版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
優(yōu)勝教育2025年高考模擬(三診)數(shù)學(xué)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.一個(gè)正三棱柱的正(主)視圖如圖,則該正三棱柱的側(cè)面積是()A.16 B.12 C.8 D.62.已知雙曲線的一條漸近線的傾斜角為,且,則該雙曲線的離心率為()A. B. C.2 D.43.記集合和集合表示的平面區(qū)域分別是和,若在區(qū)域內(nèi)任取一點(diǎn),則該點(diǎn)落在區(qū)域的概率為()A. B. C. D.4.如圖,正方形網(wǎng)格紙中的實(shí)線圖形是一個(gè)多面體的三視圖,則該多面體各表面所在平面互相垂直的有()A.2對(duì) B.3對(duì)C.4對(duì) D.5對(duì)5.在空間直角坐標(biāo)系中,四面體各頂點(diǎn)坐標(biāo)分別為:.假設(shè)螞蟻窩在點(diǎn),一只螞蟻從點(diǎn)出發(fā),需要在,上分別任意選擇一點(diǎn)留下信息,然后再返回點(diǎn).那么完成這個(gè)工作所需要走的最短路徑長(zhǎng)度是()A. B. C. D.6.已知函數(shù),給出下列四個(gè)結(jié)論:①函數(shù)的值域是;②函數(shù)為奇函數(shù);③函數(shù)在區(qū)間單調(diào)遞減;④若對(duì)任意,都有成立,則的最小值為;其中正確結(jié)論的個(gè)數(shù)是()A. B. C. D.7.集合,,則()A. B. C. D.8.已知正項(xiàng)等比數(shù)列的前項(xiàng)和為,則的最小值為()A. B. C. D.9.直線l過(guò)拋物線的焦點(diǎn)且與拋物線交于A,B兩點(diǎn),則的最小值是A.10 B.9 C.8 D.710.在很多地鐵的車廂里,頂部的扶手是一根漂亮的彎管,如下圖所示.將彎管形狀近似地看成是圓弧,已知彎管向外的最大突出(圖中)有,跨接了6個(gè)坐位的寬度(),每個(gè)座位寬度為,估計(jì)彎管的長(zhǎng)度,下面的結(jié)果中最接近真實(shí)值的是()A. B. C. D.11.設(shè)、是兩條不同的直線,、是兩個(gè)不同的平面,則的一個(gè)充分條件是()A.且 B.且 C.且 D.且12.在復(fù)平面內(nèi),復(fù)數(shù)z=i對(duì)應(yīng)的點(diǎn)為Z,將向量繞原點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn),所得向量對(duì)應(yīng)的復(fù)數(shù)是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若實(shí)數(shù)滿足約束條件,設(shè)的最大值與最小值分別為,則_____.14.在中,,.若,則_________.15.若變量x,y滿足:,且滿足,則參數(shù)t的取值范圍為_(kāi)______.16.甲、乙、丙、丁4名大學(xué)生參加兩個(gè)企業(yè)的實(shí)習(xí),每個(gè)企業(yè)兩人,則“甲、乙兩人恰好在同一企業(yè)”的概率為_(kāi)________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)(Ⅰ)證明:;(Ⅱ)證明:();(Ⅲ)證明:.18.(12分)如圖1,在等腰梯形中,兩腰,底邊,,,是的三等分點(diǎn),是的中點(diǎn).分別沿,將四邊形和折起,使,重合于點(diǎn),得到如圖2所示的幾何體.在圖2中,,分別為,的中點(diǎn).(1)證明:平面.(2)求直線與平面所成角的正弦值.19.(12分)已知函數(shù),曲線在點(diǎn)處的切線在y軸上的截距為.(1)求a;(2)討論函數(shù)和的單調(diào)性;(3)設(shè),求證:.20.(12分)在中,角,,所對(duì)的邊分別為,,,已知,,角為銳角,的面積為.(1)求角的大小;(2)求的值.21.(12分)設(shè)函數(shù).(Ⅰ)討論函數(shù)的單調(diào)性;(Ⅱ)若函數(shù)有兩個(gè)極值點(diǎn),求證:.22.(10分)已知,函數(shù)的最小值為1.(1)證明:.(2)若恒成立,求實(shí)數(shù)的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】
根據(jù)正三棱柱的主視圖,以及長(zhǎng)度,可知該幾何體的底面正三角形的邊長(zhǎng),然后根據(jù)矩形的面積公式,可得結(jié)果.【詳解】由題可知:該幾何體的底面正三角形的邊長(zhǎng)為2所以該正三棱柱的三個(gè)側(cè)面均為邊長(zhǎng)為2的正方形,所以該正三棱柱的側(cè)面積為故選:B本題考查正三棱柱側(cè)面積的計(jì)算以及三視圖的認(rèn)識(shí),關(guān)鍵在于求得底面正三角形的邊長(zhǎng),掌握一些常見(jiàn)的幾何體的三視圖,比如:三棱錐,圓錐,圓柱等,屬基礎(chǔ)題.2.A【解析】
由傾斜角的余弦值,求出正切值,即的關(guān)系,求出雙曲線的離心率.【詳解】解:設(shè)雙曲線的半個(gè)焦距為,由題意又,則,,,所以離心率,故選:A.本題考查雙曲線的簡(jiǎn)單幾何性質(zhì),屬于基礎(chǔ)題3.C【解析】
據(jù)題意可知,是與面積有關(guān)的幾何概率,要求落在區(qū)域內(nèi)的概率,只要求、所表示區(qū)域的面積,然后代入概率公式,計(jì)算即可得答案.【詳解】根據(jù)題意可得集合所表示的區(qū)域即為如圖所表示:的圓及內(nèi)部的平面區(qū)域,面積為,集合,,表示的平面區(qū)域即為圖中的,,根據(jù)幾何概率的計(jì)算公式可得,故選:C.本題主要考查了幾何概率的計(jì)算,本題是與面積有關(guān)的幾何概率模型.解決本題的關(guān)鍵是要準(zhǔn)確求出兩區(qū)域的面積.4.C【解析】
畫出該幾何體的直觀圖,易證平面平面,平面平面,平面平面,平面平面,從而可選出答案.【詳解】該幾何體是一個(gè)四棱錐,直觀圖如下圖所示,易知平面平面,作PO⊥AD于O,則有PO⊥平面ABCD,PO⊥CD,又AD⊥CD,所以,CD⊥平面PAD,所以平面平面,同理可證:平面平面,由三視圖可知:PO=AO=OD,所以,AP⊥PD,又AP⊥CD,所以,AP⊥平面PCD,所以,平面平面,所以該多面體各表面所在平面互相垂直的有4對(duì).本題考查了空間幾何體的三視圖,考查了四棱錐的結(jié)構(gòu)特征,考查了面面垂直的證明,屬于中檔題.5.C【解析】
將四面體沿著劈開(kāi),展開(kāi)后最短路徑就是的邊,在中,利用余弦定理即可求解.【詳解】將四面體沿著劈開(kāi),展開(kāi)后如下圖所示:最短路徑就是的邊.易求得,由,知,由余弦定理知其中,∴故選:C本題考查了余弦定理解三角形,需熟記定理的內(nèi)容,考查了學(xué)生的空間想象能力,屬于中檔題.6.C【解析】
化的解析式為可判斷①,求出的解析式可判斷②,由得,結(jié)合正弦函數(shù)得圖象即可判斷③,由得可判斷④.【詳解】由題意,,所以,故①正確;為偶函數(shù),故②錯(cuò)誤;當(dāng)時(shí),,單調(diào)遞減,故③正確;若對(duì)任意,都有成立,則為最小值點(diǎn),為最大值點(diǎn),則的最小值為,故④正確.故選:C.本題考查三角函數(shù)的綜合運(yùn)用,涉及到函數(shù)的值域、函數(shù)單調(diào)性、函數(shù)奇偶性及函數(shù)最值等內(nèi)容,是一道較為綜合的問(wèn)題.7.A【解析】
計(jì)算,再計(jì)算交集得到答案.【詳解】,,故.故選:.本題考查了交集運(yùn)算,屬于簡(jiǎn)單題.8.D【解析】
由,可求出等比數(shù)列的通項(xiàng)公式,進(jìn)而可知當(dāng)時(shí),;當(dāng)時(shí),,從而可知的最小值為,求解即可.【詳解】設(shè)等比數(shù)列的公比為,則,由題意得,,得,解得,得.當(dāng)時(shí),;當(dāng)時(shí),,則的最小值為.故選:D.本題考查等比數(shù)列的通項(xiàng)公式的求法,考查等比數(shù)列的性質(zhì),考查學(xué)生的計(jì)算求解能力,屬于中檔題.9.B【解析】
根據(jù)拋物線中過(guò)焦點(diǎn)的兩段線段關(guān)系,可得;再由基本不等式可求得的最小值.【詳解】由拋物線標(biāo)準(zhǔn)方程可知p=2因?yàn)橹本€l過(guò)拋物線的焦點(diǎn),由過(guò)拋物線焦點(diǎn)的弦的性質(zhì)可知所以因?yàn)闉榫€段長(zhǎng)度,都大于0,由基本不等式可知,此時(shí)所以選B本題考查了拋物線的基本性質(zhì)及其簡(jiǎn)單應(yīng)用,基本不等式的用法,屬于中檔題.10.B【解析】
為彎管,為6個(gè)座位的寬度,利用勾股定理求出弧所在圓的半徑為,從而可得弧所對(duì)的圓心角,再利用弧長(zhǎng)公式即可求解.【詳解】如圖所示,為彎管,為6個(gè)座位的寬度,則設(shè)弧所在圓的半徑為,則解得可以近似地認(rèn)為,即于是,長(zhǎng)所以是最接近的,其中選項(xiàng)A的長(zhǎng)度比還小,不可能,因此只能選B,260或者由,所以弧長(zhǎng).故選:B本題考查了弧長(zhǎng)公式,需熟記公式,考查了學(xué)生的分析問(wèn)題的能力,屬于基礎(chǔ)題.11.B【解析】由且可得,故選B.12.A【解析】
由復(fù)數(shù)z求得點(diǎn)Z的坐標(biāo),得到向量的坐標(biāo),逆時(shí)針旋轉(zhuǎn),得到向量的坐標(biāo),則對(duì)應(yīng)的復(fù)數(shù)可求.【詳解】解:∵復(fù)數(shù)z=i(i為虛數(shù)單位)在復(fù)平面中對(duì)應(yīng)點(diǎn)Z(0,1),
∴=(0,1),將繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)得到,
設(shè)=(a,b),,則,即,
又,解得:,∴,對(duì)應(yīng)復(fù)數(shù)為.故選:A.本題考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
畫出可行域,平移基準(zhǔn)直線到可行域邊界位置,由此求得最大值以及最小值,進(jìn)而求得的比值.【詳解】畫出可行域如下圖所示,由圖可知,當(dāng)直線過(guò)點(diǎn)時(shí),取得最大值7;過(guò)點(diǎn)時(shí),取得最小值2,所以.本小題主要考查利用線性規(guī)劃求線性目標(biāo)函數(shù)的最值.這種類型題目的主要思路是:首先根據(jù)題目所給的約束條件,畫出可行域;其次是求得線性目標(biāo)函數(shù)的基準(zhǔn)函數(shù);接著畫出基準(zhǔn)函數(shù)對(duì)應(yīng)的基準(zhǔn)直線;然后通過(guò)平移基準(zhǔn)直線到可行域邊界的位置;最后求出所求的最值.屬于基礎(chǔ)題.14.【解析】分析:首先設(shè)出相應(yīng)的直角邊長(zhǎng),利用余弦勾股定理得到相應(yīng)的斜邊長(zhǎng),之后應(yīng)用余弦定理得到直角邊長(zhǎng)之間的關(guān)系,從而應(yīng)用正切函數(shù)的定義,對(duì)邊比臨邊,求得對(duì)應(yīng)角的正切值,即可得結(jié)果.詳解:根據(jù)題意,設(shè),則,根據(jù),得,由勾股定理可得,根據(jù)余弦定理可得,化簡(jiǎn)整理得,即,解得,所以,故答案是.點(diǎn)睛:該題考查的是有關(guān)解三角形的問(wèn)題,在解題的過(guò)程中,注意分析要求對(duì)應(yīng)角的正切值,需要求誰(shuí),而題中所給的條件與對(duì)應(yīng)的結(jié)果之間有什么樣的連線,設(shè)出直角邊長(zhǎng),利用所給的角的余弦值,利用余弦定理得到相應(yīng)的等量關(guān)系,求得最后的結(jié)果.15.【解析】
根據(jù)變量x,y滿足:,畫出可行域,由,解得直線過(guò)定點(diǎn),直線繞定點(diǎn)旋轉(zhuǎn)與可行域有交點(diǎn)即可,再結(jié)合圖象利用斜率求解.【詳解】由變量x,y滿足:,畫出可行域如圖所示陰影部分,由,整理得,由,解得,所以直線過(guò)定點(diǎn),由,解得,由,解得,要使,則與可行域有交點(diǎn),當(dāng)時(shí),滿足條件,當(dāng)時(shí),直線得斜率應(yīng)該不小于AC,而不大于AB,即或,解得,且,綜上:參數(shù)t的取值范圍為.故答案為:本題主要考查線性規(guī)劃的應(yīng)用,還考查了轉(zhuǎn)化運(yùn)算求解的能力,屬于中檔題.16.【解析】
求出所有可能,找出符合可能的情況,代入概率計(jì)算公式.【詳解】解:甲、乙、丙、丁4名大學(xué)生參加兩個(gè)企業(yè)的實(shí)習(xí),每個(gè)企業(yè)兩人,共有種,甲乙在同一個(gè)公司有兩種可能,故概率為,故答案為.本題考查古典概型及其概率計(jì)算公式,屬于基礎(chǔ)題三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(Ⅰ)見(jiàn)解析(Ⅱ)見(jiàn)解析(Ⅲ)見(jiàn)解析【解析】
運(yùn)用數(shù)學(xué)歸納法證明即可得到結(jié)果化簡(jiǎn),運(yùn)用累加法得出結(jié)果運(yùn)用放縮法和累加法進(jìn)行求證【詳解】(Ⅰ)數(shù)學(xué)歸納法證明時(shí),①當(dāng)時(shí),成立;②當(dāng)時(shí),假設(shè)成立,則時(shí)所以時(shí),成立綜上①②可知,時(shí),(Ⅱ)由得所以;;故,又所以(Ⅲ)由累加法得:所以故本題考查了數(shù)列的綜合,運(yùn)用數(shù)學(xué)歸納法證明不等式的成立,結(jié)合已知條件進(jìn)行化簡(jiǎn)求出化簡(jiǎn)后的結(jié)果,利用放縮法求出不等式,然后兩邊同時(shí)取對(duì)數(shù)再進(jìn)行證明,本題較為困難。18.(1)證明見(jiàn)解析(2)【解析】
(1)先證,再證,由可得平面,從而推出平面;(2)建立空間直角坐標(biāo)系,求出平面的法向量與,坐標(biāo)代入線面角的正弦值公式即可得解.【詳解】(1)證明:連接,,由圖1知,四邊形為菱形,且,所以是正三角形,從而.同理可證,,所以平面.又,所以平面,因?yàn)槠矫妫云矫嫫矫?易知,且為的中點(diǎn),所以,所以平面.(2)解:由(1)可知,,且四邊形為正方形.設(shè)的中點(diǎn)為,以為原點(diǎn),以,,所在直線分別為,,軸,建立空間直角坐標(biāo)系,則,,,,,所以,,.設(shè)平面的法向量為,由得取.設(shè)直線與平面所成的角為,所以,所以直線與平面所成角的正弦值為.本題考查線面垂直的證明,直線與平面所成的角,要求一定的空間想象能力、運(yùn)算求解能力和推理論證能力,屬于基礎(chǔ)題.19.(1)(2)為減函數(shù),為增函數(shù).(3)證明見(jiàn)解析【解析】
(1)求出導(dǎo)函數(shù),求出切線方程,令得切線的縱截距,可得(必須利用函數(shù)的單調(diào)性求解);(2)求函數(shù)的導(dǎo)數(shù),由導(dǎo)數(shù)的正負(fù)確定單調(diào)性;(3)不等式變形為,由遞減,得(),即,即,依次放縮,.不等式,遞增得(),,,,先證,然后同樣放縮得出結(jié)論.【詳解】解:(1)對(duì)求導(dǎo),得.因此.又因?yàn)椋郧€在點(diǎn)處的切線方程為,即.由題意,.顯然,適合上式.令,求導(dǎo)得,因此為增函數(shù):故是唯一解.(2)由(1)可知,,因?yàn)?,所以為減函數(shù).因?yàn)?,所以為增函?shù).(3)證明:由,易得.由(2)可知,在上為減函數(shù).因此,當(dāng)時(shí),,即.令,得,即.因此,當(dāng)時(shí),.所以成立.下面證明:.由(2)可知,在上為增函數(shù).因此,當(dāng)時(shí),,即.因此,即.令,得,即.當(dāng)時(shí),.因?yàn)椋?,所?所以,當(dāng)時(shí),.所以,當(dāng)時(shí),成立.綜上所述,當(dāng)時(shí),成立.本題考查導(dǎo)數(shù)的幾何意義,考查用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查用導(dǎo)數(shù)證明不等式.本題中不等式的證明,考查了轉(zhuǎn)化與化歸的能力,把不等式變形后利用第(2)小題函數(shù)的單調(diào)性得出數(shù)列的不等關(guān)系:,.這是最關(guān)鍵的一步.然后一步一步放縮即可證明.本題屬于困難題.20.(1);(2)7.【解析】分析:(1)由三角形面積公式和已知條件求得sinA的值,進(jìn)而求得A;(2)利用余弦定理公式和(1)中求得的A求得a.詳解:(1)∵,∴,∵為銳角,∴;(2)由余弦定理得:.點(diǎn)睛:本題主要考查正弦定理邊角互化及余弦
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年鋁錠交易合同規(guī)范本
- 2023-2024年護(hù)師類之護(hù)士資格證通關(guān)試題庫(kù)(有答案)
- 環(huán)保制度下的棉印染:企業(yè)應(yīng)對(duì)策略-政策解讀與風(fēng)險(xiǎn)管理
- 2024年限時(shí)美術(shù)館場(chǎng)地租賃協(xié)議版
- 2023-2024年心理咨詢師之心理咨詢師基礎(chǔ)知識(shí)試題庫(kù)(有答案)
- 2024年跨國(guó)電子產(chǎn)品買賣協(xié)議模板一
- 2024版文化旅游項(xiàng)目投資合同
- 2024版工程信息技術(shù)服務(wù)合同2篇
- 2024年適用:國(guó)際借款中介服務(wù)費(fèi)用協(xié)議
- 2024年規(guī)范化加工承攬協(xié)議模板版B版
- 空中交通管制基礎(chǔ)
- 供應(yīng)商競(jìng)價(jià)比價(jià)表
- 轉(zhuǎn)運(yùn)呼吸機(jī)培訓(xùn)課件
- 國(guó)內(nèi)外天然植物染料的應(yīng)用及發(fā)展現(xiàn)狀
- 安徽省馬鞍山市2023-2024學(xué)年高一上學(xué)期期末考試物理試題(含答案解析)
- 心理健康對(duì)學(xué)生學(xué)習(xí)成績(jī)的影響
- 食品生產(chǎn)企業(yè)員工食品安全培訓(xùn)
- 小學(xué)數(shù)學(xué)綜合素質(zhì)評(píng)價(jià)專項(xiàng)方案
- 模型預(yù)測(cè)控制現(xiàn)狀與挑戰(zhàn)
- 閩教版2023版3-6年級(jí)全8冊(cè)英語(yǔ)單詞表
- MOOC創(chuàng)新創(chuàng)業(yè)與管理基礎(chǔ)(東南大學(xué))
評(píng)論
0/150
提交評(píng)論