版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023-2024學(xué)年株洲市重點中學(xué)中考聯(lián)考數(shù)學(xué)試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.若函數(shù)y=kx﹣b的圖象如圖所示,則關(guān)于x的不等式k(x﹣3)﹣b>0的解集為()A.x<2 B.x>2 C.x<5 D.x>52.下列說法正確的是()A.某工廠質(zhì)檢員檢測某批燈泡的使用壽命采用普查法B.已知一組數(shù)據(jù)1,a,4,4,9,它的平均數(shù)是4,則這組數(shù)據(jù)的方差是7.6C.12名同學(xué)中有兩人的出生月份相同是必然事件D.在“等邊三角形、正方形、等腰梯形、矩形、正六邊形、正五邊形”中,任取其中一個圖形,恰好既是中心對稱圖形,又是軸對稱圖形的概率是3.一列動車從A地開往B地,一列普通列車從B地開往A地,兩車同時出發(fā),設(shè)普通列車行駛的時間為x(小時),兩車之間的距離為y(千米),如圖中的折線表示y與x之間的函數(shù)關(guān)系.下列敘述錯誤的是()A.AB兩地相距1000千米B.兩車出發(fā)后3小時相遇C.動車的速度為D.普通列車行駛t小時后,動車到達終點B地,此時普通列車還需行駛千米到達A地4.如圖,菱形ABCD的對角線相交于點O,過點D作DE∥AC,且DE=AC,連接CE、OE,連接AE,交OD于點F,若AB=2,∠ABC=60°,則AE的長為()A. B. C. D.5.如圖,在直角坐標系中,有兩點A(6,3)、B(6,0).以原點O為位似中心,相似比為,在第一象限內(nèi)把線段AB縮小后得到線段CD,則點C的坐標為()A.(2,1) B.(2,0) C.(3,3) D.(3,1)6.如圖,是由幾個相同的小正方形搭成幾何體的左視圖,這幾個幾何體的擺搭方式可能是()A. B. C. D.7.如圖,有一矩形紙片ABCD,AB=10,AD=6,將紙片折疊,使AD邊落在AB邊上,折痕為AE,再將以DE為折痕向右折疊,AE與BC交于點F,則的面積為()A.4 B.6 C.8 D.108.“射擊運動員射擊一次,命中靶心”這個事件是()A.確定事件B.必然事件C.不可能事件D.不確定事件9.等腰三角形的兩邊長分別為5和11,則它的周長為()A.21 B.21或27 C.27 D.2510.在平面直角坐標系中,二次函數(shù)y=a(x–h)2+k(a<0)的圖象可能是A. B.C. D.11.計算﹣的結(jié)果為()A. B. C. D.12.如圖,把長方形紙片ABCD折疊,使頂點A與頂點C重合在一起,EF為折痕.若AB=9,BC=3,試求以折痕EF為邊長的正方形面積()A.11 B.10 C.9 D.16二、填空題:(本大題共6個小題,每小題4分,共24分.)13.布袋中裝有2個紅球和5個白球,它們除顏色外其它都相同.如果從這個布袋里隨機摸出一個球,那么所摸到的球恰好為紅球的概率是
________.14.△ABC中,∠A、∠B都是銳角,若sinA=,cosB=,則∠C=_____.15.如圖,兩個三角形相似,AD=2,AE=3,EC=1,則BD=_____.16.如圖,已知在△ABC中,∠A=40°,剪去∠A后成四邊形,∠1+∠2=______°.17.計算()()的結(jié)果等于_____.18.將拋物線y=2x2平移,使頂點移動到點P(﹣3,1)的位置,那么平移后所得新拋物線的表達式是_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)先化簡,再求值:,其中m是方程的根.20.(6分)如圖,在△ABC中,BC=6,AB=AC,E,F(xiàn)分別為AB,AC上的點(E,F(xiàn)不與A重合),且EF∥BC.將△AEF沿著直線EF向下翻折,得到△A′EF,再展開.(1)請判斷四邊形AEA′F的形狀,并說明理由;(2)當(dāng)四邊形AEA′F是正方形,且面積是△ABC的一半時,求AE的長.21.(6分)如圖,已知:正方形ABCD,點E在CB的延長線上,連接AE、DE,DE與邊AB交于點F,F(xiàn)G∥BE交AE于點G.(1)求證:GF=BF;(2)若EB=1,BC=4,求AG的長;(3)在BC邊上取點M,使得BM=BE,連接AM交DE于點O.求證:FO?ED=OD?EF.22.(8分)已知點P,Q為平面直角坐標系xOy中不重合的兩點,以點P為圓心且經(jīng)過點Q作⊙P,則稱點Q為⊙P的“關(guān)聯(lián)點”,⊙P為點Q的“關(guān)聯(lián)圓”.(1)已知⊙O的半徑為1,在點E(1,1),F(xiàn)(﹣,),M(0,-1)中,⊙O的“關(guān)聯(lián)點”為______;(2)若點P(2,0),點Q(3,n),⊙Q為點P的“關(guān)聯(lián)圓”,且⊙Q的半徑為,求n的值;(3)已知點D(0,2),點H(m,2),⊙D是點H的“關(guān)聯(lián)圓”,直線y=﹣x+4與x軸,y軸分別交于點A,B.若線段AB上存在⊙D的“關(guān)聯(lián)點”,求m的取值范圍.23.(8分)如圖,曲線BC是反比例函數(shù)y=(4≤x≤6)的一部分,其中B(4,1﹣m),C(6,﹣m),拋物線y=﹣x2+2bx的頂點記作A.(1)求k的值.(2)判斷點A是否可與點B重合;(3)若拋物線與BC有交點,求b的取值范圍.24.(10分)在一個不透明的盒子中裝有大小和形狀相同的3個紅球和2個白球,把它們充分攪勻.“從中任意抽取1個球不是紅球就是白球”是事件,“從中任意抽取1個球是黑球”是事件;從中任意抽取1個球恰好是紅球的概率是;學(xué)校決定在甲、乙兩名同學(xué)中選取一名作為學(xué)生代表發(fā)言,制定如下規(guī)則:從盒子中任取兩個球,若兩球同色,則選甲;若兩球異色,則選乙.你認為這個規(guī)則公平嗎?請用列表法或畫樹狀圖法加以說明.25.(10分)某保健品廠每天生產(chǎn)A,B兩種品牌的保健品共600瓶,A,B兩種產(chǎn)品每瓶的成本和利潤如表,設(shè)每天生產(chǎn)A產(chǎn)品x瓶,生產(chǎn)這兩種產(chǎn)品每天共獲利y元.(1)請求出y關(guān)于x的函數(shù)關(guān)系式;(2)如果該廠每天至少投入成本26400元,那么每天至少獲利多少元?(3)該廠每天生產(chǎn)的A,B兩種產(chǎn)品被某經(jīng)銷商全部訂購,廠家對A產(chǎn)品進行讓利,每瓶利潤降低元,廠家如何生產(chǎn)可使每天獲利最大?最大利潤是多少?AB成本(元/瓶)5035利潤(元/瓶)201526.(12分)如圖,頂點為C的拋物線y=ax2+bx(a>0)經(jīng)過點A和x軸正半軸上的點B,連接OC、OA、AB,已知OA=OB=2,∠AOB=120°.(1)求這條拋物線的表達式;(2)過點C作CE⊥OB,垂足為E,點P為y軸上的動點,若以O(shè)、C、P為頂點的三角形與△AOE相似,求點P的坐標;(3)若將(2)的線段OE繞點O逆時針旋轉(zhuǎn)得到OE′,旋轉(zhuǎn)角為α(0°<α<120°),連接E′A、E′B,求E′A+E′B的最小值.27.(12分)全面兩孩政策實施后,甲,乙兩個家庭有了各自的規(guī)劃.假定生男生女的概率相同,回答下列問題:甲家庭已有一個男孩,準備再生一個孩子,則第二個孩子是女孩的概率是;乙家庭沒有孩子,準備生兩個孩子,求至少有一個孩子是女孩的概率.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】
根據(jù)函數(shù)圖象知:一次函數(shù)過點(2,0);將此點坐標代入一次函數(shù)的解析式中,可求出k、b的關(guān)系式;然后將k、b的關(guān)系式代入k(x﹣3)﹣b>0中進行求解即可.【詳解】解:∵一次函數(shù)y=kx﹣b經(jīng)過點(2,0),∴2k﹣b=0,b=2k.函數(shù)值y隨x的增大而減小,則k<0;解關(guān)于k(x﹣3)﹣b>0,移項得:kx>3k+b,即kx>1k;兩邊同時除以k,因為k<0,因而解集是x<1.故選C.【點睛】本題考查一次函數(shù)與一元一次不等式.2、B【解析】
分別用方差、全面調(diào)查與抽樣調(diào)查、隨機事件及概率的知識逐一進行判斷即可得到答案.【詳解】A.某工廠質(zhì)檢員檢測某批燈泡的使用壽命時,檢測范圍比較大,因此適宜采用抽樣調(diào)查的方法,故本選項錯誤;B.根據(jù)平均數(shù)是4求得a的值為2,則方差為[(1?4)2+(2?4)2+(4?4)2+(4?4)2+(9?4)2]=7.6,故本選項正確;C.12個同學(xué)的生日月份可能互不相同,故本事件是隨機事件,故錯誤;D.在“等邊三角形、正方形、等腰梯形、矩形、正六邊形、正五邊形”六個圖形中有3個既是軸對稱圖形,又是中心對稱圖形,所以,恰好既是中心對稱圖形,又是軸對稱圖形的概率是,故本選項錯誤.故答案選B.【點睛】本題考查的知識點是概率公式、全面調(diào)查與抽樣調(diào)查、方差及隨機事件,解題的關(guān)鍵是熟練的掌握概率公式、全面調(diào)查與抽樣調(diào)查、方差及隨機事件.3、C【解析】
可以用物理的思維來解決這道題.【詳解】未出發(fā)時,x=0,y=1000,所以兩地相距1000千米,所以A選項正確;y=0時兩車相遇,x=3,所以B選項正確;設(shè)動車速度為V1,普車速度為V2,則3(V1+V2)=1000,所以C選項錯誤;D選項正確.【點睛】理解轉(zhuǎn)折點的含義是解決這一類題的關(guān)鍵.4、C【解析】在菱形ABCD中,OC=AC,AC⊥BD,∴DE=OC,∵DE∥AC,∴四邊形OCED是平行四邊形,∵AC⊥BD,∴平行四邊形OCED是矩形,∵在菱形ABCD中,∠ABC=60°,∴△ABC為等邊三角形,∴AD=AB=AC=2,OA=AC=1,在矩形OCED中,由勾股定理得:CE=OD=,在Rt△ACE中,由勾股定理得:AE=;故選C.點睛:本題考查了菱形的性質(zhì),先求出四邊形OCED是平行四邊形,再根據(jù)菱形的對角線互相垂直求出∠COD=90°,證明四邊形OCED是矩形,再根據(jù)菱形的性質(zhì)得出AC=AB,再根據(jù)勾股定理得出AE的長度即可.5、A【解析】
根據(jù)位似變換的性質(zhì)可知,△ODC∽△OBA,相似比是,根據(jù)已知數(shù)據(jù)可以求出點C的坐標.【詳解】由題意得,△ODC∽△OBA,相似比是,∴,又OB=6,AB=3,∴OD=2,CD=1,∴點C的坐標為:(2,1),故選A.【點睛】本題考查的是位似變換,掌握位似變換與相似的關(guān)系是解題的關(guān)鍵,注意位似比與相似比的關(guān)系的應(yīng)用.6、A【解析】
根據(jù)左視圖的概念得出各選項幾何體的左視圖即可判斷.【詳解】解:A選項幾何體的左視圖為;
B選項幾何體的左視圖為;
C選項幾何體的左視圖為;
D選項幾何體的左視圖為;
故選:A.【點睛】本題考查由三視圖判斷幾何體,解題的關(guān)鍵是熟練掌握左視圖的概念.7、C【解析】
根據(jù)折疊易得BD,AB長,利用相似可得BF長,也就求得了CF的長度,△CEF的面積=CF?CE.【詳解】解:由折疊的性質(zhì)知,第二個圖中BD=AB-AD=4,第三個圖中AB=AD-BD=2,
因為BC∥DE,
所以BF:DE=AB:AD,
所以BF=2,CF=BC-BF=4,
所以△CEF的面積=CF?CE=8;
故選:C.點睛:
本題利用了:①折疊的性質(zhì):折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質(zhì),折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等;②矩形的性質(zhì),平行線的性質(zhì),三角形的面積公式等知識點.8、D【解析】試題分析:“射擊運動員射擊一次,命中靶心”這個事件是隨機事件,屬于不確定事件,故選D.考點:隨機事件.9、C【解析】試題分析:分類討論:當(dāng)腰取5,則底邊為11,但5+5<11,不符合三角形三邊的關(guān)系;當(dāng)腰取11,則底邊為5,根據(jù)等腰三角形的性質(zhì)得到另外一邊為11,然后計算周長.解:當(dāng)腰取5,則底邊為11,但5+5<11,不符合三角形三邊的關(guān)系,所以這種情況不存在;當(dāng)腰取11,則底邊為5,則三角形的周長=11+11+5=1.故選C.考點:等腰三角形的性質(zhì);三角形三邊關(guān)系.10、B【解析】
根據(jù)題目給出的二次函數(shù)的表達式,可知二次函數(shù)的開口向下,即可得出答案.【詳解】二次函數(shù)y=a(x﹣h)2+k(a<0)二次函數(shù)開口向下.即B成立.故答案選:B.【點睛】本題考查的是簡單運用二次函數(shù)性質(zhì),解題的關(guān)鍵是熟練掌握二次函數(shù)性質(zhì).11、A【解析】
根據(jù)分式的運算法則即可【詳解】解:原式=,故選A.【點睛】本題主要考查分式的運算。12、B【解析】
根據(jù)矩形和折疊性質(zhì)可得△EHC≌△FBC,從而可得BF=HE=DE,設(shè)BF=EH=DE=x,則AF=CF=9﹣x,在Rt△BCF中,由BF2+BC2=CF2可得BF=DE=AG=4,據(jù)此得出GF=1,由EF2=EG2+GF2可得答案.【詳解】如圖,∵四邊形ABCD是矩形,∴AD=BC,∠D=∠B=90°,根據(jù)折疊的性質(zhì),有HC=AD,∠H=∠D,HE=DE,∴HC=BC,∠H=∠B,又∠HCE+∠ECF=90°,∠BCF+∠ECF=90°,∴∠HCE=∠BCF,在△EHC和△FBC中,∵,∴△EHC≌△FBC,∴BF=HE,∴BF=HE=DE,設(shè)BF=EH=DE=x,則AF=CF=9﹣x,在Rt△BCF中,由BF2+BC2=CF2可得x2+32=(9﹣x)2,解得:x=4,即DE=EH=BF=4,則AG=DE=EH=BF=4,∴GF=AB﹣AG﹣BF=9﹣4﹣4=1,∴EF2=EG2+GF2=32+12=10,故選B.【點睛】本題考查了折疊的性質(zhì)、矩形的性質(zhì)、三角形全等的判定與性質(zhì)、勾股定理等,綜合性較強,熟練掌握各相關(guān)的性質(zhì)定理與判定定理是解題的關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、2【解析】試題解析:∵一個布袋里裝有2個紅球和5個白球,∴摸出一個球摸到紅球的概率為:22+5考點:概率公式.14、60°.【解析】
先根據(jù)特殊角的三角函數(shù)值求出∠A、∠B的度數(shù),再根據(jù)三角形內(nèi)角和定理求出∠C即可作出判斷.【詳解】∵△ABC中,∠A、∠B都是銳角sinA=,cosB=,∴∠A=∠B=60°.∴∠C=180°-∠A-∠B=180°-60°-60°=60°.故答案為60°.【點睛】本題考查的是特殊角的三角函數(shù)值及三角形內(nèi)角和定理,比較簡單.15、1【解析】
根據(jù)相似三角形的對應(yīng)邊的比相等列出比例式,計算即可.【詳解】∵△ADE∽△ACB,∴=,即=,解得:BD=1.故答案為1.【點睛】本題考查的是相似三角形的性質(zhì),掌握相似三角形的對應(yīng)邊的比相等是解題的關(guān)鍵.16、220.【解析】試題分析:△ABC中,∠A=40°,=;如圖,剪去∠A后成四邊形∠1+∠2+=;∠1+∠2=220°考點:內(nèi)角和定理點評:本題考查三角形、四邊形的內(nèi)角和定理,掌握內(nèi)角和定理是解本題的關(guān)鍵17、4【解析】
利用平方差公式計算.【詳解】解:原式=()2-()2=7-3=4.故答案為:4.【點睛】本題考查了二次根式的混合運算.18、y=2(x+3)2+1【解析】
由于拋物線平移前后二次項系數(shù)不變,然后根據(jù)頂點式寫出新拋物線解析式.【詳解】拋物線y=2x2平移,使頂點移到點P(﹣3,1)的位置,所得新拋物線的表達式為y=2(x+3)2+1.故答案為:y=2(x+3)2+1【點睛】本題考查了二次函數(shù)圖象與幾何變換:由于拋物線平移后的形狀不變,故a不變,所以求平移后的拋物線解析式通??衫脙煞N方法:一是求出原拋物線上任意兩點平移后的坐標,利用待定系數(shù)法求出解析式;二是只考慮平移后的頂點坐標,即可求出解析式.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、原式=.∵m是方程的根.∴,即,∴原式=.【解析】試題分析:先通分計算括號里的,再計算括號外的,化為最簡,由于m是方程的根,那么,可得的值,再把的值整體代入化簡后的式子,計算即可.試題解析:原式=.∵m是方程的根.∴,即,∴原式=.考點:分式的化簡求值;一元二次方程的解.20、(1)四邊形AEA′F為菱形.理由見解析;(2)1.【解析】
(1)先證明AE=AF,再根據(jù)折疊的性質(zhì)得AE=A′E,AF=A′F,然后根據(jù)菱形的判定方法可判斷四邊形AEA′F為菱形;(2)四先利用四邊形AEA′F是正方形得到∠A=90°,則AB=AC=BC=6,然后利用正方形AEA′F的面積是△ABC的一半得到AE2=??6?6,然后利用算術(shù)平方根的定義求AE即可.【詳解】(1)四邊形AEA′F為菱形.理由如下:∵AB=AC,∴∠B=∠C,∵EF∥BC,∴∠AEF=∠B,∠AFE=∠C,∴∠AEF=∠AFE,∴AE=AF,∵△AEF沿著直線EF向下翻折,得到△A′EF,∴AE=A′E,AF=A′F,∴AE=A′E=AF=A′F,∴四邊形AEA′F為菱形;(2)∵四邊形AEA′F是正方形,∴∠A=90°,∴△ABC為等腰直角三角形,∴AB=AC=BC=×6=6,∵正方形AEA′F的面積是△ABC的一半,∴AE2=??6?6,∴AE=1.【點睛】本題考查了折疊的性質(zhì):折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等.21、(1)證明見解析;(2)AG=;(3)證明見解析.【解析】
(1)根據(jù)正方形的性質(zhì)得到AD∥BC,AB∥CD,AD=CD,根據(jù)相似三角形的性質(zhì)列出比例式,等量代換即可;(2)根據(jù)勾股定理求出AE,根據(jù)相似三角形的性質(zhì)計算即可;(3)延長GF交AM于H,根據(jù)平行線分線段成比例定理得到,由于BM=BE,得到GF=FH,由GF∥AD,得到,等量代換得到,即,于是得到結(jié)論.【詳解】解:(1)∵四邊形ABCD是正方形,∴AD∥BC,AB∥CD,AD=CD,∵GF∥BE,∴GF∥BC,∴GF∥AD,∴,∵AB∥CD,,∵AD=CD,∴GF=BF;(2)∵EB=1,BC=4,∴=4,AE=,∴=4,∴AG=;(3)延長GF交AM于H,∵GF∥BC,∴FH∥BC,∴,∴,∵BM=BE,∴GF=FH,∵GF∥AD,∴,,∴,∴,∴FO?ED=OD?EF.【點睛】本題主要考查平行線分線段成比例及正方形的性質(zhì),掌握平行線分線段中的線段對應(yīng)成比例是解題的關(guān)鍵,注意利用比例相等也可以證明線段相等.22、(1)F,M;(1)n=1或﹣1;(3)≤m≤或≤m≤.【解析】
(1)根據(jù)定義,認真審題即可解題,(1)在直角三角形PHQ中勾股定理解題即可,(3)當(dāng)⊙D與線段AB相切于點T時,由sin∠OBA=,得DT=DH1=,進而求出m1=即可,②當(dāng)⊙D過點A時,連接AD.由勾股定理得DA==DH1=即可解題.【詳解】解:(1)∵OF=OM=1,∴點F、點M在⊙上,∴F、M是⊙O的“關(guān)聯(lián)點”,故答案為F,M.(1)如圖1,過點Q作QH⊥x軸于H.∵PH=1,QH=n,PQ=.∴由勾股定理得,PH1+QH1=PQ1,即11+n1=()1,解得,n=1或﹣1.(3)由y=﹣x+4,知A(3,0),B(0,4)∴可得AB=5①如圖1(1),當(dāng)⊙D與線段AB相切于點T時,連接DT.則DT⊥AB,∠DTB=90°∵sin∠OBA=,∴可得DT=DH1=,∴m1=,②如圖1(1),當(dāng)⊙D過點A時,連接AD.由勾股定理得DA==DH1=.綜合①②可得:≤m≤或≤m≤.【點睛】本題考查圓的新定義問題,三角函數(shù)和勾股定理的應(yīng)用,難度較大,分類討論,遷移知識理解新定義是解題關(guān)鍵.23、(1)12;(2)點A不與點B重合;(3)【解析】
(1)把B、C兩點代入解析式,得到k=4(1﹣m)=6×(﹣m),求得m=﹣2,從而求得k的值;(2)由拋物線解析式得到頂點A(b,b2),如果點A與點B重合,則有b=4,且b2=3,顯然不成立;(3)當(dāng)拋物線經(jīng)過點B(4,3)時,解得,b=,拋物線右半支經(jīng)過點B;當(dāng)拋物線經(jīng)過點C,解得,b=,拋物線右半支經(jīng)過點C;從而求得b的取值范圍為≤b≤.【詳解】解:(1)∵B(4,1﹣m),C(6,﹣m)在反比例函數(shù)的圖象上,∴k=4(1﹣m)=6×(﹣m),∴解得m=﹣2,∴k=4×[1﹣(﹣2)]=12;(2)∵m=﹣2,∴B(4,3),∵拋物線y=﹣x2+2bx=﹣(x﹣b)2+b2,∴A(b,b2).若點A與點B重合,則有b=4,且b2=3,顯然不成立,∴點A不與點B重合;(3)當(dāng)拋物線經(jīng)過點B(4,3)時,有3=﹣42+2b×4,解得,b=,顯然拋物線右半支經(jīng)過點B;當(dāng)拋物線經(jīng)過點C(6,2)時,有2=﹣62+2b×6,解得,b=,這時仍然是拋物線右半支經(jīng)過點C,∴b的取值范圍為≤b≤.【點睛】本題考查了二次函數(shù)的性質(zhì),二次函數(shù)圖象上點的坐標特征,解題的關(guān)鍵是學(xué)會用討論的思想思考問題.24、(1)必然,不可能;(2);(3)此游戲不公平.【解析】
(1)直接利用必然事件以及怒不可能事件的定義分別分析得出答案;(2)直接利用概率公式求出答案;(3)首先畫出樹狀圖,進而利用概率公式求出答案.【詳解】(1)“從中任意抽取1個球不是紅球就是白球”是必然事件,“從中任意抽取1個球是黑球”是不可能事件;故答案為必然,不可能;(2)從中任意抽取1個球恰好是紅球的概率是:;故答案為;(3)如圖所示:,由樹狀圖可得:一共有20種可能,兩球同色的有8種情況,故選擇甲的概率為:;則選擇乙的概率為:,故此游戲不公平.【點睛】此題主要考查了游戲公平性,正確列出樹狀圖是解題關(guān)鍵.25、(1)y=5x+9000;(2)每天至少獲利10800元;(3)每天生產(chǎn)A產(chǎn)品250件,B產(chǎn)品350件獲利最大,最大利潤為9625元.【解析】試題分析:(1)A種品牌白酒x瓶,則B種品牌白酒(600-x)瓶;利潤=A種品牌白酒瓶數(shù)×A種品牌白酒一瓶的利潤+B種品牌白酒瓶數(shù)×B種品牌白酒一瓶的利潤,列出函數(shù)關(guān)系式;
(2)A種品牌白酒x瓶,則B種品牌白酒(600-x)瓶;成本=A種品牌白酒瓶數(shù)×A種品牌白酒一瓶的成本+B種品牌白酒瓶數(shù)×B種品牌白酒一瓶的成本,列出不等式,求x的值,再代入(1)求利潤.(3)列出y與x的關(guān)系式,求y的最大值時,x的值.試題解析:(1)y=20x+15(600-x)=5x+9000,∴y關(guān)于x的函數(shù)關(guān)系式為y=5x+9000;(2)根據(jù)題意,得50x+35(600-x)≥26400,解得x≥360,∵y=5x+9000,5>0,∴y隨x的增大而增大,∴當(dāng)x=360時,y有最小值為10800,∴每天至少獲利10800元;(3)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 學(xué)校2024-2025學(xué)年度德育工作計劃
- 進行性肢端黑變病的臨床護理
- 【培訓(xùn)課件】銷售技能培訓(xùn) 顧問式實戰(zhàn)銷售
- 產(chǎn)后胳膊疼的健康宣教
- 低磷血癥的臨床護理
- 《教學(xué)管理》課件
- 變形桿菌性角膜炎的臨床護理
- JJF(陜) 077-2021 水泥膠砂試體成型振實臺校準規(guī)范
- 幼兒教師培訓(xùn)課件:《信息交流》
- 創(chuàng)新教學(xué)方法提升幼兒園教育質(zhì)量計劃
- 2024應(yīng)急管理部國家自然災(zāi)害防治研究院公開招聘34人(高頻重點提升專題訓(xùn)練)共500題附帶答案詳解
- 俄語入門智慧樹知到期末考試答案章節(jié)答案2024年吉林師范大學(xué)
- 人教版七年級數(shù)學(xué)上冊第一學(xué)期期末綜合測試卷(2024年秋)
- 2023-2024學(xué)年吉林省長春七年級(上)期末英語試卷
- 委托付款四方協(xié)議
- 2023年北京語言大學(xué)事業(yè)編制人員招聘考試真題
- 2024年03月國家林業(yè)和草原局機關(guān)服務(wù)局招考聘用筆試歷年典型考題及考點研判與答案解析
- 火龍罐療法課件
- 倉庫租賃服務(wù)投標方案(技術(shù)方案)
- 項目投資決策分析與評價(天大微專業(yè))智慧樹知到期末考試答案章節(jié)答案2024年
- 語言、文化與交際智慧樹知到期末考試答案章節(jié)答案2024年湖南大學(xué)
評論
0/150
提交評論