版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024-2025學年四川省成都市成都實驗高級中學高三教學質量監(jiān)測(一)數(shù)學試題試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某幾何體的三視圖如圖所示,若側視圖和俯視圖均是邊長為的等邊三角形,則該幾何體的體積為A. B. C. D.2.已知函數(shù)(,是常數(shù),其中且)的大致圖象如圖所示,下列關于,的表述正確的是()A., B.,C., D.,3.A. B. C. D.4.如圖,矩形ABCD中,,,E是AD的中點,將沿BE折起至,記二面角的平面角為,直線與平面BCDE所成的角為,與BC所成的角為,有如下兩個命題:①對滿足題意的任意的的位置,;②對滿足題意的任意的的位置,,則()A.命題①和命題②都成立 B.命題①和命題②都不成立C.命題①成立,命題②不成立 D.命題①不成立,命題②成立5.設i為數(shù)單位,為z的共軛復數(shù),若,則()A. B. C. D.6.為得到y(tǒng)=sin(2x-πA.向左平移π3個單位B.向左平移πC.向右平移π3個單位D.向右平移π7.已知變量x,y間存在線性相關關系,其數(shù)據如下表,回歸直線方程為,則表中數(shù)據m的值為()變量x0123變量y35.57A.0.9 B.0.85 C.0.75 D.0.58.已知點在雙曲線上,則該雙曲線的離心率為()A. B. C. D.9.已知全集,集合,則()A. B. C. D.10.已知a>0,b>0,a+b=1,若α=,則的最小值是()A.3 B.4 C.5 D.611.已知圓與拋物線的準線相切,則的值為()A.1 B.2 C. D.412.已知等比數(shù)列滿足,,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,為雙曲線的左、右焦點,雙曲線的漸近線上存在點滿足,則的最大值為________.14.已知多項式的各項系數(shù)之和為32,則展開式中含項的系數(shù)為______.15.一次考試后,某班全班50個人數(shù)學成績的平均分為正數(shù),若把當成一個同學的分數(shù),與原來的50個分數(shù)一起,算出這51個分數(shù)的平均值為,則_________.16.已知向量滿足,,則______________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知在中,a、b、c分別為角A、B、C的對邊,且.(1)求角A的值;(2)若,設角,周長為y,求的最大值.18.(12分)如圖所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是線段EF的中點.求證:(1)AM∥平面BDE;(2)AM⊥平面BDF.19.(12分)在極坐標系中,曲線的極坐標方程為,直線的極坐標方程為,設與交于、兩點,中點為,的垂直平分線交于、.以為坐標原點,極軸為軸的正半軸建立直角坐標系.(1)求的直角坐標方程與點的直角坐標;(2)求證:.20.(12分)已知函數(shù)(1)已知直線:,:.若直線與關于對稱,又函數(shù)在處的切線與垂直,求實數(shù)的值;(2)若函數(shù),則當,時,求證:①;②.21.(12分)已知函數(shù).(1)討論的單調性;(2)若恒成立,求實數(shù)的取值范圍.22.(10分)如圖,四棱錐中,平面平面,若,四邊形是平行四邊形,且.(Ⅰ)求證:;(Ⅱ)若點在線段上,且平面,,,求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
由三視圖可知,該幾何體是三棱錐,底面是邊長為的等邊三角形,三棱錐的高為,所以該幾何體的體積,故選C.2.D【解析】
根據指數(shù)函數(shù)的圖象和特征以及圖象的平移可得正確的選項.【詳解】從題設中提供的圖像可以看出,故得,故選:D.本題考查圖象的平移以及指數(shù)函數(shù)的圖象和特征,本題屬于基礎題.3.A【解析】
直接利用復數(shù)代數(shù)形式的乘除運算化簡得答案.【詳解】本題正確選項:本題考查復數(shù)代數(shù)形式的乘除運算,是基礎的計算題.4.A【解析】
作出二面角的補角、線面角、線線角的補角,由此判斷出兩個命題的正確性.【詳解】①如圖所示,過作平面,垂足為,連接,作,連接.由圖可知,,所以,所以①正確.②由于,所以與所成角,所以,所以②正確.綜上所述,①②都正確.故選:A本題考查了折疊問題、空間角、數(shù)形結合方法,考查了推理能力與計算能力,屬于中檔題.5.A【解析】
由復數(shù)的除法求出,然后計算.【詳解】,∴.故選:A.本題考查復數(shù)的乘除法運算,考查共軛復數(shù)的概念,掌握復數(shù)的運算法則是解題關鍵.6.D【解析】試題分析:因為,所以為得到y(tǒng)=sin(2x-π3)的圖象,只需要將考點:三角函數(shù)的圖像變換.7.A【解析】
計算,代入回歸方程可得.【詳解】由題意,,∴,解得.故選:A.本題考查線性回歸直線方程,解題關鍵是掌握性質:線性回歸直線一定過中心點.8.C【解析】
將點A坐標代入雙曲線方程即可求出雙曲線的實軸長和虛軸長,進而求得離心率.【詳解】將,代入方程得,而雙曲線的半實軸,所以,得離心率,故選C.此題考查雙曲線的標準方程和離心率的概念,屬于基礎題.9.D【解析】
根據函數(shù)定義域的求解方法可分別求得集合,由補集和交集定義可求得結果.【詳解】,,,.故選:.本題考查集合運算中的補集和交集運算問題,涉及到函數(shù)定義域的求解,屬于基礎題.10.C【解析】
根據題意,將a、b代入,利用基本不等式求出最小值即可.【詳解】∵a>0,b>0,a+b=1,∴,當且僅當時取“=”號.
答案:C本題考查基本不等式的應用,“1”的應用,利用基本不等式求最值時,一定要正確理解和掌握“一正,二定,三相等”的內涵:一正是首先要判斷參數(shù)是否為正;二定是其次要看和或積是否為定值(和定積最大,積定和最?。?;三相等是最后一定要驗證等號能否成立,屬于基礎題.11.B【解析】
因為圓與拋物線的準線相切,則圓心為(3,0),半徑為4,根據相切可知,圓心到直線的距離等于半徑,可知的值為2,選B.【詳解】請在此輸入詳解!12.B【解析】由a1+a3+a5=21得a3+a5+a7=,選B.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
設,由可得,整理得,即點在以為圓心,為半徑的圓上.又點到雙曲線的漸近線的距離為,所以當雙曲線的漸近線與圓相切時,取得最大值,此時,解得.14.【解析】
令可得各項系數(shù)和為,得出,根據第一個因式展開式的常數(shù)項與第二個因式的展開式含一次項的積與第一個因式展開式含x的一次項與第二個因式常數(shù)項的積的和即為展開式中含項,可得解.【詳解】令,則得,解得,所以展開式中含項為:,故答案為:本題主要考查了二項展開式的系數(shù)和,二項展開式特定項,賦值法,屬于中檔題.15.1【解析】
根據均值的定義計算.【詳解】由題意,∴.故答案為:1.本題考查均值的概念,屬于基礎題.16.1【解析】
首先根據向量的數(shù)量積的運算律求出,再根據計算可得;【詳解】解:因為,所以又所以所以故答案為:本題考查平面向量的數(shù)量積的運算,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2).【解析】
(1)利用正弦定理,結合題中條件,可以得到,之后應用余弦定理即可求得;(2)利用正弦定理求得,求出三角形的周長,利用三角函數(shù)的最值求解即可.【詳解】(1)由已知可得,結合正弦定理可得,∴,又,∴.(2)由,及正弦定理得,∴,,故,即,由,得,∴當,即時,.該題主要考查的是有關解三角形的問題,解題的關鍵是掌握正余弦定理,屬于簡單題目.18.(1)見解析(2)見解析【解析】(1)建立如圖所示的空間直角坐標系,設AC∩BD=N,連結NE.則N,E(0,0,1),A(,,0),M.∴=,=.∴=且NE與AM不共線.∴NE∥AM.∵NE平面BDE,AM平面BDE,∴AM∥平面BDE.(2)由(1)知=,∵D(,0,0),F(xiàn)(,,1),∴=(0,,1),∴·=0,∴AM⊥DF.同理AM⊥BF.又DF∩BF=F,∴AM⊥平面BDF.19.(1),;(2)見解析.【解析】
(1)將曲線的極坐標方程變形為,再由可將曲線的極坐標方程化為直角坐標方程,將直線的方程與曲線的方程聯(lián)立,求出點、的坐標,即可得出線段的中點的坐標;(2)求得,寫出直線的參數(shù)方程,將直線的參數(shù)方程與曲線的普通方程聯(lián)立,利用韋達定理求得的值,進而可得出結論.【詳解】(1)曲線的極坐標方程可化為,即,將代入曲線的方程得,所以,曲線的直角坐標方程為.將直線的極坐標方程化為普通方程得,聯(lián)立,得或,則點、,因此,線段的中點為;(2)由(1)得,,易知的垂直平分線的參數(shù)方程為(為參數(shù)),代入的普通方程得,,因此,.本題考查曲線的極坐標方程與普通方程之間的轉化,同時也考查了直線參數(shù)幾何意義的應用,涉及韋達定理的應用,考查計算能力,屬于中等題.20.(1)(2)①證明見解析②證明見解析【解析】
(1)首先根據直線關于直線對稱的直線的求法,求得的方程及其斜率.根據函數(shù)在處的切線與垂直列方程,解方程求得的值.(2)①構造函數(shù),利用的導函數(shù)證得當時,,由此證得.②由①知成立,整理得成立.利用構造函數(shù)法證得,由此得到,即,化簡后得到.【詳解】(1)由解得必過與的交點.在上取點,易得點關于對稱的點為,即為直線,所以的方程為,即,其斜率為.又因為,所以,,由題意,解得.(2)因為,所以.①令,則,則,且,,時,,單調遞減;時,,單調遞增.因為,所以,因為,所以存在,使時,,單調遞增;時,,單調遞減;時,,單調遞增.又,所以時,,即,所以,即成立.②由①知成立,即有成立.令,即.所以時,,單調遞增;時,,單調遞減,所以,即,因為,所以,所以時,,即時,.本小題考查函數(shù)圖象的對稱性,利用導數(shù)求切線的斜率,利用導數(shù)證明不等式等基礎知識;考查學生分析問題,解決問題的能力,推理與運算求解能力,轉化與化歸思想,數(shù)形結合思想和應用意識.21.(1)當時,在上單調遞增;當時,在上單調遞減,在上單調遞增;當時,在上單調遞減,在上單調遞增;(2).【解析】
(1)對a分三種情況討論求出函數(shù)的單調性;(2)對a分三種情況,先求出每一種情況下函數(shù)f(x)的最小值,再解不等式得解.【詳解】(1),當時,,在上單調遞增;當時,,,,,∴在上單調遞減,在上單調遞增;當時,,,,,∴在上單調遞減,在上單調遞增.綜上:當時,在上單調遞增;當時,在上單調遞減,在上單調遞增;當時,在上單調遞減,在上單調遞增.(2)由(1)可知:當時,,∴成立.當時,,,∴.當時,,,∴,即.綜上.本題主要考查利用導數(shù)研究函數(shù)的單調性和不等式的恒成立問題,意在考查學生對這些知識的理解掌握水平和分析推理能力.22.(Ⅰ)見解析(Ⅱ)【解析】
(Ⅰ)推導出BC⊥CE,從而EC⊥平面ABCD,進而EC⊥BD,再由BD⊥AE,得BD⊥平面AEC,從而BD⊥AC,進而四邊形ABCD是菱形,由此能證明AB=AD.(Ⅱ)設AC與BD的交點為G,推導出EC//FG,取BC的中點為O,連結OD,則OD⊥BC,以O為坐標原點,以過點O且與CE平行的直線為x軸,以BC為y軸,OD為z軸,建立空間直角坐標系,利用向量法能求出二面角A-BF-D的余弦值.【詳解】(Ⅰ)證明:,即,因為平面平面,所以平面,所以,因為,所以平面,所以,因為四邊形是平行四邊形,所以四邊形是菱形,故;解法一:(Ⅱ)設與的交點為,因為平面,平面平面于,所以,因為是中點,所以是的中點,因為,取的中點為,連接,則,因為平面平面,所
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 44906-2024生物質鍋爐技術規(guī)范
- 高考物理總復習專題四曲線運動萬有引力與航天第4講萬有引力與航天練習含答案
- 建筑工地用水泥采購
- 醫(yī)藥產品采購合同示例
- 作文主題05 多彩信件-四年級語文作文主題訓練
- 九年級化學下冊 第六章 金屬 6.1 金屬的物理性質教案 (新版)粵教版
- 2024秋七年級英語上冊 Unit 7 Days and Months Lesson 42 Happy Holodays教案 (新版)冀教版
- 2024秋九年級化學上冊 4.1 愛護水資源教案 (新版)新人教版
- 2024高中歷史 第七單元 復雜多樣的當代世界 第24課 兩極對峙格局的形成教案 岳麓版必修1
- 2023六年級語文下冊 第六單元 難忘小學生活-閱讀交流與指導配套教案 新人教版
- 全國壓力容器設計單位名錄
- 衛(wèi)生部城市社區(qū)衛(wèi)生服務中心基本標準
- 《針織學》期末考試試卷附答案
- (新人教版)四年級上冊數(shù)學第六單元《靈活試商(例5)》教學課件
- 特種設備使用登記表(范本)
- (完整版)5以內的加減法(可直接打印)
- 生物中考備考經驗交流講座課件
- 一次性生物反應袋儲液袋的完整性測試
- 智能物流-完整版課件(全)
- 新疆準東經濟技術開發(fā)區(qū)西部固廢處置場項目環(huán)評報告書
- GB∕T 36008-2018 機器人與機器人裝備 協(xié)作機器人
評論
0/150
提交評論