIF1<0(2)①不存在,理由見解析;②SKIPIF1<0【分析】(1)根據(jù)相同焦點(diǎn)得到SKIPIF1<0,解得SKIPIF1<0,得到答案.(2)設(shè)l:SKIPIF1<0和各點(diǎn)坐標(biāo),聯(lián)立方程利用韋達(dá)定理得到根與系數(shù)的關(guān)系,計(jì)算SKIPIF1<0,SKIPIF1<0,根據(jù)等差數(shù)列的性質(zhì)得到方程,方程無解得到答案;整理得到SKIPIF1<0,解不等式即可.【詳解】(1)拋物線的焦點(diǎn)SKIPIF1<0,橢圓的焦點(diǎn)SKIPIF1<0,由于SKIPIF1<0,即SKIPIF1<0,則有SKIPIF1<0,因此SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故橢圓的標(biāo)準(zhǔn)方程為SKIPIF1<0,拋物線的標(biāo)準(zhǔn)方程是SKIPIF1<0.(2)①設(shè)l:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,將直線與拋物線聯(lián)立,則有SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,于是SKIPIF1<0,將直線與橢圓聯(lián)立,則有SKIPIF1<0,得到二次方程SKIPIF1<0,SKIPIF1<0,則有SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,假設(shè)存在直線l,使得a,b,c成等差數(shù)列,即SKIPIF1<0即有SKIPIF1<0,整理得到SKIPIF1<0,方程無解,因此不存在l滿足題設(shè).②只需使得方程SKIPIF1<0有解即可.整理得到SKIPIF1<0,故SKIPIF1<0,解得SKIPIF1<0【點(diǎn)睛】關(guān)鍵點(diǎn)睛:本題考查了拋物線和橢圓的標(biāo)準(zhǔn)方程,等差數(shù)列性質(zhì),直線和拋物線,橢圓的位置關(guān)系,意在考查學(xué)生的計(jì)算能力,轉(zhuǎn)化能力和綜合應(yīng)用能力,其中,利用韋達(dá)定理得到根與系數(shù)的關(guān)系,根據(jù)設(shè)而不求的思想,可以簡化運(yùn)算,是解題的關(guān)鍵,需要熟練掌握.17.(2023秋·江蘇無錫·高三統(tǒng)考期末)已知橢圓SKIP

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論