版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2021-2022高考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知半徑為2的球內(nèi)有一個內(nèi)接圓柱,若圓柱的高為2,則球的體積與圓柱的體積的比為()A. B. C. D.2.已知函數(shù)與的圖象有一個橫坐標為的交點,若函數(shù)的圖象的縱坐標不變,橫坐標變?yōu)樵瓉淼谋逗?,得到的函?shù)在有且僅有5個零點,則的取值范圍是()A. B.C. D.3.設直線的方程為,圓的方程為,若直線被圓所截得的弦長為,則實數(shù)的取值為A.或11 B.或11 C. D.4.隨著人民生活水平的提高,對城市空氣質(zhì)量的關注度也逐步增大,下圖是某城市月至月的空氣質(zhì)量檢測情況,圖中一、二、三、四級是空氣質(zhì)量等級,一級空氣質(zhì)量最好,一級和二級都是質(zhì)量合格天氣,下面敘述不正確的是()A.1月至8月空氣合格天數(shù)超過天的月份有個B.第二季度與第一季度相比,空氣達標天數(shù)的比重下降了C.8月是空氣質(zhì)量最好的一個月D.6月份的空氣質(zhì)量最差.5.函數(shù)(且)的圖象可能為()A. B. C. D.6.公元263年左右,我國數(shù)學家劉徽發(fā)現(xiàn)當圓內(nèi)接正多邊形的邊數(shù)無限增加時,多邊形面積可無限逼近圓的面積,并創(chuàng)立了“割圓術”,利用“割圓術”劉徽得到了圓周率精確到小數(shù)點后兩位的近似值,這就是著名的“徽率”。如圖是利用劉徽的“割圓術”思想設計的一個程序框圖,則輸出的值為()(參考數(shù)據(jù):)A.48 B.36 C.24 D.127.已知函數(shù),若,則下列不等關系正確的是()A. B.C. D.8.已知拋物線和點,直線與拋物線交于不同兩點,,直線與拋物線交于另一點.給出以下判斷:①直線與直線的斜率乘積為;②軸;③以為直徑的圓與拋物線準線相切.其中,所有正確判斷的序號是()A.①②③ B.①② C.①③ D.②③9.已知等比數(shù)列的前項和為,且滿足,則的值是()A. B. C. D.10.已知向量,,,若,則()A. B. C. D.11.正三棱柱中,,是的中點,則異面直線與所成的角為()A. B. C. D.12.如圖所示,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則該幾何體的體積是()A. B. C. D.8二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標系中,雙曲線的一條準線與兩條漸近線所圍成的三角形的面積為______.14.已知數(shù)列滿足,,若,則數(shù)列的前n項和______.15.四面體中,底面,,,則四面體的外接球的表面積為______16.設點P在函數(shù)的圖象上,點Q在函數(shù)的圖象上,則線段PQ長度的最小值為_________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在三角形中,角,,的對邊分別為,,,若.(Ⅰ)求角;(Ⅱ)若,,求.18.(12分)已知三棱錐中側面與底面都是邊長為2的等邊三角形,且面面,分別為線段的中點.為線段上的點,且.(1)證明:為線段的中點;(2)求二面角的余弦值.19.(12分)在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足bcosA﹣asinB=1.(1)求A;(2)已知a=2,B=,求△ABC的面積.20.(12分)某校共有學生2000人,其中男生900人,女生1100人,為了調(diào)查該校學生每周平均體育鍛煉時間,采用分層抽樣的方法收集該校100名學生每周平均體育鍛煉時間(單位:小時).(1)應抽查男生與女生各多少人?(2)根據(jù)收集100人的樣本數(shù)據(jù),得到學生每周平均體育鍛煉時間的頻率分布表:時間(小時)[0,1](1,2](2,3](3,4](4,5](5,6]頻率0.050.200.300.250.150.05若在樣本數(shù)據(jù)中有38名男學生平均每周課外體育鍛煉時間超過2小時,請完成每周平均體育鍛煉時間與性別的列聯(lián)表,并判斷是否有95%的把握認為“該校學生的每周平均體育鍛煉時間與性別有關”?男生女生總計每周平均體育鍛煉時間不超過2小時每周平均體育鍛煉時間超過2小時總計附:K2.P(K2≥k0)0.1000.0500.0100.0052.7063.8416.6357.87921.(12分)在直角坐標系中,曲線的參數(shù)方程為:(其中為參數(shù)),直線的參數(shù)方程為(其中為參數(shù))(1)以坐標原點為極點,軸的正半軸為極軸建立極坐標系,求曲線的極坐標方程;(2)若曲線與直線交于兩點,點的坐標為,求的值.22.(10分)如圖1,在等腰梯形中,兩腰,底邊,,,是的三等分點,是的中點.分別沿,將四邊形和折起,使,重合于點,得到如圖2所示的幾何體.在圖2中,,分別為,的中點.(1)證明:平面.(2)求直線與平面所成角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
分別求出球和圓柱的體積,然后可得比值.【詳解】設圓柱的底面圓半徑為,則,所以圓柱的體積.又球的體積,所以球的體積與圓柱的體積的比,故選D.【點睛】本題主要考查幾何體的體積求解,側重考查數(shù)學運算的核心素養(yǎng).2.A【解析】
根據(jù)題意,,求出,所以,根據(jù)三角函數(shù)圖像平移伸縮,即可求出的取值范圍.【詳解】已知與的圖象有一個橫坐標為的交點,則,,,,,若函數(shù)圖象的縱坐標不變,橫坐標變?yōu)樵瓉淼谋叮瑒t,所以當時,,在有且僅有5個零點,,.故選:A.【點睛】本題考查三角函數(shù)圖象的性質(zhì)、三角函數(shù)的平移伸縮以及零點個數(shù)問題,考查轉化思想和計算能力.3.A【解析】
圓的圓心坐標為(1,1),該圓心到直線的距離,結合弦長公式得,解得或,故選A.4.D【解析】由圖表可知月空氣質(zhì)量合格天氣只有天,月份的空氣質(zhì)量最差.故本題答案選.5.D【解析】因為,故函數(shù)是奇函數(shù),所以排除A,B;取,則,故選D.考點:1.函數(shù)的基本性質(zhì);2.函數(shù)的圖象.6.C【解析】
由開始,按照框圖,依次求出s,進行判斷?!驹斀狻?,故選C.【點睛】框圖問題,依據(jù)框圖結構,依次準確求出數(shù)值,進行判斷,是解題關鍵。7.B【解析】
利用函數(shù)的單調(diào)性得到的大小關系,再利用不等式的性質(zhì),即可得答案.【詳解】∵在R上單調(diào)遞增,且,∴.∵的符號無法判斷,故與,與的大小不確定,對A,當時,,故A錯誤;對C,當時,,故C錯誤;對D,當時,,故D錯誤;對B,對,則,故B正確.故選:B.【點睛】本題考查分段函數(shù)的單調(diào)性、不等式性質(zhì)的運用,考查函數(shù)與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,屬于基礎題.8.B【解析】
由題意,可設直線的方程為,利用韋達定理判斷第一個結論;將代入拋物線的方程可得,,從而,,進而判斷第二個結論;設為拋物線的焦點,以線段為直徑的圓為,則圓心為線段的中點.設,到準線的距離分別為,,的半徑為,點到準線的距離為,顯然,,三點不共線,進而判斷第三個結論.【詳解】解:由題意,可設直線的方程為,代入拋物線的方程,有.設點,的坐標分別為,,則,.所.則直線與直線的斜率乘積為.所以①正確.將代入拋物線的方程可得,,從而,,根據(jù)拋物線的對稱性可知,,兩點關于軸對稱,所以直線軸.所以②正確.如圖,設為拋物線的焦點,以線段為直徑的圓為,則圓心為線段的中點.設,到準線的距離分別為,,的半徑為,點到準線的距離為,顯然,,三點不共線,則.所以③不正確.故選:B.【點睛】本題主要考查拋物線的定義與幾何性質(zhì)、直線與拋物線的位置關系等基礎知識,考查運算求解能力、推理論證能力和創(chuàng)新意識,考查數(shù)形結合思想、化歸與轉化思想,屬于難題.9.C【解析】
利用先求出,然后計算出結果.【詳解】根據(jù)題意,當時,,,故當時,,數(shù)列是等比數(shù)列,則,故,解得,故選.【點睛】本題主要考查了等比數(shù)列前項和的表達形式,只要求出數(shù)列中的項即可得到結果,較為基礎.10.A【解析】
根據(jù)向量坐標運算求得,由平行關系構造方程可求得結果.【詳解】,,解得:故選:【點睛】本題考查根據(jù)向量平行關系求解參數(shù)值的問題,涉及到平面向量的坐標運算;關鍵是明確若兩向量平行,則.11.C【解析】
取中點,連接,,根據(jù)正棱柱的結構性質(zhì),得出//,則即為異面直線與所成角,求出,即可得出結果.【詳解】解:如圖,取中點,連接,,由于正三棱柱,則底面,而底面,所以,由正三棱柱的性質(zhì)可知,為等邊三角形,所以,且,所以平面,而平面,則,則//,,∴即為異面直線與所成角,設,則,,,則,∴.故選:C.【點睛】本題考查通過幾何法求異面直線的夾角,考查計算能力.12.A【解析】
由三視圖還原出原幾何體,得出幾何體的結構特征,然后計算體積.【詳解】由三視圖知原幾何體是一個四棱錐,四棱錐底面是邊長為2的正方形,高為2,直觀圖如圖所示,.故選:A.【點睛】本題考查三視圖,考查棱錐的體積公式,掌握基本幾何體的三視圖是解題關鍵.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
求出雙曲線的漸近線方程,求出準線方程,求出三角形的頂點的坐標,然后求解面積.【詳解】解:雙曲線:雙曲線中,,,則雙曲線的一條準線方程為,雙曲線的漸近線方程為:,可得準線方程與雙曲線的兩條漸近線所圍成的三角形的頂點的坐標,,,,則三角形的面積為.故答案為:【點睛】本題考查雙曲線方程的應用,雙曲線的簡單性質(zhì)的應用,考查計算能力,屬于中檔題.14.【解析】
,求得的通項,進而求得,得通項公式,利用等比數(shù)列求和即可.【詳解】由題為等差數(shù)列,∴,∴,∴,∴,故答案為【點睛】本題考查求等差數(shù)列數(shù)列通項,等比數(shù)列求和,熟記等差等比性質(zhì),熟練運算是關鍵,是基礎題.15.【解析】
由題意畫出圖形,補形為長方體,求其對角線長,可得四面體外接球的半徑,則表面積可求.【詳解】解:如圖,在四面體中,底面,,,可得,補形為長方體,則過一個頂點的三條棱長分別為1,1,,則長方體的對角線長為,則三棱錐的外接球的半徑為1.其表面積為.故答案為:.【點睛】本題考查多面體外接球表面積的求法,補形是關鍵,屬于中檔題.16.【解析】
由解析式可分析兩函數(shù)互為反函數(shù),則圖象關于對稱,則點到的距離的最小值的二倍即為所求,利用導函數(shù)即可求得最值.【詳解】由題,因為與互為反函數(shù),則圖象關于對稱,設點為,則到直線的距離為,設,則,令,即,所以當時,,即單調(diào)遞減;當時,,即單調(diào)遞增,所以,則,所以的最小值為,故答案為:【點睛】本題考查反函數(shù)的性質(zhì)的應用,考查利用導函數(shù)研究函數(shù)的最值問題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(Ⅰ)(Ⅱ)8【解析】
(Ⅰ)由余弦定理可得,即可求出A,(Ⅱ)根據(jù)同角的三角函數(shù)的關系和兩角和的正弦公式和正弦定理即可求出.【詳解】(Ⅰ)由余弦定理,所以,所以,即,因為,所以;(Ⅱ)因為,所以,因為,,由正弦定理得,所以.【點睛】本題考查利用正弦定理與余弦定理解三角形,屬于簡單題.18.(1)見解析;(2)【解析】
(1)設為中點,連結,先證明,可證得,假設不為線段的中點,可得平面,這與矛盾,即得證;(2)以為原點,以分別為軸建立空間直角坐標系,分別求解平面,平面的法向量的法向量,利用二面角的向量公式,即得解.【詳解】(1)設為中點,連結.∴,,又平面,平面,∴.又分別為中點,,又,∴.假設不為線段的中點,則與是平面內(nèi)內(nèi)的相交直線,從而平面,這與矛盾,所以為線段的中點.(2)以為原點,由條件面面,∴,以分別為軸建立空間直角坐標系,則,,,,,,.設平面的法向量為所以取,則,.同法可求得平面的法向量為∴,由圖知二面角為銳二面角,二面角的余弦值為.【點睛】本題考查了立體幾何與空間向量綜合,考查了學生邏輯推理,空間想象,數(shù)學運算的能力,屬于中檔題.19.(1);(2).【解析】
(1)由正弦定理化簡已知等式可得sinBcosA﹣sinAsinB=1,結合sinB>1,可求tanA=,結合范圍A∈(1,π),可得A的值;(2)由已知可求C=,可求b的值,根據(jù)三角形的面積公式即可計算得解.【詳解】(1)∵bcosA﹣asinB=1.∴由正弦定理可得:sinBcosA﹣sinAsinB=1,∵sinB>1,∴cosA=sinA,∴tanA=,∵A∈(1,π),∴A=;(2)∵a=2,B=,A=,∴C=,根據(jù)正弦定理得到∴b=6,∴S△ABC=ab==6.【點睛】本題主要考查了正弦定理,三角形的面積公式在解三角形中的綜合應用,考查了計算能力和轉化思想,屬于基礎題.20.(1)男生人數(shù)為人,女生人數(shù)55人.(2)列聯(lián)表答案見解析,有95%的把握認為“該校學生的每周平均體育鍛煉時間與性別有關.【解析】
(1)求出男女比例,按比例分配即可;(2)根據(jù)題意結合頻率分布表,先求出二聯(lián)表中數(shù)值,再結合公式計算,利用表格數(shù)據(jù)對比判斷即可【詳解】(1)因為男生人數(shù):女生人數(shù)=900:1100=9:11,所以男生人數(shù)為,女生人數(shù)100﹣45=55人,(2)由頻率頻率直方圖可知學生每周平均體育鍛煉時間超過2小時的人數(shù)為:(1×0.3+1×0.25+1×0.15+1×0.05)×100=75人,每周平均體育鍛煉時間超過2小時的女生人數(shù)為37人,聯(lián)表如下:男生女生總計每周平均體育鍛煉時間不超過2小時71825每周平均體育鍛煉時間超過2小時383775總計
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中國禮儀課件教學課件
- 開學課件模板教學課件
- 灌腸護理課件教學課件
- 2024年農(nóng)用搬運機械項目資金籌措計劃書代可行性研究報告
- 精神病醫(yī)院藥劑科相關
- 3.2.3酸堿中和滴定 課件高二上學期化學人教版(2019)選擇性必修1
- DB1304T 480-2024商品煤采樣技術規(guī)范
- 社團的活動部部門介紹
- 靜脈輸液治療在臨床中的應用
- 白血病飲食宣教
- 教育研究方法觀察設計案例
- (2024年)消防安全主題班會
- 工程量清單及招標控制價編制服務采購服務方案
- 導游業(yè)務復習題庫
- 做情緒的主人拒絕精神內(nèi)耗
- 藥學大學生職業(yè)規(guī)劃
- 心理放松訓練
- 客戶需求及層次
- 海綿城市完整
- 力敏傳感器教學課件
- 強奸罪起訴狀
評論
0/150
提交評論