




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年山東省泰安寧陽縣聯(lián)考中考猜題數(shù)學試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如果,那么代數(shù)式的值是()A.6 B.2 C.-2 D.-62.已知:如圖,在△ABC中,邊AB的垂直平分線分別交BC、AB于點G、D,若△AGC的周長為31cm,AB=20cm,則△ABC的周長為()A.31cm B.41cm C.51cm D.61cm3.如圖,在Rt△ABC中,∠ACB=90°,點D,E分別是AB,BC的中點,點F是BD的中點.若AB=10,則EF=()A.2.5 B.3 C.4 D.54.如圖,經(jīng)過測量,C地在A地北偏東46°方向上,同時C地在B地北偏西63°方向上,則∠C的度數(shù)為()A.99° B.109° C.119° D.129°5.一元二次方程x2﹣5x﹣6=0的根是()A.x1=1,x2=6 B.x1=2,x2=3 C.x1=1,x2=﹣6 D.x1=﹣1,x2=66.已知△ABC,D是AC上一點,尺規(guī)在AB上確定一點E,使△ADE∽△ABC,則符合要求的作圖痕跡是()A. B.C. D.7.下列各運算中,計算正確的是()A.a(chǎn)12÷a3=a4 B.(3a2)3=9a6C.(a﹣b)2=a2﹣ab+b2 D.2a?3a=6a28.如圖是由5個大小相同的正方體組成的幾何體,則該幾何體的左視圖是()A. B.C. D.9.如圖,在矩形ABCD中,AB=5,BC=7,點E為BC上一動點,把△ABE沿AE折疊,當點B的對應點B′落在∠ADC的角平分線上時,則點B′到BC的距離為()A.1或2 B.2或3 C.3或4 D.4或510.下列運算正確的是()A.(a2)4=a6 B.a(chǎn)2?a3=a6 C. D.11.如圖,△ABC的面積為8cm2,AP垂直∠B的平分線BP于P,則△PBC的面積為(
)A.2cm2
B.3cm2
C.4cm2
D.5cm212.為了盡早適應中考體育項目,小麗同學加強跳繩訓練,并把某周的練習情況做了如下記錄:周一個,周二個,周三個,周四個,周五個則小麗這周跳繩個數(shù)的中位數(shù)和眾數(shù)分別是A.180個,160個 B.170個,160個C.170個,180個 D.160個,200個二、填空題:(本大題共6個小題,每小題4分,共24分.)13.因式分解:(a+1)(a﹣1)﹣2a+2=_____.14.如圖,是一個正方體包裝盒的表面展開圖,若在其中的三個正方形A、B、C內(nèi)分別填上適當?shù)臄?shù),使得將這個表面展開圖折成正方體后,相對面上的兩個數(shù)互為相反數(shù),則填在B內(nèi)的數(shù)為______.15.觀察下列的“蜂窩圖”按照它呈現(xiàn)的規(guī)律第n個圖案中的“”的個數(shù)是_____(用含n的代數(shù)式表示)16.函數(shù)y=中自變量x的取值范圍是________,若x=4,則函數(shù)值y=________.17.點A(1,2),B(n,2)都在拋物線y=x2﹣4x+m上,則n=_____.18.把直線y=-x+3向上平移m個單位后,與直線y=2x+4的交點在第一象限,則m的取值范圍是_________________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)隨著“互聯(lián)網(wǎng)+”時代的到來,一種新型打車方式受到大眾歡迎,該打車方式的總費用由里程費和耗時費組成,其中里程費按x元/公里計算,耗時費按y元/分鐘計算(總費用不足9元按9元計價).小明、小剛兩人用該打車方式出行,按上述計價規(guī)則,其打車總費用、行駛里程數(shù)與打車時間如表:時間(分鐘)里程數(shù)(公里)車費(元)小明8812小剛121016(1)求x,y的值;(2)如果小華也用該打車方式,打車行駛了11公里,用了14分鐘,那么小華的打車總費用為多少?20.(6分)為了抓住梵凈山文化藝術節(jié)的商機,某商店決定購進A、B兩種藝術節(jié)紀念品.若購進A種紀念品8件,B種紀念品3件,需要950元;若購進A種紀念品5件,B種紀念品6件,需要800元.(1)求購進A、B兩種紀念品每件各需多少元?(2)若該商店決定購進這兩種紀念品共100件,考慮市場需求和資金周轉,用于購買這100件紀念品的資金不少于7500元,但不超過7650元,那么該商店共有幾種進貨方案?(3)若銷售每件A種紀念品可獲利潤20元,每件B種紀念品可獲利潤30元,在第(2)問的各種進貨方案中,哪一種方案獲利最大?最大利潤是多少元?21.(6分)已知AC,EC分別是四邊形ABCD和EFCG的對角線,直線AE與直線BF交于點H(1)觀察猜想如圖1,當四邊形ABCD和EFCG均為正方形時,線段AE和BF的數(shù)量關系是;∠AHB=.(2)探究證明如圖2,當四邊形ABCD和FFCG均為矩形,且∠ACB=∠ECF=30°時,(1)中的結論是否仍然成立,并說明理由.(3)拓展延伸在(2)的條件下,若BC=9,F(xiàn)C=6,將矩形EFCG繞點C旋轉,在整個旋轉過程中,當A、E、F三點共線時,請直接寫出點B到直線AE的距離.22.(8分)未成年人思想道德建設越來越受到社會的關注,遼陽青少年研究所隨機調查了本市一中學100名學生寒假中花零花錢的數(shù)量(錢數(shù)取整數(shù)元),以便引導學生樹立正確的消費觀.根據(jù)調查數(shù)據(jù)制成了頻分組頻數(shù)頻率0.5~50.50.150.5~200.2100.5~150.5200.5300.3200.5~250.5100.1率分布表和頻率分布直方圖(如圖).(1)補全頻率分布表;(2)在頻率分布直方圖中,長方形ABCD的面積是;這次調查的樣本容量是;(3)研究所認為,應對消費150元以上的學生提出勤儉節(jié)約的建議.試估計應對該校1000名學生中約多少名學生提出這項建議.23.(8分)AB為⊙O直徑,C為⊙O上的一點,過點C的切線與AB的延長線相交于點D,CA=CD.(1)連接BC,求證:BC=OB;(2)E是中點,連接CE,BE,若BE=2,求CE的長.24.(10分)如圖,Rt△ABC,CA⊥BC,AC=4,在AB邊上取一點D,使AD=BC,作AD的垂直平分線,交AC邊于點F,交以AB為直徑的⊙O于G,H,設BC=x.(1)求證:四邊形AGDH為菱形;(2)若EF=y(tǒng),求y關于x的函數(shù)關系式;(3)連結OF,CG.①若△AOF為等腰三角形,求⊙O的面積;②若BC=3,則CG+9=______.(直接寫出答案).25.(10分)如圖1,已知拋物線y=﹣x2+x+與x軸交于A,B兩點(點A在點B的左側),與y軸交于點C,點D是點C關于拋物線對稱軸的對稱點,連接CD,過點D作DH⊥x軸于點H,過點A作AE⊥AC交DH的延長線于點E.(1)求線段DE的長度;(2)如圖2,試在線段AE上找一點F,在線段DE上找一點P,且點M為直線PF上方拋物線上的一點,求當△CPF的周長最小時,△MPF面積的最大值是多少;(3)在(2)問的條件下,將得到的△CFP沿直線AE平移得到△C′F′P′,將△C′F′P′沿C′P′翻折得到△C′P′F″,記在平移過稱中,直線F′P′與x軸交于點K,則是否存在這樣的點K,使得△F′F″K為等腰三角形?若存在求出OK的值;若不存在,說明理由.26.(12分)如圖,直線y1=﹣x+4,y2=x+b都與雙曲線y=交于點A(1,m),這兩條直線分別與x軸交于B,C兩點.(1)求y與x之間的函數(shù)關系式;(2)直接寫出當x>0時,不等式x+b>的解集;(3)若點P在x軸上,連接AP把△ABC的面積分成1:3兩部分,求此時點P的坐標.27.(12分)先化簡,再求值:(﹣1)÷,其中x=1.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】【分析】將所求代數(shù)式先利用單項式乘多項式法則、平方差公式進行展開,然后合并同類項,最后利用整體代入思想進行求值即可.【詳解】∵3a2+5a-1=0,∴3a2+5a=1,∴5a(3a+2)-(3a+2)(3a-2)=15a2+10a-9a2+4=6a2+10a+4=2(3a2+5a)+4=6,故選A.【點睛】本題考查了代數(shù)式求值,涉及到單項式乘多項式、平方差公式、合并同類項等,利用整體代入思想進行解題是關鍵.2、C【解析】∵DG是AB邊的垂直平分線,∴GA=GB,△AGC的周長=AG+AC+CG=AC+BC=31cm,又AB=20cm,∴△ABC的周長=AC+BC+AB=51cm,故選C.3、A【解析】
先利用直角三角形的性質求出CD的長,再利用中位線定理求出EF的長.【詳解】∵∠ACB=90°,D為AB中點∴CD=1∵點E、F分別為BC、BD中點∴EF=1故答案為:A.【點睛】本題考查的知識點是直角三角形的性質和中位線定理,解題關鍵是尋找EF與題目已知長度的線段的數(shù)量關系.4、B【解析】
方向角是從正北或正南方向到目標方向所形成的小于90°的角,根據(jù)平行線的性質求得∠ACF與∠BCF的度數(shù),∠ACF與∠BCF的和即為∠C的度數(shù).【詳解】解:由題意作圖如下∠DAC=46°,∠CBE=63°,由平行線的性質可得∠ACF=∠DAC=46°,∠BCF=∠CBE=63°,∴∠ACB=∠ACF+∠BCF=46°+63°=109°,故選B.【點睛】本題考查了方位角和平行線的性質,熟練掌握方位角的概念和平行線的性質是解題的關鍵.5、D【解析】
本題應對原方程進行因式分解,得出(x-6)(x+1)=1,然后根據(jù)“兩式相乘值為1,這兩式中至少有一式值為1.”來解題.【詳解】x2-5x-6=1(x-6)(x+1)=1x1=-1,x2=6故選D.【點睛】本題考查了一元二次方程的解法.解一元二次方程常用的方法有直接開平方法,配方法,公式法,因式分解法,要根據(jù)方程的提點靈活選用合適的方法.本題運用的是因式分解法.6、A【解析】
以DA為邊、點D為頂點在△ABC內(nèi)部作一個角等于∠B,角的另一邊與AB的交點即為所求作的點.【詳解】如圖,點E即為所求作的點.故選:A.【點睛】本題主要考查作圖-相似變換,根據(jù)相似三角形的判定明確過點D作一角等于∠B或∠C,并熟練掌握做一個角等于已知角的作法式解題的關鍵.7、D【解析】【分析】根據(jù)同底數(shù)冪的除法、積的乘方、完全平方公式、單項式乘法的法則逐項計算即可得.【詳解】A、原式=a9,故A選項錯誤,不符合題意;B、原式=27a6,故B選項錯誤,不符合題意;C、原式=a2﹣2ab+b2,故C選項錯誤,不符合題意;D、原式=6a2,故D選項正確,符合題意,故選D.【點睛】本題考查了同底數(shù)冪的除法、積的乘方、完全平方公式、單項式乘法等運算,熟練掌握各運算的運算法則是解本題的關鍵.8、B【解析】
找到從左面看所得到的圖形即可,注意所有的看到的棱都應表現(xiàn)在主視圖中.【詳解】解:從左面看易得下面一層有2個正方形,上面一層左邊有1個正方形.故選:B.【點睛】本題考查了三視圖的知識,左視圖是從物體的左面看得到的視圖.9、A【解析】
連接B′D,過點B′作B′M⊥AD于M.設DM=B′M=x,則AM=7-x,根據(jù)等腰直角三角形的性質和折疊的性質得到:(7-x)2=25-x2,通過解方程求得x的值,易得點B′到BC的距離.【詳解】解:如圖,連接B′D,過點B′作B′M⊥AD于M,∵點B的對應點B′落在∠ADC的角平分線上,∴設DM=B′M=x,則AM=7﹣x,又由折疊的性質知AB=AB′=5,∴在直角△AMB′中,由勾股定理得到:,即,解得x=3或x=4,則點B′到BC的距離為2或1.故選A.【點睛】本題考查的是翻折變換的性質,掌握翻折變換是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等是解題的關鍵.10、C【解析】
根據(jù)冪的乘方、同底數(shù)冪的乘法、二次根式的乘法、二次根式的加法計算即可.【詳解】A、原式=a8,所以A選項錯誤;B、原式=a5,所以B選項錯誤;C、原式=,所以C選項正確;D、與不能合并,所以D選項錯誤.故選:C.【點睛】本題考查了冪的乘方、同底數(shù)冪的乘法、二次根式的乘法、二次根式的加法,熟練掌握它們的運算法則是解答本題的關鍵.11、C【解析】
延長AP交BC于E,根據(jù)AP垂直∠B的平分線BP于P,即可求出△ABP≌△BEP,又知△APC和△CPE等底同高,可以證明兩三角形面積相等,即可求得△PBC的面積.【詳解】延長AP交BC于E.∵AP垂直∠B的平分線BP于P,∴∠ABP=∠EBP,∠APB=∠BPE=90°.在△APB和△EPB中,∵∠APB=∠EPBBP=BP∠ABP=∠EBP,∴△APB≌△EPB(ASA),∴S△APB=S△EPB,AP=PE,∴△APC和△CPE等底同高,∴S△APC=S△PCE,∴S△PBC=S△PBE+S△PCE=12S△ABC故選C.【點睛】本題考查了三角形面積和全等三角形的性質和判定的應用,關鍵是求出S△PBC=S△PBE+S△PCE=12S△12、B【解析】
根據(jù)中位數(shù)和眾數(shù)的定義分別進行解答即可.【詳解】解:把這些數(shù)從小到大排列為160,160,170,180,200,最中間的數(shù)是170,則中位數(shù)是170;160出現(xiàn)了2次,出現(xiàn)的次數(shù)最多,則眾數(shù)是160;故選B.【點睛】此題考查了中位數(shù)和眾數(shù),掌握中位數(shù)和眾數(shù)的定義是解題的關鍵;中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻螅钪虚g的那個數(shù)(最中間兩個數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù);眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù).二、填空題:(本大題共6個小題,每小題4分,共24分.)13、(a﹣1)1.【解析】
提取公因式(a?1),進而分解因式得出答案.【詳解】解:(a+1)(a﹣1)﹣1a+1=(a+1)(a﹣1)﹣1(a﹣1)=(a﹣1)(a+1﹣1)=(a﹣1)1.故答案為:(a﹣1)1.【點睛】此題主要考查了提取公因式法分解因式,找出公因式是解題關鍵.14、1【解析】試題解析:∵正方體的展開圖中對面不存在公共部分,∴B與-1所在的面為對面.∴B內(nèi)的數(shù)為1.故答案為1.15、3n+1【解析】
根據(jù)題意可知:第1個圖有4個圖案,第2個共有7個圖案,第3個共有10個圖案,第4個共有13個圖案,由此可得出規(guī)律.【詳解】解:由題意可知:每1個都比前一個多出了3個“”,∴第n個圖案中共有“”為:4+3(n﹣1)=3n+1故答案為:3n+1.【點睛】本題考查學生的觀察能力,解題的關鍵是熟練正確找出圖中的規(guī)律,本題屬于基礎題型.16、x≥3y=1【解析】根據(jù)二次根式有意義的條件求解即可.即被開方數(shù)是非負數(shù),結果是x≥3,y=1.17、1【解析】
根據(jù)題意可以求得m的值和n的值,由A的坐標,可確定B的坐標,進而可以得到n的值.【詳解】:∵點A(1,2),B(n,2)都在拋物線y=x2-4x+m上,
∴2=1-4+m2=n2-4n+m,
解得【點睛】本題考查了二次函數(shù)圖象上點的坐標特征,解題的關鍵是明確題意,利用二次函數(shù)的性質求解.18、m>1【解析】試題分析:直線y=-x+3向上平移m個單位后可得:y=-x+3+m,求出直線y=-x+3+m與直線y=2x+4的交點,再由此點在第一象限可得出m的取值范圍.試題解析:直線y=-x+3向上平移m個單位后可得:y=-x+3+m,聯(lián)立兩直線解析式得:,解得:,即交點坐標為(,),∵交點在第一象限,∴,解得:m>1.考點:一次函數(shù)圖象與幾何變換.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)x=1,y=;(2)小華的打車總費用為18元.【解析】試題分析:(1)根據(jù)表格內(nèi)容列出關于x、y的方程組,并解方程組.
(2)根據(jù)里程數(shù)和時間來計算總費用.試題解析:(1)由題意得,解得;(2)小華的里程數(shù)是11km,時間為14min.則總費用是:11x+14y=11+7=18(元).答:總費用是18元.20、(1)A種紀念品需要100元,購進一件B種紀念品需要50元(2)共有4種進貨方案(3)當購進A種紀念品50件,B種紀念品50件時,可獲最大利潤,最大利潤是2500元【解析】解:(1)設該商店購進一件A種紀念品需要a元,購進一件B種紀念品需要b元,根據(jù)題意得方程組得:,…2分解方程組得:,∴購進一件A種紀念品需要100元,購進一件B種紀念品需要50元…4分;(2)設該商店購進A種紀念品x個,則購進B種紀念品有(100﹣x)個,∴,…6分解得:50≤x≤53,…7分∵x為正整數(shù),∴共有4種進貨方案…8分;(3)因為B種紀念品利潤較高,故B種數(shù)量越多總利潤越高,因此選擇購A種50件,B種50件.…10分總利潤=50×20+50×30=2500(元)∴當購進A種紀念品50件,B種紀念品50件時,可獲最大利潤,最大利潤是2500元.…12分21、(1),45°;(2)不成立,理由見解析;(3).【解析】
(1)由正方形的性質,可得,∠ACB=∠GEC=45°,求得△CAE∽△CBF,由相似三角形的性質得到,∠CAB==45°,又因為∠CBA=90°,所以∠AHB=45°.(2)由矩形的性質,及∠ACB=∠ECF=30°,得到△CAE∽△CBF,由相似三角形的性質可得∠CAE=∠CBF,,則∠CAB=60°,又因為∠CBA=90°,求得∠AHB=30°,故不成立.(3)分兩種情況討論:①作BM⊥AE于M,因為A、E、F三點共線,及∠AFB=30°,∠AFC=90°,進而求得AC和EF,根據(jù)勾股定理求得AF,則AE=AF﹣EF,再由(2)得:,所以BF=3﹣3,故BM=.②如圖3所示:作BM⊥AE于M,由A、E、F三點共線,得:AE=6+2,BF=3+3,則BM=.【詳解】解:(1)如圖1所示:∵四邊形ABCD和EFCG均為正方形,∴,∠ACB=∠GEC=45°,∴∠ACE=∠BCF,∴△CAE∽△CBF,∴∠CAE=∠CBF,,∴,∠CAB=∠CAE+∠EAB=∠CBF+∠EAB=45°,∵∠CBA=90°,∴∠AHB=180°﹣90°﹣45°=45°,故答案為,45°;(2)不成立;理由如下:∵四邊形ABCD和EFCG均為矩形,且∠ACB=∠ECF=30°,∴,∠ACE=∠BCF,∴△CAE∽△CBF,∴∠CAE=∠CBF,,∴∠CAB=∠CAE+∠EAB=∠CBF+∠EAB=60°,∵∠CBA=90°,∴∠AHB=180°﹣90°﹣60°=30°;(3)分兩種情況:①如圖2所示:作BM⊥AE于M,當A、E、F三點共線時,由(2)得:∠AFB=30°,∠AFC=90°,在Rt△ABC和Rt△CEF中,∵∠ACB=∠ECF=30°,∴AC=,EF=CF×tan30°=6×=2,在Rt△ACF中,AF=,∴AE=AF﹣EF=6﹣2,由(2)得:,∴BF=(6﹣2)=3﹣3,在△BFM中,∵∠AFB=30°,∴BM=BF=;②如圖3所示:作BM⊥AE于M,當A、E、F三點共線時,同(2)得:AE=6+2,BF=3+3,則BM=BF=;綜上所述,當A、E、F三點共線時,點B到直線AE的距離為.【點睛】本題考察正方形的性質和矩形的性質以及三點共線,熟練掌握正方形的性質和矩形的性質,知道分類討論三點共線問題是解題的關鍵.本題屬于中等偏難.22、⑴表格中依次填10,100.5,25,0.25,150.5,1;⑵0.25,100;⑶1000×(0.3+0.1+0.05)=450(名).【解析】
(1)由頻數(shù)直方圖知組距是50,分組數(shù)列中依次填寫100.5,150.5;0.5-50.5的頻數(shù)=100×0.1=10,由各組的頻率之和等于1可知:100.5-150.5的頻率=1-0.1-0.2-0.3-0.1-0.05=0.25,則頻數(shù)=100×0.25=25,由此填表即可;(2)在頻率分布直方圖中,長方形ABCD的面積為50×0.25=12.5,這次調查的樣本容量是100;(3)先求得消費在150元以上的學生的頻率,繼而可求得應對該校1000學生中約多少名學生提出該項建議..【詳解】解:填表如下:(2)長方形ABCD的面積為0.25,樣本容量是100;提出這項建議的人數(shù)人.【點睛】本題考查了頻數(shù)分布表,樣本估計總體、樣本容量等知識.注意頻數(shù)分布表中總的頻率之和是1.23、(2)見解析;(2)2+.【解析】
(2)連接OC,根據(jù)圓周角定理、切線的性質得到∠ACO=∠DCB,根據(jù)CA=CD得到∠CAD=∠D,證明∠COB=∠CBO,根據(jù)等角對等邊證明;
(2)連接AE,過點B作BF⊥CE于點F,根據(jù)勾股定理計算即可.【詳解】(2)證明:連接OC,∵AB為⊙O直徑,∴∠ACB=90°,∵CD為⊙O切線∴∠OCD=90°,∴∠ACO=∠DCB=90°﹣∠OCB,∵CA=CD,∴∠CAD=∠D.∴∠COB=∠CBO.∴OC=BC.∴OB=BC;(2)連接AE,過點B作BF⊥CE于點F,∵E是AB中點,∴,∴AE=BE=2.∵AB為⊙O直徑,∴∠AEB=90°.∴∠ECB=∠BAE=45°,,∴.∴CF=BF=2.∴.∴.【點睛】本題考查的是切線的性質、圓周角定理、勾股定理,掌握圓的切線垂直于經(jīng)過切點的半徑是解題的關鍵.24、(1)證明見解析;(2)y=x2(x>0);(3)①π或8π或(2+2)π;②4.【解析】
(1)根據(jù)線段的垂直平分線的性質以及垂徑定理證明AG=DG=DH=AH即可;
(2)只要證明△AEF∽△ACB,可得解決問題;
(3)①分三種情形分別求解即可解決問題;
②只要證明△CFG∽△HFA,可得=,求出相應的線段即可解決問題;【詳解】(1)證明:∵GH垂直平分線段AD,∴HA=HD,GA=GD,∵AB是直徑,AB⊥GH,∴EG=EH,∴DG=DH,∴AG=DG=DH=AH,∴四邊形AGDH是菱形.(2)解:∵AB是直徑,∴∠ACB=90°,∵AE⊥EF,∴∠AEF=∠ACB=90°,∵∠EAF=∠CAB,∴△AEF∽△ACB,∴,∴,∴y=x2(x>0).(3)①解:如圖1中,連接DF.∵GH垂直平分線段AD,∴FA=FD,∴當點D與O重合時,△AOF是等腰三角形,此時AB=2BC,∠CAB=30°,∴AB=,∴⊙O的面積為π.如圖2中,當AF=AO時,∵AB==,∴OA=,∵AF==,∴=,解得x=4(負根已經(jīng)舍棄),∴AB=,∴⊙O的面積為8π.如圖2﹣1中,當點C與點F重合時,設AE=x,則BC=AD=2x,AB=,∵△ACE∽△ABC,∴AC2=AE?AB,∴16=x?,解得x2=2﹣2(負根已經(jīng)舍棄),∴AB2=16+4x2=8+8,∴⊙O的面積=π??AB2=(2+2)π綜上所述,滿足條件的⊙O的面積為π或8π或(2+2)π;②如圖3中,連接CG.∵AC=4,BC=3,∠ACB=90°,∴AB=5,∴OH=OA=,∴AE=,∴OE=OA﹣AE=1,∴EG=EH==,∵EF=x2=,∴FG=﹣,AF==,AH==,∵∠CFG=∠AFH,∠FCG=∠AHF,∴△CFG∽△HFA,∴,∴,∴CG=﹣,∴CG+9=4.故答案為4.【點睛】本題考查圓綜合題、相似三角形的判定和性質、垂徑定理、線段的垂直平分線的性質、菱形的判定和性質、勾股定理、解直角三角形等知識,解題的關鍵是學會添加常用輔助線,構造相似三角形解決問題,學會用分類討論的思想思考問題.25、(1)2;(2);(3)見解析.【解析】分析:(1)根據(jù)解析式求得C的坐標,進而求得D的坐標,即可求得DH的長度,令y=0,求得A,B的坐標,然后證得△ACO∽△EAH,根據(jù)對應邊成比例求得EH的長,進繼而求得DE的長;(2)找點C關于DE的對稱點N(4,),找點C關于AE的對稱點G(-2,-),連接GN,交AE于點F,交DE于點P,即G、F、P、N四點共線時,△CPF周長=CF+PF+CP=GF+PF+PN最小,根據(jù)點的坐標求得直線GN的解析式:y=x-;直線AE的解析式:y=-x-,過點M作y軸的平行線交FH于點Q,設點M(m,-m2+m+),則Q(m,m-),根據(jù)S△MFP=S△MQF+S△MQP,得出S△MFP=-m2+m+,根據(jù)解析式即可求得,△MPF面積的最大值;(3)由(2)可知C(0,),F(xiàn)(0,),P(2,),求得CF=,CP=,進而得出△CFP為等邊三角形,邊長為,翻折之后形成邊長為的菱形C′F′P′F″,且F′F″=4,然后分三種情況討論求得即可.本題解析:(1)對于拋物線y=﹣x2+x+,令x=0,得y=,即C(0,),D(2,),∴DH=,令y=0,即﹣x2+x+=0,得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),∵AE⊥AC,EH⊥AH,∴△ACO∽△EAH,∴=,即=,解得:EH=,則DE=2;(2)找點C關于DE的對稱點N(4,),找點C關于AE的對稱點G(﹣2,﹣),連接GN,交AE于點F,交DE于點P,即G、F、P、N四點共線時,△CPF周長=CF+PF+CP=GF+PF+PN最小,直線GN的解析式:y=x﹣;直線AE的解析式:y=﹣x﹣,聯(lián)立得:F(0,﹣),P(2,),過點M作y軸的平行線交FH于點Q,設點M(m,﹣m2+m+),則Q(m,m﹣),(0<m<2);∴S△MFP=S△MQF+S△MQP=MQ×2=MQ=﹣m2+m+,∵對稱軸為:直線m=<2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年金華市蘭溪市衛(wèi)健系統(tǒng)高校招聘醫(yī)學類真題
- 護理新技術新業(yè)務:盆底疼痛
- 浙江2025年04月寧波市商務局所屬事業(yè)單位公開招考2名工作人員筆試歷年典型考題(歷年真題考點)解題思路附帶答案詳解
- 2025年04月湖北黃岡市黃梅縣事業(yè)單位公開招聘高層次和急需緊缺人才29人筆試歷年典型考題(歷年真題考點)解題思路附帶答案詳解
- 重慶三支一扶2024年試卷
- 2025年04月浙江上半年杭州市赴外引才活動筆試歷年典型考題(歷年真題考點)解題思路附帶答案詳解
- 凍蝦銷售合同樣本
- 2025年04月中國科學院聲學研究所公開招聘181人筆試歷年典型考題(歷年真題考點)解題思路附帶答案詳解
- 2025年03月黃巖區(qū)應急管理局公開招聘編外聘用人員筆試歷年典型考題(歷年真題考點)解題思路附帶答案詳解
- 臨時入股合同標準文本
- 四川省樂山市夾江縣2023-2024學年八年級下學期期末數(shù)學試題
- 棋牌室簡單人合伙協(xié)議書
- JT-T-4-2019公路橋梁板式橡膠支座
- JBT 14713-2024 鋰離子電池用連續(xù)式真空干燥系統(tǒng)技術規(guī)范(正式版)
- 四川省瀘州市龍馬潭區(qū)2022-2023學年六年級下學期期末考試語文試卷
- MOOC 信息檢索-西南交通大學 中國大學慕課答案
- GB/T 43731-2024生物樣本庫中生物樣本處理方法的確認和驗證通用要求
- 信息化運維服務服務質量保障方案
- 天耀中華合唱簡譜大劇院版
- 《食品營養(yǎng)與衛(wèi)生學》課程標準
- 電氣設備與線路的安裝與調試
評論
0/150
提交評論