版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
TheAIRiskRepository:AComprehensive
Meta-Review,Database,andTaxonomyof
RisksFromArti?cialIntelligence
PeterSlattery1,2,AlexanderK.Saeri1,2,EmilyA.C.Grundy1,2,JessGraham3,MichaelNoetel2,3,RistoUuk4,5,JamesDao6,
SoroushPour6,StephenCasper7,andNeilThompson1.
1MITFutureTech,MassachusettsInstituteofTechnology,2ReadyResearch,3SchoolofPsychology,TheUniversityof
Queensland,4FutureofLifeInstitute,5KULeuven,6HarmonyIntelligence,7ComputerScienceandArti?cialIntelligence
Laboratory,MassachusettsInstituteofTechnology.
Correspondencetopslat@.
Abstract
TherisksposedbyArti?cialIntelligence(AI)areofconsiderableconcerntoacademics,auditors,
policymakers,AIcompanies,andthepublic.However,alackofsharedunderstandingofAIrisks
canimpedeourabilitytocomprehensivelydiscuss,research,andreacttothem.Thispaper
addressesthisgapbycreatinganAIRiskRepositorytoserveasacommonframeofreference.
Thiscomprisesalivingdatabaseof777risksextractedfrom43taxonomies,whichcanbe?ltered
basedontwooverarchingtaxonomiesandeasilyaccessed,modi?ed,andupdatedviaour
website
and
onlinespreadsheets
.WeconstructourRepositorywithasystematicreviewoftaxonomiesand
otherstructuredclassi?cationsofAIriskfollowedbyanexpertconsultation.Wedevelopour
taxonomiesofAIriskusingabest-?tframeworksynthesis.Ourhigh-levelCausalTaxonomyofAI
Risksclassi?eseachriskbyitscausalfactors(1)Entity:Human,AI;(2)Intentionality:Intentional,
Unintentional;and(3)Timing:Pre-deployment;Post-deployment.Ourmid-levelDomainTaxonomy
ofAIRisksclassi?esrisksintosevenAIriskdomains:(1)Discrimination&toxicity,(2)Privacy&
security,(3)Misinformation,(4)Maliciousactors&misuse,(5)Human-computerinteraction,(6)
Socioeconomic&environmental,and(7)AIsystemsafety,failures,&limitations.Thesearefurther
dividedinto23subdomains.TheAIRiskRepositoryis,toourknowledge,the?rstattemptto
rigorouslycurate,analyze,andextractAIriskframeworksintoapubliclyaccessible,
comprehensive,extensible,andcategorizedriskdatabase.Thiscreatesafoundationforamore
coordinated,coherent,andcompleteapproachtode?ning,auditing,andmanagingtherisksposed
byAIsystems.
1
2
Guideforreaders
Thisisalongdocument.Hereareseveralwaystousethisdocumentandits
associatedmaterials
,dependingonyourtimeandinterests.
Two-minuteengagement
Skimthe
PlainLanguageSummary
(p.3).
Ten-minuteengagement
Readthe
PlainLanguageSummary
(p.3).
Read
InsightsintotheAIRiskLandscape
(p.56),and
Implicationsforkeyaudiences
(p.57).
Policymakers,ModelEvaluators&Auditors
Readthe
PlainLanguageSummary
(p.3).Skim
DetaileddescriptionsofdomainsofAIrisks
(p.33).
Read
InsightsintotheAIRiskLandscape
(p.56)andthe
Policymakers
and/or
Auditors
subsectionsof
Implicationsforkeyaudiences
(p.57).
Researchers
Readthe
PlainLanguageSummary
(p.3).Read
Figure1
(p.15)tounderstandthemethodswe
usedtoidentifyrelevantdocumentsanddeveloptwonewtaxonomiesofAIrisk;formoredetailonhowwedevelopedthetaxonomiessee
Best-?tframeworksynthesisapproach
(p.19).
Read
InsightsintotheAIRiskLandscape
(p.56),andthe
Academics
subsectionof
Implicationsfor
keyaudiences
(p.59)andskim
Limitationsanddirectionsforfutureresearch
(p.60).
3
PlainLanguageSummary
●TherisksposedbyArti?cialIntelligence(AI)concernmanystakeholders
●Manyresearchershaveattemptedtoclassifytheserisks
●Existingclassi?cationsareuncoordinatedandinconsistent
●Wereviewandsynthesizepriorclassi?cationstoproduceanAIRiskRepository,includingapaper,causaltaxonomy,domaintaxonomy,database,andwebsite
●Toourknowledge,thisisthe?rstattempttorigorouslycurate,analyze,andextractAIriskframeworksintoapubliclyaccessible,comprehensive,extensible,andcategorizedriskdatabase
TherisksposedbyArti?cialIntelligence(AI)areofconsiderableconcerntoawiderangeof
stakeholdersincludingpolicymakers,experts,AIcompanies,andthepublic.Theserisksspan
variousdomainsandcanmanifestindifferentways:TheAIIncidentDatabasenowincludesover3,000real-worldinstanceswhereAIsystemshavecausedornearlycausedharm.
Tocreateacleareroverviewofthiscomplexsetofrisks,manyresearchershavetriedtoidentify
andgroupthem.Intheory,theseeffortsshouldhelptosimplifycomplexity,identifypatterns,
highlightgaps,andfacilitateeffectivecommunicationandriskprevention.Inpractice,theseeffortshaveoftenbeenuncoordinatedandvariedintheirscopeandfocus,leadingtonumerous
con?ictingclassi?cationsystems.Evenwhendifferentclassi?cationsystemsusesimilartermsforrisks(e.g.,“privacy”)orfocusonsimilardomains(e.g.,“existentialrisks”),theycanreferto
conceptsinconsistently.Asaresult,itisstillhardtounderstandthefullscopeofAIrisk.
Inthiswork,webuildonpreviouseffortstoclassifyAIrisksbycombiningtheirdiverse
perspectivesintoacomprehensive,uni?edclassi?cationsystem.Duringthissynthesisprocess,werealizedthatourresultscontainedtwotypesofclassi?cationsystems:
●High-levelcategorizationsofcausesofAIrisks(e.g.,whenorwhyrisksfromAIoccur)
●Mid-levelhazardsorharmsfromAI(e.g,AIistrainedonlimiteddataorusedtomakeweapons)
Becausetheseclassi?cationsystemsweresodifferent,itwashardtounifythem;high-levelriskcategoriessuchas“Diffusionofresponsibility”or“HumanscreatedangerousAIbymistake”donotmaptonarrowercategorieslike“Misuse”or“NoisyTrainingData,”orviceversa.Wethereforedecidedtocreatetwodifferentclassi?cationsystemsthattogetherwouldformouruni?ed
classi?cationsystem.
Thepaperweproducedanditsassociatedproducts(i.e.,causaltaxonomy,domaintaxonomy,
livingdatabase
and
website
)provideaclear,accessibleresourceforunderstandingand
addressingacomprehensiverangeofrisksassociatedwithAI.WerefertotheseproductsastheAIRiskRepository.
4
Whatwedid
FigureA.OverviewofStudyMethodology
AsshowninFigureA,weusedasystematicsearchstrategy,forwardsandbackwardssearching,
andexpertconsultationtoidentifyAIriskclassi?cations,frameworks,andtaxonomies.Speci?cally,wesearchedseveralacademicdatabasesforrelevantresearchandthenusedpre-speci?edrulestode?newhichresearchwouldbeincludedinoursummary.Next,weconsultedexperts(i.e.,the
authorsoftheincludeddocuments)tosuggestadditionalresearchweshouldinclude.Finally,wereviewedi)thebibliographiesoftheresearchidenti?edinthe?rstandsecondstages,andii)
papersthatreferencedthatresearchto?ndfurtherrelevantresearch.
Attheconclusionofthisprocess,weextractedinformationabout777differentrisksfrom43
documents,withquotesandpagenumbers,intoa"living"databaseweintendtoupdateovertime(seeFigureB).Youcanwatchanexplainervideoforthedatabase
here
.
FigureB.ImageofAIRiskDatabase.
Weuseda“best?tframeworksynthesis”approachtodeveloptwotaxonomiesforclassifying
theserisks.Thisinvolvedchoosingthe“best?tting”classi?cationsystemforourpurposesfrom
thesetof43existingsystemswehadidenti?edduringoursearchandusingthissystemto
categorizetheAIrisksinourdatabase.Whereriskscouldnotbecategorizedusingthissystem,weupdatedtheexistingcategories,creatednewcategories,orchangedthestructureofthissystem.Werepeatedthisprocessuntilweachieveda?nalversionthatcouldeffectivelycoderisksinthedatabase.
5
Duringcoding,weusedgroundedtheorymethodstoanalyzethedata.Wethereforeidenti?edandcodedrisksaspresentedintheoriginalsources,withoutinterpretation.Basedonthis,our
Causal
Taxonomy
groupsrisksbytheentity,intent,andtimingpresented(seeTableA).
TableA.CausalTaxonomyofAIRisks
Category
Level
Description
Entity
HumanAI
Other
Theriskiscausedbyadecisionoractionmadebyhumans
TheriskiscausedbyadecisionoractionmadebyanAIsystemTheriskiscausedbysomeotherreasonorisambiguous
Intent
IntentionalUnintentionalOther
TheriskoccursduetoanexpectedoutcomefrompursuingagoalTheriskoccursduetoanunexpectedoutcomefrompursuingagoal
Theriskispresentedasoccurringwithoutclearlyspecifyingtheintentionality
Timing
Pre-deploymentPost-deploymentOther
TheriskoccursbeforetheAIisdeployed
TheriskoccursaftertheAImodelhasbeentrainedanddeployedTheriskispresentedwithoutaclearlyspeci?edtimeofoccurrence
Our
DomainTaxonomy
groupsrisksintosevendomainssuchasdiscrimination,privacy,andmisinformation.Thesedomainsarefurthergroupedinto23risksubdomains(seeTableB).
6
TableB.DomainTaxonomyofAIRisks
Domain/SubdomainDescription
1Discrimination&toxicity
1.1Unfairdiscriminationandmisrepresentation
UnequaltreatmentofindividualsorgroupsbyAI,oftenbasedonrace,gender,orothersensitivecharacteristics,resultinginunfairoutcomesandrepresentationofthosegroups.
1.2Exposuretotoxiccontent
AIthatexposesuserstoharmful,abusive,unsafe,orinappropriatecontent.Mayinvolveprovidingadviceorencouragingaction.Examplesoftoxiccontentincludehatespeech,violence,extremism,illegalacts,orchildsexualabusematerial,aswellascontentthatviolatescommunitynormssuchasprofanity,in?ammatorypoliticalspeech,orpornography.
1.3Unequalperformanceacrossgroups
AccuracyandeffectivenessofAIdecisionsandactionsaredependentongroupmembership,wheredecisionsinAIsystemdesignandbiasedtrainingdataleadtounequaloutcomes,reducedbene?ts,increasedeffort,andalienationofusers.
2Privacy&security
2.1Compromiseofprivacyby
obtaining,leaking,orcorrectlyinferringsensitiveinformation
AIsystemsthatmemorizeandleaksensitivepersonaldataorinferprivateinformationaboutindividualswithouttheirconsent.Unexpectedorunauthorizedsharingofdataandinformationcancompromiseuserexpectationofprivacy,assistidentitytheft,orcauselossofcon?dentialintellectualproperty.
2.2AIsystemsecurityvulnerabilitiesandattacks
VulnerabilitiesthatcanbeexploitedinAIsystems,softwaredevelopmenttoolchains,andhardwarethatresultsinunauthorizedaccess,dataandprivacybreaches,orsystemmanipulationcausingunsafeoutputsorbehavior.
3Misinformation
3.1Falseormisleadinginformation
AIsystemsthatinadvertentlygenerateorspreadincorrectordeceptiveinformation,whichcanleadtoinaccuratebeliefsinusersandunderminetheirautonomy.Humansthatmakedecisionsbasedonfalsebeliefscanexperiencephysical,emotional,ormaterialharms
3.2Pollutionofinformationecosystemandlossofconsensusreality
HighlypersonalizedAI-generatedmisinformationthatcreates“?lterbubbles”whereindividualsonlyseewhatmatchestheirexistingbeliefs,underminingsharedrealityandweakeningsocialcohesionandpoliticalprocesses.
4Maliciousactors&misuse
4.1Disinformation,surveillance,andin?uenceatscale
4.2Cyberattacks,weapondevelopmentoruse,andmassharm
4.3Fraud,scams,andtargetedmanipulation
UsingAIsystemstoconductlarge-scaledisinformationcampaigns,malicioussurveillance,ortargetedandsophisticatedautomatedcensorshipandpropaganda,withtheaimofmanipulatingpoliticalprocesses,publicopinion,andbehavior.
UsingAIsystemstodevelopcyberweapons(e.g.,bycodingcheaper,moreeffectivemalware),developneworenhanceexistingweapons(e.g.,LethalAutonomousWeaponsorchemical,biological,radiological,nuclear,andhigh-yieldexplosives),oruseweaponstocausemassharm.
UsingAIsystemstogainapersonaladvantageoverothersthroughcheating,fraud,scams,blackmail,ortargetedmanipulationofbeliefsorbehavior.ExamplesincludeAI-facilitatedplagiarismforresearchoreducation,impersonatingatrustedorfakeindividualforillegitimate?nancialbene?t,orcreatinghumiliatingorsexualimagery.
5Human-computerinteraction
5.1OverrelianceandunsafeuseAnthropomorphizing,trusting,orrelyingonAIsystemsbyusers,leadingtoemotionalormaterialdependenceandtoinappropriaterelationshipswithor
expectationsofAIsystems.Trustcanbeexploitedbymaliciousactors(e.g.,toharvestinformationorenablemanipulation),orresultinharmfrominappropriateuseofAIincriticalsituations(suchasamedicalemergency).OverrelianceonAIsystemscancompromiseautonomyandweakensocialties.
7
Domain/SubdomainDescription
DelegatingbyhumansofkeydecisionstoAIsystems,orAIsystemsthatmakedecisionsthatdiminishhumancontrolandautonomy.Bothcanpotentiallyleadtohumansfeelingdisempowered,losingtheabilitytoshapeaful?llinglifetrajectory,orbecomingcognitivelyenfeebled.
6Socioeconomic&environmentalharms
6.1Powercentralizationandunfairdistributionofbene?ts
AI-drivenconcentrationofpowerandresourceswithincertainentitiesorgroups,especiallythosewithaccesstoorownershipofpowerfulAIsystems,leadingtoinequitabledistributionofbene?tsandincreasedsocietalinequality.
6.2Increasedinequalityanddeclineinemploymentquality
SocialandeconomicinequalitiescausedbywidespreaduseofAI,suchasbyautomatingjobs,reducingthequalityofemployment,orproducingexploitativedependenciesbetweenworkersandtheiremployers.
6.3Economicandculturaldevaluationofhumaneffort
AIsystemscapableofcreatingeconomicorculturalvaluethroughreproductionofhumaninnovationorcreativity(e.g.,art,music,writing,coding,invention),destabilizingeconomicandsocialsystemsthatrelyonhumaneffort.TheubiquityofAI-generatedcontentmayleadtoreducedappreciationforhumanskills,disruptionofcreativeandknowledge-basedindustries,andhomogenizationofculturalexperiences.
6.4Competitivedynamics
CompetitionbyAIdevelopersorstate-likeactorsinanAI“race”byrapidlydeveloping,deploying,andapplyingAIsystemstomaximizestrategicoreconomicadvantage,increasingtherisktheyreleaseunsafeanderror-pronesystems.
6.5Governancefailure
InadequateregulatoryframeworksandoversightmechanismsthatfailtokeeppacewithAIdevelopment,leadingtoineffectivegovernanceandtheinabilitytomanageAIrisksappropriately.
6.6Environmentalharm
ThedevelopmentandoperationofAIsystemsthatcauseenvironmentalharmthroughenergyconsumptionofdatacentersorthematerialsandcarbonfootprintsassociatedwithAIhardware.
5.2Lossofhumanagencyandautonomy
7AIsystemsafety,failures&limitations
7.1AIpursuingitsowngoalsincon?ictAIsystemsthatactincon?ictwithethicalstandardsorhumangoalsorvalues,especiallythegoalsofdesignersorusers.Thesemisalignedbehaviorsmaybewithhumangoalsorvaluesintroducedbyhumansduringdesignanddevelopment,suchasthroughrewardhackingandgoalmisgeneralisation,andmayresultinAIusingdangerous
capabilitiessuchasmanipulation,deception,orsituationalawarenesstoseekpower,self-proliferate,orachieveothergoals.
7.2AIpossessingdangerousAIsystemsthatdevelop,access,orareprovidedwithcapabilitiesthatincreasetheirpotentialtocausemassharmthroughdeception,weaponsdevelopmentandcapabilitiesacquisition,persuasionandmanipulation,politicalstrategy,cyber-offense,AIdevelopment,situationalawareness,andself-proliferation.Thesecapabilitiesmay
causemassharmduetomalicioushumanactors,misalignedAIsystems,orfailureintheAIsystem.
7.3LackofcapabilityorrobustnessAIsystemsthatfailtoperformreliablyoreffectivelyundervaryingconditions,exposingthemtoerrorsandfailuresthatcanhavesigni?cantconsequences,especiallyincriticalapplicationsorareasthatrequiremoralreasoning.
7.4LackoftransparencyorChallengesinunderstandingorexplainingthedecision-makingprocessesofAIsystems,whichcanleadtomistrust,di?cultyinenforcingcompliancestandardsorinterpretabilityholdingrelevantactorsaccountableforharms,andtheinabilitytoidentifyandcorrecterrors.
7.5AIwelfareandrightsEthicalconsiderationsregardingthetreatmentofpotentiallysentientAIentities,includingdiscussionsaroundtheirpotentialrightsandwelfare,particularlyasAIsystemsbecomemoreadvancedandautonomous.
8
Whatwefound
AsshowninTableC,mostoftherisks(51%)werepresentedascausedbyAIsystemsratherthan
humans(34%),andasemergingaftertheAImodelhasbeentrainedanddeployed(65%)ratherthanbefore(10%).Asimilarproportionofriskswerepresentedasintentional(35%)and
unintentional(37%)
TableC.AIRiskDatabaseCodedWithCausalTaxonomy:Entity,Intent,Timing
Category
Level
Proportion
Entity
HumanAI
Other
34%51%15%
Intent
IntentionalUnintentionalOther
35%37%27%
Timing
Pre-deploymentPost-deploymentOther
10%65%24%
Note.Totalsmaynotmatchduetorounding.
AsshowninTableD,theriskdomainsthatwerecoveredthemostinpreviousdocumentswere:
●AIsystemsafety,failures&limitations-coveredin76%ofdocuments.
●Socioeconomic&environmentalharms-coveredin73%ofdocuments.
●Discrimination&toxicity-coveredin71%ofdocuments.
Human-computerinteraction(41%)andMisinformation(44%)werelessfrequentlydiscussed.
Nodocumentdiscussedrisksfromall23subdomains;thehighestcoveragewas16outof23
subdomains
(70%;Gabrieletal.,2024)
.Onaverage,documentsmentioned7outof23(34%)oftheAIrisksubdomains,witharangeof2to16subdomainsmentioned.SeeTable9inthebodyofthepaperforafullbreakdownofsubdomaincoveragebypaper.
Somerisksubdomainswerediscussedmuchmorefrequentlythanothers,suchas:
●Unfairdiscriminationandmisrepresentation(8%ofrisks).
●AIpursuingitsowngoalsincon?ictwithhumangoalsorvalues(8%ofrisks).
●Lackofcapabilityorrobustness(9%ofrisks).
Somerisksubdomainsarerelativelyunderexplored,suchas:
●AIwelfareandrights(<1%ofrisks).
●Pollutionoftheinformationecosystemandlossofconsensusreality(1%ofrisks).
●Competitivedynamics(1%ofrisks).
9
TableD.AIRiskDatabaseCodedWithDomainTaxonomy
Percentageofdocuments
Percentageofrisks
Domain/Subdomain
1Discrimination&toxicity
16%
71%
1.1Unfairdiscriminationandmisrepresentation
8%
63%
1.2Exposuretotoxiccontent
6%
34%
1.3Unequalperformanceacrossgroups
2%
20%
2Privacy&security
14%
68%
2.1Compromiseofprivacybyobtaining,leakingorcorrectlyinferringsensitiveinformation
7%
61%
2.2AIsystemsecurityvulnerabilitiesandattacks
7%
32%
3Misinformation
7%
44%
3.1Falseormisleadinginformation
5%
39%
3.2Pollutionofinformationecosystemandlossofconsensusreality
1%
12%
4Maliciousactors&misuse
14%
68%
4.1Disinformation,surveillance,andin?uenceatscale
5%
41%
4.2Cyberattacks,weapondevelopmentoruse,andmassharm
5%
54%
4.3Fraud,scams,andtargetedmanipulation
4%
34%
5Human-computerinteraction
8%
41%
5.1Overrelianceandunsafeuse
5%
24%
5.2Lossofhumanagencyandautonomy
4%
27%
6Socioeconomic&environmentalharms
18%
73%
6.1Powercentralizationandunfairdistributionofbene?ts
4%
37%
6.2Increasedinequalityanddeclineinemploymentquality
4%
34%
6.3Economicandculturaldevaluationofhumaneffort
3%
32%
6.4Competitivedynamics
1%
12%
6.5Governancefailure
4%
32%
6.6Environmentalharm
2%
32%
7AIsystemsafety,failures&limitations
24%
76%
7.1AIpursuingitsowngoalsincon?ictwithhumangoalsorvalues
8%
46%
7.2AIpossessingdangerouscapabilities
4%
20%
7.3Lackofcapabilityorrobustness
9%
59%
7.4Lackoftransparencyorinterpretability
3%
27%
7.5AIwelfareandrights
<1%
2%
Note.Domaintotalsmaynotmatchsubdomainsumsduetoroundinganddomain-levelcodingofsomerisks.
HowtousetheAIRiskRepository
OurDatabaseisfreeto
copy
and
use
.TheCausalandDomainTaxonomiescanbeusedseparatelyto?lterthisdatabasetoidentifyspeci?crisks,forinstance,thosefocusedonrisksoccurring
pre-deploymentorpost-deploymentorrelatedtoaspeci?criskdomainsuchasMisinformation.
TheCausalandDomainTaxonomiescanbeusedtogethertounderstandhoweachcausalfactor(i.e.,entity,intent,andtiming)relatestoeachriskdomainorsubdomain.Forexample,ausercould?lterforDiscrimination&toxicityrisksandusethecausal?ltertoidentifytheintentionaland
unintentionalvariationsofthisriskfromdifferentsources.Similarly,theycoulddifferentiate
betweensourceswhichexamineDiscrimination&toxicityriskswhereAIistrainedontoxiccontentpre-deployment,andthosewhichexaminewhereAIinadvertentlycausesharmpost-deploymentbyshowingtoxiccontent.
10
Wediscusssomeadditionalusecasesbelow;seethefullpaperformoredetail.
●General:
○Onboardingnewpeopletothe?eldofAIrisks.
○Afoundationtobuildonforcomplexprojects.
○Informingthedevelopmentofnarrowerormorespeci?ctaxonomies.(e.g.,systemicrisks,orEU-relatedmisinformationrisks).
○Usingthetaxonomyforprioritization(e.g.,withexpertratings),synthesis(e.g,forareview)orcomparison(e.g.,exploringpublicconcernacrossdomains).
○Identifyingunderrepresentedareas(e.g.,AIwelfareandrights).
●Speci?c:
○Policymakers:Regulationandsharedstandarddevelopment.
○Auditors:DevelopingAIsystemauditsandstandards.
○Academics:Identifyingresearchgapsanddevelopeducationandtraining.
○Industry:Internallyevaluatingandpreparingforrisks,anddevelopingrelatedstrategy,educationandtraining.
Howtoengage
●AccesstheRepositoryviaour
website
:
●Use
thisform
toofferfeedback,suggestmissingresourcesorrisks,ormakecontact.
11
TableofContents
Abstract1
Guideforreaders2
PlainLanguageSummary3
Whatwedid4
Whatwefound8
HowtousetheAIRiskRepository9
Howtoengage10
TableofContents11
TableofFiguresandTables13
Introduction14
Methods15
Systematicliteraturesearch16
Searchstrategy16
ExtractionintolivingAIRiskDatabase19
Bestfitframeworksynthesisapproach19
WhywedevelopedtwotaxonomiesofAIrisk20
Developmentofhigh-levelCausalTaxonomyofAIRisks21
Developmentofmid-levelDomainTaxonomyofAIRisks22
Coding23
Results23
Systematicliteraturesearch23
Characteristicsofincludeddocuments24
CausalTaxonomyofAIRisks27
MostcommoncausalfactorsforAIrisk28
CausalfactorsofAIriskexaminedbyincludeddocuments29
DomainTaxonomyofAIRisks30
DetaileddescriptionsofdomainsofAIrisks33
MostcommondomainsofAIrisks47
DomainsofAIrisksexaminedbyincludeddocuments48
Subdomainsof
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 服裝行業(yè)設(shè)計師工作總結(jié)
- 互聯(lián)網(wǎng)行業(yè)招聘創(chuàng)新策略
- 電子行業(yè)產(chǎn)品生命周期管理總結(jié)
- 美容美發(fā)店前臺工作總結(jié)
- 幸福就是現(xiàn)在
- 同學聚會感言演講稿
- 2024年木材采購合同模板:木材與家具生產(chǎn)配套協(xié)議3篇
- 管理決策之《管理及其決策四》
- 零售店保安工作總結(jié)
- 動物園前臺服務(wù)總結(jié)
- 智能工廠梯度培育行動實施方案
- 23J916-1 住宅排氣道(一)
- AD域控規(guī)劃方案
- 院前急救護士理論考核參考題及答案
- 2024新人教七年級英語上冊 Unit 4 My Favourite Subject(大單元教學設(shè)計)
- 四年級數(shù)學上冊期末復習試卷計算題訓練50題和答案解析
- 國家開放大學電大《供應(yīng)鏈管理》期末題庫及答案
- 10萬噸綠色航空煤油項目可行性研究報告寫作模板-備案審批
- 《2024年 《法學引注手冊》示例》范文
- 光伏車棚施工方案
- 2024年檢察院招錄書記員考試法律基礎(chǔ)知識及答案
評論
0/150
提交評論