麻省理工(MIT)AI風險存儲庫:人工智能風險的綜合元評審、數(shù)據(jù)庫和分類法_第1頁
麻省理工(MIT)AI風險存儲庫:人工智能風險的綜合元評審、數(shù)據(jù)庫和分類法_第2頁
麻省理工(MIT)AI風險存儲庫:人工智能風險的綜合元評審、數(shù)據(jù)庫和分類法_第3頁
麻省理工(MIT)AI風險存儲庫:人工智能風險的綜合元評審、數(shù)據(jù)庫和分類法_第4頁
麻省理工(MIT)AI風險存儲庫:人工智能風險的綜合元評審、數(shù)據(jù)庫和分類法_第5頁
已閱讀5頁,還剩140頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

TheAIRiskRepository:AComprehensive

Meta-Review,Database,andTaxonomyof

RisksFromArti?cialIntelligence

PeterSlattery1,2,AlexanderK.Saeri1,2,EmilyA.C.Grundy1,2,JessGraham3,MichaelNoetel2,3,RistoUuk4,5,JamesDao6,

SoroushPour6,StephenCasper7,andNeilThompson1.

1MITFutureTech,MassachusettsInstituteofTechnology,2ReadyResearch,3SchoolofPsychology,TheUniversityof

Queensland,4FutureofLifeInstitute,5KULeuven,6HarmonyIntelligence,7ComputerScienceandArti?cialIntelligence

Laboratory,MassachusettsInstituteofTechnology.

Correspondencetopslat@.

Abstract

TherisksposedbyArti?cialIntelligence(AI)areofconsiderableconcerntoacademics,auditors,

policymakers,AIcompanies,andthepublic.However,alackofsharedunderstandingofAIrisks

canimpedeourabilitytocomprehensivelydiscuss,research,andreacttothem.Thispaper

addressesthisgapbycreatinganAIRiskRepositorytoserveasacommonframeofreference.

Thiscomprisesalivingdatabaseof777risksextractedfrom43taxonomies,whichcanbe?ltered

basedontwooverarchingtaxonomiesandeasilyaccessed,modi?ed,andupdatedviaour

website

and

onlinespreadsheets

.WeconstructourRepositorywithasystematicreviewoftaxonomiesand

otherstructuredclassi?cationsofAIriskfollowedbyanexpertconsultation.Wedevelopour

taxonomiesofAIriskusingabest-?tframeworksynthesis.Ourhigh-levelCausalTaxonomyofAI

Risksclassi?eseachriskbyitscausalfactors(1)Entity:Human,AI;(2)Intentionality:Intentional,

Unintentional;and(3)Timing:Pre-deployment;Post-deployment.Ourmid-levelDomainTaxonomy

ofAIRisksclassi?esrisksintosevenAIriskdomains:(1)Discrimination&toxicity,(2)Privacy&

security,(3)Misinformation,(4)Maliciousactors&misuse,(5)Human-computerinteraction,(6)

Socioeconomic&environmental,and(7)AIsystemsafety,failures,&limitations.Thesearefurther

dividedinto23subdomains.TheAIRiskRepositoryis,toourknowledge,the?rstattemptto

rigorouslycurate,analyze,andextractAIriskframeworksintoapubliclyaccessible,

comprehensive,extensible,andcategorizedriskdatabase.Thiscreatesafoundationforamore

coordinated,coherent,andcompleteapproachtode?ning,auditing,andmanagingtherisksposed

byAIsystems.

1

2

Guideforreaders

Thisisalongdocument.Hereareseveralwaystousethisdocumentandits

associatedmaterials

,dependingonyourtimeandinterests.

Two-minuteengagement

Skimthe

PlainLanguageSummary

(p.3).

Ten-minuteengagement

Readthe

PlainLanguageSummary

(p.3).

Read

InsightsintotheAIRiskLandscape

(p.56),and

Implicationsforkeyaudiences

(p.57).

Policymakers,ModelEvaluators&Auditors

Readthe

PlainLanguageSummary

(p.3).Skim

DetaileddescriptionsofdomainsofAIrisks

(p.33).

Read

InsightsintotheAIRiskLandscape

(p.56)andthe

Policymakers

and/or

Auditors

subsectionsof

Implicationsforkeyaudiences

(p.57).

Researchers

Readthe

PlainLanguageSummary

(p.3).Read

Figure1

(p.15)tounderstandthemethodswe

usedtoidentifyrelevantdocumentsanddeveloptwonewtaxonomiesofAIrisk;formoredetailonhowwedevelopedthetaxonomiessee

Best-?tframeworksynthesisapproach

(p.19).

Read

InsightsintotheAIRiskLandscape

(p.56),andthe

Academics

subsectionof

Implicationsfor

keyaudiences

(p.59)andskim

Limitationsanddirectionsforfutureresearch

(p.60).

3

PlainLanguageSummary

●TherisksposedbyArti?cialIntelligence(AI)concernmanystakeholders

●Manyresearchershaveattemptedtoclassifytheserisks

●Existingclassi?cationsareuncoordinatedandinconsistent

●Wereviewandsynthesizepriorclassi?cationstoproduceanAIRiskRepository,includingapaper,causaltaxonomy,domaintaxonomy,database,andwebsite

●Toourknowledge,thisisthe?rstattempttorigorouslycurate,analyze,andextractAIriskframeworksintoapubliclyaccessible,comprehensive,extensible,andcategorizedriskdatabase

TherisksposedbyArti?cialIntelligence(AI)areofconsiderableconcerntoawiderangeof

stakeholdersincludingpolicymakers,experts,AIcompanies,andthepublic.Theserisksspan

variousdomainsandcanmanifestindifferentways:TheAIIncidentDatabasenowincludesover3,000real-worldinstanceswhereAIsystemshavecausedornearlycausedharm.

Tocreateacleareroverviewofthiscomplexsetofrisks,manyresearchershavetriedtoidentify

andgroupthem.Intheory,theseeffortsshouldhelptosimplifycomplexity,identifypatterns,

highlightgaps,andfacilitateeffectivecommunicationandriskprevention.Inpractice,theseeffortshaveoftenbeenuncoordinatedandvariedintheirscopeandfocus,leadingtonumerous

con?ictingclassi?cationsystems.Evenwhendifferentclassi?cationsystemsusesimilartermsforrisks(e.g.,“privacy”)orfocusonsimilardomains(e.g.,“existentialrisks”),theycanreferto

conceptsinconsistently.Asaresult,itisstillhardtounderstandthefullscopeofAIrisk.

Inthiswork,webuildonpreviouseffortstoclassifyAIrisksbycombiningtheirdiverse

perspectivesintoacomprehensive,uni?edclassi?cationsystem.Duringthissynthesisprocess,werealizedthatourresultscontainedtwotypesofclassi?cationsystems:

●High-levelcategorizationsofcausesofAIrisks(e.g.,whenorwhyrisksfromAIoccur)

●Mid-levelhazardsorharmsfromAI(e.g,AIistrainedonlimiteddataorusedtomakeweapons)

Becausetheseclassi?cationsystemsweresodifferent,itwashardtounifythem;high-levelriskcategoriessuchas“Diffusionofresponsibility”or“HumanscreatedangerousAIbymistake”donotmaptonarrowercategorieslike“Misuse”or“NoisyTrainingData,”orviceversa.Wethereforedecidedtocreatetwodifferentclassi?cationsystemsthattogetherwouldformouruni?ed

classi?cationsystem.

Thepaperweproducedanditsassociatedproducts(i.e.,causaltaxonomy,domaintaxonomy,

livingdatabase

and

website

)provideaclear,accessibleresourceforunderstandingand

addressingacomprehensiverangeofrisksassociatedwithAI.WerefertotheseproductsastheAIRiskRepository.

4

Whatwedid

FigureA.OverviewofStudyMethodology

AsshowninFigureA,weusedasystematicsearchstrategy,forwardsandbackwardssearching,

andexpertconsultationtoidentifyAIriskclassi?cations,frameworks,andtaxonomies.Speci?cally,wesearchedseveralacademicdatabasesforrelevantresearchandthenusedpre-speci?edrulestode?newhichresearchwouldbeincludedinoursummary.Next,weconsultedexperts(i.e.,the

authorsoftheincludeddocuments)tosuggestadditionalresearchweshouldinclude.Finally,wereviewedi)thebibliographiesoftheresearchidenti?edinthe?rstandsecondstages,andii)

papersthatreferencedthatresearchto?ndfurtherrelevantresearch.

Attheconclusionofthisprocess,weextractedinformationabout777differentrisksfrom43

documents,withquotesandpagenumbers,intoa"living"databaseweintendtoupdateovertime(seeFigureB).Youcanwatchanexplainervideoforthedatabase

here

.

FigureB.ImageofAIRiskDatabase.

Weuseda“best?tframeworksynthesis”approachtodeveloptwotaxonomiesforclassifying

theserisks.Thisinvolvedchoosingthe“best?tting”classi?cationsystemforourpurposesfrom

thesetof43existingsystemswehadidenti?edduringoursearchandusingthissystemto

categorizetheAIrisksinourdatabase.Whereriskscouldnotbecategorizedusingthissystem,weupdatedtheexistingcategories,creatednewcategories,orchangedthestructureofthissystem.Werepeatedthisprocessuntilweachieveda?nalversionthatcouldeffectivelycoderisksinthedatabase.

5

Duringcoding,weusedgroundedtheorymethodstoanalyzethedata.Wethereforeidenti?edandcodedrisksaspresentedintheoriginalsources,withoutinterpretation.Basedonthis,our

Causal

Taxonomy

groupsrisksbytheentity,intent,andtimingpresented(seeTableA).

TableA.CausalTaxonomyofAIRisks

Category

Level

Description

Entity

HumanAI

Other

Theriskiscausedbyadecisionoractionmadebyhumans

TheriskiscausedbyadecisionoractionmadebyanAIsystemTheriskiscausedbysomeotherreasonorisambiguous

Intent

IntentionalUnintentionalOther

TheriskoccursduetoanexpectedoutcomefrompursuingagoalTheriskoccursduetoanunexpectedoutcomefrompursuingagoal

Theriskispresentedasoccurringwithoutclearlyspecifyingtheintentionality

Timing

Pre-deploymentPost-deploymentOther

TheriskoccursbeforetheAIisdeployed

TheriskoccursaftertheAImodelhasbeentrainedanddeployedTheriskispresentedwithoutaclearlyspeci?edtimeofoccurrence

Our

DomainTaxonomy

groupsrisksintosevendomainssuchasdiscrimination,privacy,andmisinformation.Thesedomainsarefurthergroupedinto23risksubdomains(seeTableB).

6

TableB.DomainTaxonomyofAIRisks

Domain/SubdomainDescription

1Discrimination&toxicity

1.1Unfairdiscriminationandmisrepresentation

UnequaltreatmentofindividualsorgroupsbyAI,oftenbasedonrace,gender,orothersensitivecharacteristics,resultinginunfairoutcomesandrepresentationofthosegroups.

1.2Exposuretotoxiccontent

AIthatexposesuserstoharmful,abusive,unsafe,orinappropriatecontent.Mayinvolveprovidingadviceorencouragingaction.Examplesoftoxiccontentincludehatespeech,violence,extremism,illegalacts,orchildsexualabusematerial,aswellascontentthatviolatescommunitynormssuchasprofanity,in?ammatorypoliticalspeech,orpornography.

1.3Unequalperformanceacrossgroups

AccuracyandeffectivenessofAIdecisionsandactionsaredependentongroupmembership,wheredecisionsinAIsystemdesignandbiasedtrainingdataleadtounequaloutcomes,reducedbene?ts,increasedeffort,andalienationofusers.

2Privacy&security

2.1Compromiseofprivacyby

obtaining,leaking,orcorrectlyinferringsensitiveinformation

AIsystemsthatmemorizeandleaksensitivepersonaldataorinferprivateinformationaboutindividualswithouttheirconsent.Unexpectedorunauthorizedsharingofdataandinformationcancompromiseuserexpectationofprivacy,assistidentitytheft,orcauselossofcon?dentialintellectualproperty.

2.2AIsystemsecurityvulnerabilitiesandattacks

VulnerabilitiesthatcanbeexploitedinAIsystems,softwaredevelopmenttoolchains,andhardwarethatresultsinunauthorizedaccess,dataandprivacybreaches,orsystemmanipulationcausingunsafeoutputsorbehavior.

3Misinformation

3.1Falseormisleadinginformation

AIsystemsthatinadvertentlygenerateorspreadincorrectordeceptiveinformation,whichcanleadtoinaccuratebeliefsinusersandunderminetheirautonomy.Humansthatmakedecisionsbasedonfalsebeliefscanexperiencephysical,emotional,ormaterialharms

3.2Pollutionofinformationecosystemandlossofconsensusreality

HighlypersonalizedAI-generatedmisinformationthatcreates“?lterbubbles”whereindividualsonlyseewhatmatchestheirexistingbeliefs,underminingsharedrealityandweakeningsocialcohesionandpoliticalprocesses.

4Maliciousactors&misuse

4.1Disinformation,surveillance,andin?uenceatscale

4.2Cyberattacks,weapondevelopmentoruse,andmassharm

4.3Fraud,scams,andtargetedmanipulation

UsingAIsystemstoconductlarge-scaledisinformationcampaigns,malicioussurveillance,ortargetedandsophisticatedautomatedcensorshipandpropaganda,withtheaimofmanipulatingpoliticalprocesses,publicopinion,andbehavior.

UsingAIsystemstodevelopcyberweapons(e.g.,bycodingcheaper,moreeffectivemalware),developneworenhanceexistingweapons(e.g.,LethalAutonomousWeaponsorchemical,biological,radiological,nuclear,andhigh-yieldexplosives),oruseweaponstocausemassharm.

UsingAIsystemstogainapersonaladvantageoverothersthroughcheating,fraud,scams,blackmail,ortargetedmanipulationofbeliefsorbehavior.ExamplesincludeAI-facilitatedplagiarismforresearchoreducation,impersonatingatrustedorfakeindividualforillegitimate?nancialbene?t,orcreatinghumiliatingorsexualimagery.

5Human-computerinteraction

5.1OverrelianceandunsafeuseAnthropomorphizing,trusting,orrelyingonAIsystemsbyusers,leadingtoemotionalormaterialdependenceandtoinappropriaterelationshipswithor

expectationsofAIsystems.Trustcanbeexploitedbymaliciousactors(e.g.,toharvestinformationorenablemanipulation),orresultinharmfrominappropriateuseofAIincriticalsituations(suchasamedicalemergency).OverrelianceonAIsystemscancompromiseautonomyandweakensocialties.

7

Domain/SubdomainDescription

DelegatingbyhumansofkeydecisionstoAIsystems,orAIsystemsthatmakedecisionsthatdiminishhumancontrolandautonomy.Bothcanpotentiallyleadtohumansfeelingdisempowered,losingtheabilitytoshapeaful?llinglifetrajectory,orbecomingcognitivelyenfeebled.

6Socioeconomic&environmentalharms

6.1Powercentralizationandunfairdistributionofbene?ts

AI-drivenconcentrationofpowerandresourceswithincertainentitiesorgroups,especiallythosewithaccesstoorownershipofpowerfulAIsystems,leadingtoinequitabledistributionofbene?tsandincreasedsocietalinequality.

6.2Increasedinequalityanddeclineinemploymentquality

SocialandeconomicinequalitiescausedbywidespreaduseofAI,suchasbyautomatingjobs,reducingthequalityofemployment,orproducingexploitativedependenciesbetweenworkersandtheiremployers.

6.3Economicandculturaldevaluationofhumaneffort

AIsystemscapableofcreatingeconomicorculturalvaluethroughreproductionofhumaninnovationorcreativity(e.g.,art,music,writing,coding,invention),destabilizingeconomicandsocialsystemsthatrelyonhumaneffort.TheubiquityofAI-generatedcontentmayleadtoreducedappreciationforhumanskills,disruptionofcreativeandknowledge-basedindustries,andhomogenizationofculturalexperiences.

6.4Competitivedynamics

CompetitionbyAIdevelopersorstate-likeactorsinanAI“race”byrapidlydeveloping,deploying,andapplyingAIsystemstomaximizestrategicoreconomicadvantage,increasingtherisktheyreleaseunsafeanderror-pronesystems.

6.5Governancefailure

InadequateregulatoryframeworksandoversightmechanismsthatfailtokeeppacewithAIdevelopment,leadingtoineffectivegovernanceandtheinabilitytomanageAIrisksappropriately.

6.6Environmentalharm

ThedevelopmentandoperationofAIsystemsthatcauseenvironmentalharmthroughenergyconsumptionofdatacentersorthematerialsandcarbonfootprintsassociatedwithAIhardware.

5.2Lossofhumanagencyandautonomy

7AIsystemsafety,failures&limitations

7.1AIpursuingitsowngoalsincon?ictAIsystemsthatactincon?ictwithethicalstandardsorhumangoalsorvalues,especiallythegoalsofdesignersorusers.Thesemisalignedbehaviorsmaybewithhumangoalsorvaluesintroducedbyhumansduringdesignanddevelopment,suchasthroughrewardhackingandgoalmisgeneralisation,andmayresultinAIusingdangerous

capabilitiessuchasmanipulation,deception,orsituationalawarenesstoseekpower,self-proliferate,orachieveothergoals.

7.2AIpossessingdangerousAIsystemsthatdevelop,access,orareprovidedwithcapabilitiesthatincreasetheirpotentialtocausemassharmthroughdeception,weaponsdevelopmentandcapabilitiesacquisition,persuasionandmanipulation,politicalstrategy,cyber-offense,AIdevelopment,situationalawareness,andself-proliferation.Thesecapabilitiesmay

causemassharmduetomalicioushumanactors,misalignedAIsystems,orfailureintheAIsystem.

7.3LackofcapabilityorrobustnessAIsystemsthatfailtoperformreliablyoreffectivelyundervaryingconditions,exposingthemtoerrorsandfailuresthatcanhavesigni?cantconsequences,especiallyincriticalapplicationsorareasthatrequiremoralreasoning.

7.4LackoftransparencyorChallengesinunderstandingorexplainingthedecision-makingprocessesofAIsystems,whichcanleadtomistrust,di?cultyinenforcingcompliancestandardsorinterpretabilityholdingrelevantactorsaccountableforharms,andtheinabilitytoidentifyandcorrecterrors.

7.5AIwelfareandrightsEthicalconsiderationsregardingthetreatmentofpotentiallysentientAIentities,includingdiscussionsaroundtheirpotentialrightsandwelfare,particularlyasAIsystemsbecomemoreadvancedandautonomous.

8

Whatwefound

AsshowninTableC,mostoftherisks(51%)werepresentedascausedbyAIsystemsratherthan

humans(34%),andasemergingaftertheAImodelhasbeentrainedanddeployed(65%)ratherthanbefore(10%).Asimilarproportionofriskswerepresentedasintentional(35%)and

unintentional(37%)

TableC.AIRiskDatabaseCodedWithCausalTaxonomy:Entity,Intent,Timing

Category

Level

Proportion

Entity

HumanAI

Other

34%51%15%

Intent

IntentionalUnintentionalOther

35%37%27%

Timing

Pre-deploymentPost-deploymentOther

10%65%24%

Note.Totalsmaynotmatchduetorounding.

AsshowninTableD,theriskdomainsthatwerecoveredthemostinpreviousdocumentswere:

●AIsystemsafety,failures&limitations-coveredin76%ofdocuments.

●Socioeconomic&environmentalharms-coveredin73%ofdocuments.

●Discrimination&toxicity-coveredin71%ofdocuments.

Human-computerinteraction(41%)andMisinformation(44%)werelessfrequentlydiscussed.

Nodocumentdiscussedrisksfromall23subdomains;thehighestcoveragewas16outof23

subdomains

(70%;Gabrieletal.,2024)

.Onaverage,documentsmentioned7outof23(34%)oftheAIrisksubdomains,witharangeof2to16subdomainsmentioned.SeeTable9inthebodyofthepaperforafullbreakdownofsubdomaincoveragebypaper.

Somerisksubdomainswerediscussedmuchmorefrequentlythanothers,suchas:

●Unfairdiscriminationandmisrepresentation(8%ofrisks).

●AIpursuingitsowngoalsincon?ictwithhumangoalsorvalues(8%ofrisks).

●Lackofcapabilityorrobustness(9%ofrisks).

Somerisksubdomainsarerelativelyunderexplored,suchas:

●AIwelfareandrights(<1%ofrisks).

●Pollutionoftheinformationecosystemandlossofconsensusreality(1%ofrisks).

●Competitivedynamics(1%ofrisks).

9

TableD.AIRiskDatabaseCodedWithDomainTaxonomy

Percentageofdocuments

Percentageofrisks

Domain/Subdomain

1Discrimination&toxicity

16%

71%

1.1Unfairdiscriminationandmisrepresentation

8%

63%

1.2Exposuretotoxiccontent

6%

34%

1.3Unequalperformanceacrossgroups

2%

20%

2Privacy&security

14%

68%

2.1Compromiseofprivacybyobtaining,leakingorcorrectlyinferringsensitiveinformation

7%

61%

2.2AIsystemsecurityvulnerabilitiesandattacks

7%

32%

3Misinformation

7%

44%

3.1Falseormisleadinginformation

5%

39%

3.2Pollutionofinformationecosystemandlossofconsensusreality

1%

12%

4Maliciousactors&misuse

14%

68%

4.1Disinformation,surveillance,andin?uenceatscale

5%

41%

4.2Cyberattacks,weapondevelopmentoruse,andmassharm

5%

54%

4.3Fraud,scams,andtargetedmanipulation

4%

34%

5Human-computerinteraction

8%

41%

5.1Overrelianceandunsafeuse

5%

24%

5.2Lossofhumanagencyandautonomy

4%

27%

6Socioeconomic&environmentalharms

18%

73%

6.1Powercentralizationandunfairdistributionofbene?ts

4%

37%

6.2Increasedinequalityanddeclineinemploymentquality

4%

34%

6.3Economicandculturaldevaluationofhumaneffort

3%

32%

6.4Competitivedynamics

1%

12%

6.5Governancefailure

4%

32%

6.6Environmentalharm

2%

32%

7AIsystemsafety,failures&limitations

24%

76%

7.1AIpursuingitsowngoalsincon?ictwithhumangoalsorvalues

8%

46%

7.2AIpossessingdangerouscapabilities

4%

20%

7.3Lackofcapabilityorrobustness

9%

59%

7.4Lackoftransparencyorinterpretability

3%

27%

7.5AIwelfareandrights

<1%

2%

Note.Domaintotalsmaynotmatchsubdomainsumsduetoroundinganddomain-levelcodingofsomerisks.

HowtousetheAIRiskRepository

OurDatabaseisfreeto

copy

and

use

.TheCausalandDomainTaxonomiescanbeusedseparatelyto?lterthisdatabasetoidentifyspeci?crisks,forinstance,thosefocusedonrisksoccurring

pre-deploymentorpost-deploymentorrelatedtoaspeci?criskdomainsuchasMisinformation.

TheCausalandDomainTaxonomiescanbeusedtogethertounderstandhoweachcausalfactor(i.e.,entity,intent,andtiming)relatestoeachriskdomainorsubdomain.Forexample,ausercould?lterforDiscrimination&toxicityrisksandusethecausal?ltertoidentifytheintentionaland

unintentionalvariationsofthisriskfromdifferentsources.Similarly,theycoulddifferentiate

betweensourceswhichexamineDiscrimination&toxicityriskswhereAIistrainedontoxiccontentpre-deployment,andthosewhichexaminewhereAIinadvertentlycausesharmpost-deploymentbyshowingtoxiccontent.

10

Wediscusssomeadditionalusecasesbelow;seethefullpaperformoredetail.

●General:

○Onboardingnewpeopletothe?eldofAIrisks.

○Afoundationtobuildonforcomplexprojects.

○Informingthedevelopmentofnarrowerormorespeci?ctaxonomies.(e.g.,systemicrisks,orEU-relatedmisinformationrisks).

○Usingthetaxonomyforprioritization(e.g.,withexpertratings),synthesis(e.g,forareview)orcomparison(e.g.,exploringpublicconcernacrossdomains).

○Identifyingunderrepresentedareas(e.g.,AIwelfareandrights).

●Speci?c:

○Policymakers:Regulationandsharedstandarddevelopment.

○Auditors:DevelopingAIsystemauditsandstandards.

○Academics:Identifyingresearchgapsanddevelopeducationandtraining.

○Industry:Internallyevaluatingandpreparingforrisks,anddevelopingrelatedstrategy,educationandtraining.

Howtoengage

●AccesstheRepositoryviaour

website

:

●Use

thisform

toofferfeedback,suggestmissingresourcesorrisks,ormakecontact.

11

TableofContents

Abstract1

Guideforreaders2

PlainLanguageSummary3

Whatwedid4

Whatwefound8

HowtousetheAIRiskRepository9

Howtoengage10

TableofContents11

TableofFiguresandTables13

Introduction14

Methods15

Systematicliteraturesearch16

Searchstrategy16

ExtractionintolivingAIRiskDatabase19

Bestfitframeworksynthesisapproach19

WhywedevelopedtwotaxonomiesofAIrisk20

Developmentofhigh-levelCausalTaxonomyofAIRisks21

Developmentofmid-levelDomainTaxonomyofAIRisks22

Coding23

Results23

Systematicliteraturesearch23

Characteristicsofincludeddocuments24

CausalTaxonomyofAIRisks27

MostcommoncausalfactorsforAIrisk28

CausalfactorsofAIriskexaminedbyincludeddocuments29

DomainTaxonomyofAIRisks30

DetaileddescriptionsofdomainsofAIrisks33

MostcommondomainsofAIrisks47

DomainsofAIrisksexaminedbyincludeddocuments48

Subdomainsof

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論