版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023-2024學年河南省平頂山市第四十二中學中考五模數(shù)學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,PA和PB是⊙O的切線,點A和B是切點,AC是⊙O的直徑,已知∠P=40°,則∠ACB的大小是()A.60° B.65° C.70° D.75°2.如圖,將函數(shù)y=(x﹣2)2+1的圖象沿y軸向上平移得到一條新函數(shù)的圖象,其中點A(1,m),B(4,n)平移后的對應點分別為點A'、B'.若曲線段AB掃過的面積為9(圖中的陰影部分),則新圖象的函數(shù)表達式是()A.y=(x﹣2)2-2 B.y=(x﹣2)2+7C.y=(x﹣2)2-5 D.y=(x﹣2)2+43.PM2.5是指大氣中直徑小于或等于2.5μm(0.0000025m)的顆粒物,含有大量有毒、有害物質(zhì),也稱為可入肺顆粒物,將25微米用科學記數(shù)法可表示為()米.A.25×10﹣7B.2.5×10﹣6C.0.25×10﹣5D.2.5×10﹣54.若正比例函數(shù)y=3x的圖象經(jīng)過A(﹣2,y1),B(﹣1,y2)兩點,則y1與y2的大小關(guān)系為()A.y1<y2 B.y1>y2 C.y1≤y2 D.y1≥y25.拋物線經(jīng)過第一、三、四象限,則拋物線的頂點必在()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.規(guī)定:如果關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)有兩個實數(shù)根,且其中一個根是另一個根的2倍,則稱這樣的方程為“倍根方程”.現(xiàn)有下列結(jié)論:①方程x2+2x﹣8=0是倍根方程;②若關(guān)于x的方程x2+ax+2=0是倍根方程,則a=±3;③若關(guān)于x的方程ax2﹣6ax+c=0(a≠0)是倍根方程,則拋物線y=ax2﹣6ax+c與x軸的公共點的坐標是(2,0)和(4,0);④若點(m,n)在反比例函數(shù)y=的圖象上,則關(guān)于x的方程mx2+5x+n=0是倍根方程.上述結(jié)論中正確的有(
)A.①② B.③④ C.②③ D.②④7.如圖1所示,甲、乙兩車沿直路同向行駛,車速分別為20m/s和v(m/s),起初甲車在乙車前a(m)處,兩車同時出發(fā),當乙車追上甲車時,兩車都停止行駛.設(shè)x(s)后兩車相距y(m),y與x的函數(shù)關(guān)系如圖2所示.有以下結(jié)論:①圖1中a的值為500;②乙車的速度為35m/s;③圖1中線段EF應表示為;④圖2中函數(shù)圖象與x軸交點的橫坐標為1.其中所有的正確結(jié)論是()A.①④ B.②③C.①②④ D.①③④8.如圖,在矩形ABCD中AB=,BC=1,將矩形ABCD繞頂點B旋轉(zhuǎn)得到矩形A'BC'D,點A恰好落在矩形ABCD的邊CD上,則AD掃過的部分(即陰影部分)面積為()A. B. C. D.9.如圖,一次函數(shù)y=x﹣1的圖象與反比例函數(shù)的圖象在第一象限相交于點A,與x軸相交于點B,點C在y軸上,若AC=BC,則點C的坐標為()A.(0,1) B.(0,2) C. D.(0,3)10.一元二次方程(x+2017)2=1的解為()A.﹣2016,﹣2018 B.﹣2016 C.﹣2018 D.﹣2017二、填空題(共7小題,每小題3分,滿分21分)11.因式分解:________.12.如圖,平面直角坐標系中,經(jīng)過點B(﹣4,0)的直線y=kx+b與直線y=mx+2相交于點A(,-1),則不等式mx+2<kx+b<0的解集為____.13.科學家發(fā)現(xiàn),距離地球2540000光年之遙的仙女星系正在向銀河系靠近.其中2540000用科學記數(shù)法表示為_____.14.計算﹣的結(jié)果為_____.15.若反比例函數(shù)的圖象位于第二、四象限,則的取值范圍是__.16.已知,在Rt△ABC中,∠C=90°,AC=9,BC=12,點D、E分別在邊AC、BC上,且CD:CE=3︰1.將△CDE繞點D順時針旋轉(zhuǎn),當點C落在線段DE上的點F處時,BF恰好是∠ABC的平分線,此時線段CD的長是________.17.如圖,AB為⊙O的直徑,BC為⊙O的弦,點D是劣弧AC上一點,若點E在直徑AB另一側(cè)的半圓上,且∠AED=27°,則∠BCD的度數(shù)為_______.三、解答題(共7小題,滿分69分)18.(10分)已知:如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點,BD是對角線,AG∥DB交CB的延長線于G.求證:△ADE≌△CBF;若四邊形BEDF是菱形,則四邊形AGBD是什么特殊四邊形?并證明你的結(jié)論.19.(5分)小明準備用一塊矩形材料剪出如圖所示的四邊形ABCD(陰影部分),做成要制作的飛機的一個機翼,請你根據(jù)圖中的數(shù)據(jù)幫小明計算出CD的長度.(結(jié)果保留根號).20.(8分)如圖,△ABC中,∠C=90°,∠A=30°.用尺規(guī)作圖作AB邊上的中垂線DE,交AC于點D,交AB于點E.(保留作圖痕跡,不要求寫作法和證明);連接BD,求證:BD平分∠CBA.21.(10分)如圖,將一張直角三角形ABC紙片沿斜邊AB上的中線CD剪開,得到△ACD,再將△ACD沿DB方向平移到△A′C′D′的位置,若平移開始后點D′未到達點B時,A′C′交CD于E,D′C′交CB于點F,連接EF,當四邊形EDD′F為菱形時,試探究△A′DE的形狀,并判斷△A′DE與△EFC′是否全等?請說明理由.22.(10分)如圖,在△ABC中,∠C=90°.作∠BAC的平分線AD,交BC于D;若AB=10cm,CD=4cm,求△ABD的面積.23.(12分)某校為了解學生對籃球、足球、排球、羽毛球、乒乓球這五種球類運動的喜愛情況,隨機抽取一部分學生進行問卷調(diào)查,統(tǒng)計整理并繪制了以下兩幅不完整的統(tǒng)計圖:請根據(jù)以上統(tǒng)計圖提供的信息,解答下列問題:(1)共抽取名學生進行問卷調(diào)查;(2)補全條形統(tǒng)計圖,求出扇形統(tǒng)計圖中“足球”所對應的圓心角的度數(shù);(3)該校共有3000名學生,請估計全校學生喜歡足球運動的人數(shù).(4)甲乙兩名學生各選一項球類運動,請求出甲乙兩人選同一項球類運動的概率.24.(14分)“中國制造”是世界上認知度最高的標簽之一,因此,我縣越來越多的群眾選擇購買國產(chǎn)空調(diào),已知購買1臺A型號的空調(diào)比1臺B型號的空調(diào)少200元,購買2臺A型號的空調(diào)與3臺B型號的空調(diào)共需11200元,求A、B兩種型號的空調(diào)的購買價各是多少元?
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】試題分析:連接OB,根據(jù)PA、PB為切線可得:∠OAP=∠OBP=90°,根據(jù)四邊形AOBP的內(nèi)角和定理可得∠AOB=140°,∵OC=OB,則∠C=∠OBC,根據(jù)∠AOB為△OBC的外角可得:∠ACB=140°÷2=70°.考點:切線的性質(zhì)、三角形外角的性質(zhì)、圓的基本性質(zhì).2、D【解析】
∵函數(shù)的圖象過點A(1,m),B(4,n),∴m==,n==3,∴A(1,),B(4,3),過A作AC∥x軸,交B′B的延長線于點C,則C(4,),∴AC=4﹣1=3,∵曲線段AB掃過的面積為9(圖中的陰影部分),∴AC?AA′=3AA′=9,∴AA′=3,即將函數(shù)的圖象沿y軸向上平移3個單位長度得到一條新函數(shù)的圖象,∴新圖象的函數(shù)表達式是.故選D.3、B【解析】
由科學計數(shù)法的概念表示出0.0000025即可.【詳解】0.0000025=2.5×10﹣6.故選B.【點睛】本題主要考查科學計數(shù)法,熟記相關(guān)概念是解題關(guān)鍵.4、A【解析】
分別把點A(?1,y1),點B(?1,y1)代入函數(shù)y=3x,求出點y1,y1的值,并比較出其大小即可.【詳解】解:∵點A(?1,y1),點B(?1,y1)是函數(shù)y=3x圖象上的點,∴y1=?6,y1=?3,∵?3>?6,∴y1<y1.故選A.【點睛】本題考查的是一次函數(shù)圖象上點的坐標特點,即一次函數(shù)圖象上各點的坐標一定適合此函數(shù)的解析式.5、A【解析】
根據(jù)二次函數(shù)圖象所在的象限大致畫出圖形,由此即可得出結(jié)論.【詳解】∵二次函數(shù)圖象只經(jīng)過第一、三、四象限,∴拋物線的頂點在第一象限.故選A.【點睛】本題考查了二次函數(shù)的性質(zhì)以及二次函數(shù)的圖象,大致畫出函數(shù)圖象,利用數(shù)形結(jié)合解決問題是解題的關(guān)鍵.6、C【解析】分析:①通過解方程得到該方程的根,結(jié)合“倍根方程”的定義進行判斷;②設(shè)=2,得到?=2=2,得到當=1時,=2,當=-1時,=-2,于是得到結(jié)論;③根據(jù)“倍根方程”的定義即可得到結(jié)論;④若點(m,n)在反比例函數(shù)y=的圖象上,得到mn=4,然后解方程m+5x+n=0即可得到正確的結(jié)論;詳解:①由-2x-8=0,得:(x-4)(x+2)=0,解得=4,=-2,∵≠2,或≠2,∴方程-2x-8=0不是倍根方程;故①錯誤;②關(guān)于x的方程+ax+2=0是倍根方程,∴設(shè)=2,∴?=2=2,∴=±1,當=1時,=2,當=-1時,=-2,∴+=-a=±3,∴a=±3,故②正確;③關(guān)于x的方程a-6ax+c=0(a≠0)是倍根方程,∴=2,∵拋物線y=a-6ax+c的對稱軸是直線x=3,∴拋物線y=a-6ax+c與x軸的交點的坐標是(2,0)和(4,0),故③正確;④∵點(m,n)在反比例函數(shù)y=的圖象上,∴mn=4,解m+5x+n=0得=,=,∴=4,∴關(guān)于x的方程m+5x+n=0不是倍根方程;故選C.點睛:本題考查了反比例函數(shù)圖象上點的坐標特征,根與系數(shù)的關(guān)系,正確的理解倍根方程的定義是解題的關(guān)鍵.7、A【解析】分析:①根據(jù)圖象2得出結(jié)論;②根據(jù)(75,125)可知:75秒時,兩車的距離為125m,列方程可得結(jié)論;③根據(jù)圖1,線段的和與差可表示EF的長;④利用待定系數(shù)法求直線的解析式,令y=0可得結(jié)論.詳解:①y是兩車的距離,所以根據(jù)圖2可知:圖1中a的值為500,此選項正確;②由題意得:75×20+500-75y=125,v=25,則乙車的速度為25m/s,故此選項不正確;③圖1中:EF=a+20x-vx=500+20x-25x=500-5x.故此選項不正確;④設(shè)圖2的解析式為:y=kx+b,把(0,500)和(75,125)代入得:,解得,∴y=-5x+500,當y=0時,-5x+500=0,x=1,即圖2中函數(shù)圖象與x軸交點的橫坐標為1,此選項正確;其中所有的正確結(jié)論是①④;故選A.點睛:本題考查了一次函數(shù)的應用,根據(jù)函數(shù)圖象,讀懂題目信息,理解兩車間的距離與時間的關(guān)系是解題的關(guān)鍵.8、A【解析】
本題首先利用A點恰好落在邊CD上,可以求出A′C=BC′=1,又因為A′B=可以得出△A′BC為等腰直角三角形,即可以得出∠ABA′、∠DBD′的大小,然后將陰影部分利用切割法分為兩個部分來求,即面積ADA′和面積DA′D′【詳解】先連接BD,首先求得正方形ABCD的面積為,由分析可以求出∠ABA′=∠DBD′=45°,即可以求得扇形ABA′的面積為,扇形BDD′的面積為,面積ADA′=面積ABCD-面積A′BC-扇形面積ABA′=;面積DA′D′=扇形面積BDD′-面積DBA′-面積BA′D′=,陰影部分面積=面積DA′D′+面積ADA′=【點睛】熟練掌握面積的切割法和一些基本圖形的面積的求法是本題解題的關(guān)鍵.9、B【解析】
根據(jù)方程組求出點A坐標,設(shè)C(0,m),根據(jù)AC=BC,列出方程即可解決問題.【詳解】由,解得或,
∴A(2,1),B(1,0),
設(shè)C(0,m),
∵BC=AC,
∴AC2=BC2,
即4+(m-1)2=1+m2,
∴m=2,
故答案為(0,2).【點睛】本題考查了反比例函數(shù)與一次函數(shù)的交點坐標問題、勾股定理、方程組等知識,解題的關(guān)鍵是會利用方程組確定兩個函數(shù)的交點坐標,學會用方程的思想思考問題.10、A【解析】
利用直接開平方法解方程.【詳解】(x+2017)2=1x+2017=±1,所以x1=-2018,x2=-1.故選A.【點睛】本題考查了解一元二次方程-直接開平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接開平方的方法解一元二次方程.二、填空題(共7小題,每小題3分,滿分21分)11、a(a+1)(a-1)【解析】
先提公因式,再利用公式法進行因式分解即可.【詳解】解:a(a+1)(a-1)故答案為:a(a+1)(a-1)【點睛】本題考查了因式分解,先提公因式再利用平方差公式是解題的關(guān)鍵.12、﹣4<x<﹣【解析】根據(jù)函數(shù)的圖像,可知不等式mx+2<kx+b<0的解集就是y=mx+2在函數(shù)y=kx+b的下面,且它們的值小于0的解集是﹣4<x<﹣.故答案為﹣4<x<﹣.13、2.54×1【解析】【分析】科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】2540000的小數(shù)點向左移動6位得到2.54,所以,2540000用科學記數(shù)法可表示為:2.54×1,故答案為2.54×1.【點睛】本題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.14、.【解析】
根據(jù)同分母分式加減運算法則化簡即可.【詳解】原式=,故答案為.【點睛】本題考查了分式的加減運算,熟記運算法則是解題的關(guān)鍵.15、k>1【解析】
根據(jù)圖象在第二、四象限,利用反比例函數(shù)的性質(zhì)可以確定1-k的符號,即可解答.【詳解】∵反比例函數(shù)y=的圖象在第二、四象限,∴1-k<0,∴k>1.故答案為:k>1.【點睛】此題主要考查了反比例函數(shù)的性質(zhì),熟練記憶當k>0時,圖象分別位于第一、三象限;當k<0時,圖象分別位于第二、四象限是解決問題的關(guān)鍵.16、2【解析】分析:設(shè)CD=3x,則CE=1x,BE=12﹣1x,依據(jù)∠EBF=∠EFB,可得EF=BE=12﹣1x,由旋轉(zhuǎn)可得DF=CD=3x,再根據(jù)Rt△DCE中,CD2+CE2=DE2,即可得到(3x)2+(1x)2=(3x+12﹣1x)2,進而得出CD=2.詳解:如圖所示,設(shè)CD=3x,則CE=1x,BE=12﹣1x.∵=,∠DCE=∠ACB=90°,∴△ACB∽△DCE,∴∠DEC=∠ABC,∴AB∥DE,∴∠ABF=∠BFE.又∵BF平分∠ABC,∴∠ABF=∠CBF,∴∠EBF=∠EFB,∴EF=BE=12﹣1x,由旋轉(zhuǎn)可得DF=CD=3x.在Rt△DCE中,∵CD2+CE2=DE2,∴(3x)2+(1x)2=(3x+12﹣1x)2,解得x1=2,x2=﹣3(舍去),∴CD=2×3=2.故答案為2.點睛:本題考查了相似三角形的判定與性質(zhì),勾股定理以及旋轉(zhuǎn)的性質(zhì),解題時注意:對應點到旋轉(zhuǎn)中心的距離相等;對應點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.17、117°【解析】
連接AD,BD,利用圓周角定理解答即可.【詳解】連接AD,BD,∵AB為⊙O的直徑,∴∠ADB=90°,∵∠AED=27°,∴∠DBA=27°,∴∠DAB=90°-27°=63°,∴∠DCB=180°-63°=117°,故答案為117°【點睛】此題考查圓周角定理,關(guān)鍵是根據(jù)圓周角定理解答.三、解答題(共7小題,滿分69分)18、(1)證明見解析(2)當四邊形BEDF是菱形時,四邊形AGBD是矩形;證明見解析;【解析】
(1)在證明全等時常根據(jù)已知條件,分析還缺什么條件,然后用(SAS,ASA,SSS)來證明全等;(2)先由菱形的性質(zhì)得出AE=BE=DE,再通過角之間的關(guān)系求出∠2+∠3=90°即∠ADB=90°,所以判定四邊形AGBD是矩形.【詳解】解:證明:∵四邊形是平行四邊形,∴,,.∵點、分別是、的中點,∴,.∴.在和中,,∴.解:當四邊形是菱形時,四邊形是矩形.證明:∵四邊形是平行四邊形,∴.∵,∴四邊形是平行四邊形.∵四邊形是菱形,∴.∵,∴.∴,.∵,∴.∴.即.∴四邊形是矩形.【點睛】本題主要考查了平行四邊形的基本性質(zhì)和矩形的判定及全等三角形的判定.平行四邊形基本性質(zhì):①平行四邊形兩組對邊分別平行;②平行四邊形的兩組對邊分別相等;③平行四邊形的兩組對角分別相等;④平行四邊形的對角線互相平分.三角形全等的判定條件:SSS,SAS,AAS,ASA.19、CD的長度為17﹣17cm.【解析】
在直角三角形中用三角函數(shù)求出FD,BE的長,而FC=AE=AB+BE,而CD=FC-FD,從而得到答案.【詳解】解:由題意,在Rt△BEC中,∠E=90°,∠EBC=60°,∴∠BCE=30°,tan30°=,∴BE=ECtan30°=51×=17(cm);∴CF=AE=34+BE=(34+17)cm,在Rt△AFD中,∠FAD=45°,∴∠FDA=45°,∴DF=AF=EC=51cm,則CD=FC﹣FD=34+17﹣51=17﹣17,答:CD的長度為17﹣17cm.【點睛】本題主要考查了在直角三角形中三角函數(shù)的應用,解本題的要點在于求出FC與FD的長度,即可求出答案.20、(1)作圖見解析;(2)證明見解析.【解析】
(1)分別以A、B為圓心,以大于AB的長度為半徑畫弧,過兩弧的交點作直線,交AC于點D,AB于點E,直線DE就是所要作的AB邊上的中垂線;
(2)根據(jù)線段垂直平分線上的點到線段兩端點的距離相等可得AD=BD,再根據(jù)等邊對等角的性質(zhì)求出∠ABD=∠A=30°,然后求出∠CBD=30°,從而得到BD平分∠CBA.【詳解】(1)解:如圖所示,DE就是要求作的AB邊上的中垂線;(2)證明:∵DE是AB邊上的中垂線,∠A=30°,∴AD=BD,∴∠ABD=∠A=30°,∵∠C=90°,∴∠ABC=90°﹣∠A=90°﹣30°=60°,∴∠CBD=∠ABC﹣∠ABD=60°﹣30°=30°,∴∠ABD=∠CBD,∴BD平分∠CBA.【點睛】考查線段的垂直平分線的作法以及角平分線的判定,熟練掌握線段的垂直平分弦的作法是解題的關(guān)鍵.21、△A′DE是等腰三角形;證明過程見解析.【解析】試題分析:當四邊形EDD′F為菱形時,△A′DE是等腰三角形,△A′DE≌△EFC′.先證明CD=DA=DB,得到∠DAC=∠DCA,由AC∥A′C′即可得到∠DA′E=∠DEA′由此即可判斷△DA′E的形狀.由EF∥AB推出∠CEF=∠EA′D,∠EFC=∠A′D′C=∠A′DE,再根據(jù)A′D=DE=EF即可證明.試題解析:當四邊形EDD′F為菱形時,△A′DE是等腰三角形,△A′DE≌△EFC′.理由:∵△BCA是直角三角形,∠ACB=90°,AD=DB,∴CD=DA=DB,∴∠DAC=∠DCA,∵A′C∥AC,∴∠DA′E=∠A,∠DEA′=∠DCA,∴∠DA′E=∠DEA′,∴DA′=DE,∴△A′DE是等腰三角形.∵四邊形DEFD′是菱形,∴EF=DE=DA′,EF∥DD′,∴∠CEF=∠DA′E,∠EFC=∠CD′A′,∵CD∥C′D′,∴∠A′DE=∠A′D′C=∠EFC,在△A′DE和△EFC′中,∠EA∴△A′DE≌△EFC′.考點:1.菱形的性質(zhì);2.全等三角形的判定;3.平移的性質(zhì).22、(1)答案見解析;(2)【
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 三方婚慶服務(wù)協(xié)議:2024年婚禮行業(yè)標配版B版
- 2025年度安置房建設(shè)項目環(huán)境保護及污染治理協(xié)議3篇
- 梧州學院《綜合商務(wù)英語三》2023-2024學年第一學期期末試卷
- 2024年版哈爾濱設(shè)備租賃合同
- 《化工安全與環(huán)保技術(shù)》試題庫八含參考答案
- 2024政府采購檢測試劑合同
- 2024年養(yǎng)殖場養(yǎng)殖技術(shù)與市場拓展合同3篇
- 2025年度新能源項目購銷合同范本3篇
- 2024年長嶺縣中醫(yī)院高層次衛(wèi)技人才招聘筆試歷年參考題庫頻考點附帶答案
- 2024年鎮(zhèn)沅縣人民醫(yī)院高層次衛(wèi)技人才招聘筆試歷年參考題庫頻考點附帶答案
- 制造車間用洗地機安全操作規(guī)程
- 陜西2020-2024年中考英語五年真題匯編學生版-專題09 閱讀七選五
- 多源數(shù)據(jù)融合平臺建設(shè)方案
- 2023-2024學年上海市普陀區(qū)三年級(上)期末數(shù)學試卷
- 居家養(yǎng)老上門服務(wù)投標文件
- 浙江省寧波市鄞州區(qū)2024年七年級上學期期末數(shù)學試題【含答案】
- 骨質(zhì)疏松護理
- 小班班本課程《吃飯這件小事》
- 五年級上冊脫式計算100題及答案
- 普通地質(zhì)學教材
- 關(guān)于童話故事的題目
評論
0/150
提交評論