版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2021-2022高考數(shù)學(xué)模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若函數(shù)的圖象向右平移個單位長度得到函數(shù)的圖象,若函數(shù)在區(qū)間上單調(diào)遞增,則的最大值為().A. B. C. D.2.如圖,長方體中,,,點T在棱上,若平面.則()A.1 B. C.2 D.3.《聊齋志異》中有這樣一首詩:“挑水砍柴不堪苦,請歸但求穿墻術(shù).得訣自詡無所阻,額上墳起終不悟.”在這里,我們稱形如以下形式的等式具有“穿墻術(shù)”:,,,,則按照以上規(guī)律,若具有“穿墻術(shù)”,則()A.48 B.63 C.99 D.1204.盒中有6個小球,其中4個白球,2個黑球,從中任取個球,在取出的球中,黑球放回,白球則涂黑后放回,此時盒中黑球的個數(shù),則()A., B.,C., D.,5.已知函數(shù)的圖象如圖所示,則下列說法錯誤的是()A.函數(shù)在上單調(diào)遞減B.函數(shù)在上單調(diào)遞增C.函數(shù)的對稱中心是D.函數(shù)的對稱軸是6.復(fù)數(shù)的共軛復(fù)數(shù)為()A. B. C. D.7.已知拋物線上的點到其焦點的距離比點到軸的距離大,則拋物線的標(biāo)準(zhǔn)方程為()A. B. C. D.8.已知數(shù)列為等差數(shù)列,且,則的值為()A. B. C. D.9.2019年10月17日是我國第6個“扶貧日”,某醫(yī)院開展扶貧日“送醫(yī)下鄉(xiāng)”醫(yī)療義診活動,現(xiàn)有五名醫(yī)生被分配到四所不同的鄉(xiāng)鎮(zhèn)醫(yī)院中,醫(yī)生甲被指定分配到醫(yī)院,醫(yī)生乙只能分配到醫(yī)院或醫(yī)院,醫(yī)生丙不能分配到醫(yī)生甲、乙所在的醫(yī)院,其他兩名醫(yī)生分配到哪所醫(yī)院都可以,若每所醫(yī)院至少分配一名醫(yī)生,則不同的分配方案共有()A.18種 B.20種 C.22種 D.24種10.已知等比數(shù)列的前項和為,且滿足,則的值是()A. B. C. D.11.已知為虛數(shù)單位,復(fù)數(shù),則其共軛復(fù)數(shù)()A. B. C. D.12.如圖所示,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,其中左視圖中三角形為等腰直角三角形,則該幾何體外接球的體積是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.成都市某次高三統(tǒng)考,成績X經(jīng)統(tǒng)計分析,近似服從正態(tài)分布,且,若該市有人參考,則估計成都市該次統(tǒng)考中成績大于分的人數(shù)為_____.14.已知數(shù)列為等差數(shù)列,數(shù)列為等比數(shù)列,滿足,其中,,則的值為_______________.15.已知函數(shù)()在區(qū)間上的值小于0恒成立,則的取值范圍是________.16.設(shè)為橢圓在第一象限上的點,則的最小值為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列{an}的各項均為正,Sn為數(shù)列{an}的前n項和,an2+2an=4Sn+1.(1)求{an}的通項公式;(2)設(shè)bn,求數(shù)列{bn}的前n項和.18.(12分)已知雙曲線及直線.(1)若l與C有兩個不同的交點,求實數(shù)k的取值范圍;(2)若l與C交于A,B兩點,O是原點,且,求實數(shù)k的值.19.(12分)以直角坐標(biāo)系的原點為極坐標(biāo)系的極點,軸的正半軸為極軸.已知曲線的極坐標(biāo)方程為,是上一動點,,點的軌跡為.(1)求曲線的極坐標(biāo)方程,并化為直角坐標(biāo)方程;(2)若點,直線的參數(shù)方程(為參數(shù)),直線與曲線的交點為,當(dāng)取最小值時,求直線的普通方程.20.(12分)平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點為極點,軸的非負(fù)半軸為極軸,取相同的單位長度建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線的極坐標(biāo)方程為,點.(1)求曲線的極坐標(biāo)方程與直線的直角坐標(biāo)方程;(2)若直線與曲線交于點,曲線與曲線交于點,求的面積.21.(12分)如圖,三棱柱ABC-A1B1C1中,側(cè)面BCC1B1是菱形,AC=BC=2,∠CBB1=,點A在平面BCC1B1上的投影為棱BB1的中點E.(1)求證:四邊形ACC1A1為矩形;(2)求二面角E-B1C-A1的平面角的余弦值.22.(10分)已知函數(shù)(1)已知直線:,:.若直線與關(guān)于對稱,又函數(shù)在處的切線與垂直,求實數(shù)的值;(2)若函數(shù),則當(dāng),時,求證:①;②.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
由題意利用函數(shù)的圖象變換規(guī)律,正弦函數(shù)的單調(diào)性,求出的最大值.【詳解】解:把函數(shù)的圖象向右平移個單位長度得到函數(shù)的圖象,若函數(shù)在區(qū)間,上單調(diào)遞增,在區(qū)間,上,,,則當(dāng)最大時,,求得,故選:C.【點睛】本題主要考查函數(shù)的圖象變換規(guī)律,正弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.2.D【解析】
根據(jù)線面垂直的性質(zhì),可知;結(jié)合即可證明,進(jìn)而求得.由線段關(guān)系及平面向量數(shù)量積定義即可求得.【詳解】長方體中,,點T在棱上,若平面.則,則,所以,則,所以,故選:D.【點睛】本題考查了直線與平面垂直的性質(zhì)應(yīng)用,平面向量數(shù)量積的運算,屬于基礎(chǔ)題.3.C【解析】
觀察規(guī)律得根號內(nèi)分母為分子的平方減1,從而求出n.【詳解】解:觀察各式發(fā)現(xiàn)規(guī)律,根號內(nèi)分母為分子的平方減1所以故選:C.【點睛】本題考查了歸納推理,發(fā)現(xiàn)總結(jié)各式規(guī)律是關(guān)鍵,屬于基礎(chǔ)題.4.C【解析】
根據(jù)古典概型概率計算公式,計算出概率并求得數(shù)學(xué)期望,由此判斷出正確選項.【詳解】表示取出的為一個白球,所以.表示取出一個黑球,,所以.表示取出兩個球,其中一黑一白,,表示取出兩個球為黑球,,表示取出兩個球為白球,,所以.所以,.故選:C【點睛】本小題主要考查離散型隨機(jī)變量分布列和數(shù)學(xué)期望的計算,屬于中檔題.5.B【解析】
根據(jù)圖象求得函數(shù)的解析式,結(jié)合余弦函數(shù)的單調(diào)性與對稱性逐項判斷即可.【詳解】由圖象可得,函數(shù)的周期,所以.將點代入中,得,解得,由,可得,所以.令,得,故函數(shù)在上單調(diào)遞減,當(dāng)時,函數(shù)在上單調(diào)遞減,故A正確;令,得,故函數(shù)在上單調(diào)遞增.當(dāng)時,函數(shù)在上單調(diào)遞增,故B錯誤;令,得,故函數(shù)的對稱中心是,故C正確;令,得,故函數(shù)的對稱軸是,故D正確.故選:B.【點睛】本題考查由圖象求余弦型函數(shù)的解析式,同時也考查了余弦型函數(shù)的單調(diào)性與對稱性的判斷,考查推理能力與計算能力,屬于中等題.6.D【解析】
直接相乘,得,由共軛復(fù)數(shù)的性質(zhì)即可得結(jié)果【詳解】∵∴其共軛復(fù)數(shù)為.故選:D【點睛】熟悉復(fù)數(shù)的四則運算以及共軛復(fù)數(shù)的性質(zhì).7.B【解析】
由拋物線的定義轉(zhuǎn)化,列出方程求出p,即可得到拋物線方程.【詳解】由拋物線y2=2px(p>0)上的點M到其焦點F的距離比點M到y(tǒng)軸的距離大,根據(jù)拋物線的定義可得,,所以拋物線的標(biāo)準(zhǔn)方程為:y2=2x.故選B.【點睛】本題考查了拋物線的簡單性質(zhì)的應(yīng)用,拋物線方程的求法,屬于基礎(chǔ)題.8.B【解析】
由等差數(shù)列的性質(zhì)和已知可得,即可得到,代入由誘導(dǎo)公式計算可得.【詳解】解:由等差數(shù)列的性質(zhì)可得,解得,,故選:B.【點睛】本題考查等差數(shù)列的下標(biāo)和公式的應(yīng)用,涉及三角函數(shù)求值,屬于基礎(chǔ)題.9.B【解析】
分兩類:一類是醫(yī)院A只分配1人,另一類是醫(yī)院A分配2人,分別計算出兩類的分配種數(shù),再由加法原理即可得到答案.【詳解】根據(jù)醫(yī)院A的情況分兩類:第一類:若醫(yī)院A只分配1人,則乙必在醫(yī)院B,當(dāng)醫(yī)院B只有1人,則共有種不同分配方案,當(dāng)醫(yī)院B有2人,則共有種不同分配方案,所以當(dāng)醫(yī)院A只分配1人時,共有種不同分配方案;第二類:若醫(yī)院A分配2人,當(dāng)乙在醫(yī)院A時,共有種不同分配方案,當(dāng)乙不在A醫(yī)院,在B醫(yī)院時,共有種不同分配方案,所以當(dāng)醫(yī)院A分配2人時,共有種不同分配方案;共有20種不同分配方案.故選:B【點睛】本題考查排列與組合的綜合應(yīng)用,在做此類題時,要做到分類不重不漏,考查學(xué)生分類討論的思想,是一道中檔題.10.C【解析】
利用先求出,然后計算出結(jié)果.【詳解】根據(jù)題意,當(dāng)時,,,故當(dāng)時,,數(shù)列是等比數(shù)列,則,故,解得,故選.【點睛】本題主要考查了等比數(shù)列前項和的表達(dá)形式,只要求出數(shù)列中的項即可得到結(jié)果,較為基礎(chǔ).11.B【解析】
先根據(jù)復(fù)數(shù)的乘法計算出,然后再根據(jù)共軛復(fù)數(shù)的概念直接寫出即可.【詳解】由,所以其共軛復(fù)數(shù).故選:B.【點睛】本題考查復(fù)數(shù)的乘法運算以及共軛復(fù)數(shù)的概念,難度較易.12.C【解析】
作出三視圖所表示幾何體的直觀圖,可得直觀圖為直三棱柱,并且底面為等腰直角三角形,即可求得外接球的半徑,即可得外接球的體積.【詳解】如圖為幾何體的直觀圖,上下底面為腰長為的等腰直角三角形,三棱柱的高為4,其外接球半徑為,所以體積為.故選:C【點睛】本題考查三視圖還原幾何體的直觀圖、球的體積公式,考查空間想象能力、運算求解能力,求解時注意球心的確定.二、填空題:本題共4小題,每小題5分,共20分。13..【解析】
根據(jù)正態(tài)分布密度曲線性質(zhì),結(jié)合求得,即可得解.【詳解】根據(jù)正態(tài)分布,且,所以故該市有人參考,則估計成都市該次統(tǒng)考中成績大于分的人數(shù)為.故答案為:.【點睛】此題考查正態(tài)分布密度曲線性質(zhì)的理解辨析,根據(jù)曲線的對稱性求解概率,根據(jù)總?cè)藬?shù)求解成績大于114的人數(shù).14.【解析】
根據(jù)題意,判斷出,根據(jù)等比數(shù)列的性質(zhì)可得,再令數(shù)列中的,,,根據(jù)等差數(shù)列的性質(zhì),列出等式,求出和的值即可.【詳解】解:由,其中,,可得,則,令,,可得.①又令數(shù)列中的,,,根據(jù)等差數(shù)列的性質(zhì),可得,所以.②根據(jù)①②得出,.所以.故答案為.【點睛】本題主要考查等差數(shù)列、等比數(shù)列的性質(zhì),屬于基礎(chǔ)題.15.【解析】
首先根據(jù)的取值范圍,求得的取值范圍,由此求得函數(shù)的值域,結(jié)合區(qū)間上的值小于0恒成立列不等式組,解不等式組求得的取值范圍.【詳解】由于,所以,由于區(qū)間上的值小于0恒成立,所以().所以,由于,所以,由于,所以令得.所以的取值范圍是.故答案為:【點睛】本小題主要考查三角函數(shù)值域的求法,考查三角函數(shù)值恒小于零的問題的求解,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.16.【解析】
利用橢圓的參數(shù)方程,將所求代數(shù)式的最值問題轉(zhuǎn)化為求三角函數(shù)最值問題,利用兩角和的正弦公式和三角函數(shù)的性質(zhì),以及求導(dǎo)數(shù)、單調(diào)性和極值,即可得到所求最小值.【詳解】解:設(shè)點,,其中,,由,,,可設(shè),導(dǎo)數(shù)為,由,可得,可得或,由,,可得,即,可得,由可得函數(shù)遞減;由,可得函數(shù)遞增,可得時,函數(shù)取得最小值,且為,則的最小值為1.故答案為:1.【點睛】本題考查橢圓參數(shù)方程的應(yīng)用,利用三角函數(shù)的恒等變換和導(dǎo)數(shù)法求函數(shù)最值的方法,考查化簡變形能力和運算能力,屬于難題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)an=2n+1;(2)2.【解析】
(1)根據(jù)題意求出首項,再由(an+12+2an+1)﹣(an2+2an)=4an+1,求得該數(shù)列為等差數(shù)列即可求得通項公式;(2)利用錯位相減法進(jìn)行數(shù)列求和.【詳解】(1)∵an2+2an=4Sn+1,∴a12+2a1=4S1+1,即,解得:a1=1或a1=﹣1(舍),又∵an+12+2an+1=4Sn+1+1,∴(an+12+2an+1)﹣(an2+2an)=4an+1,整理得:(an+1﹣an)(an+1+an)=2(an+1+an),又∵數(shù)列{an}的各項均為正,∴an+1﹣an=2,∴數(shù)列{an}是首項為1、公差為2的等差數(shù)列,∴數(shù)列{an}的通項公式an=1+2(n﹣1)=2n+1;(2)由(1)可知bn,記數(shù)列{bn}的前n項和為Tn,則Tn=1?5?(2n+1)?,Tn=1?5??…+(2n﹣1)?(2n+1)?,錯位相減得:Tn=1+2(?)﹣(2n+1)?=1+2,∴Tn()=2.【點睛】此題考查求等差數(shù)列的基本量,根據(jù)遞推關(guān)系判定等差數(shù)列,根據(jù)錯位相減進(jìn)行數(shù)列求和,關(guān)鍵在于熟記方法準(zhǔn)確計算.18.(1);(2)或.【解析】
(1)聯(lián)立直線方程與雙曲線方程,消去,得到關(guān)于的一元二次方程,根據(jù)根的判別式,即可求出結(jié)論;(2)設(shè),由(1)可得關(guān)系,再由直線l過點,可得,進(jìn)而建立關(guān)于的方程,求解即可.【詳解】(1)雙曲線C與直線l有兩個不同的交點,則方程組有兩個不同的實數(shù)根,整理得,,解得且.雙曲線C與直線l有兩個不同交點時,k的取值范圍是.(2)設(shè)交點,直線l與y軸交于點,,.,即,整理得,解得或或.又,或時,的面積為.【點睛】本題考查直線與雙曲線的位置關(guān)系、三角形面積計算,要熟練掌握根與系數(shù)關(guān)系解決相交弦問題,考查計算求解能力,屬于中檔題.19.(1),;(2).【解析】
(1)設(shè)點極坐標(biāo)分別為,,由可得,整理即可得到極坐標(biāo)方程,進(jìn)而求得直角坐標(biāo)方程;(2)設(shè)點對應(yīng)的參數(shù)分別為,則,,將直線的參數(shù)方程代入的直角坐標(biāo)方程中,再利用韋達(dá)定理可得,,則,求得取最小值時符合的條件,進(jìn)而求得直線的普通方程.【詳解】(1)設(shè)點極坐標(biāo)分別為,,因為,則,所以曲線的極坐標(biāo)方程為,兩邊同乘,得,所以的直角坐標(biāo)方程為,即.(2)設(shè)點對應(yīng)的參數(shù)分別為,則,,將直線的參數(shù)方程(參數(shù)),代入的直角坐標(biāo)方程中,整理得.由韋達(dá)定理得,,所以,當(dāng)且僅當(dāng)時,等號成立,則,所以當(dāng)取得最小值時,直線的普通方程為.【點睛】本題考查極坐標(biāo)與直角坐標(biāo)方程的轉(zhuǎn)化,考查利用直線的參數(shù)方程研究直線與圓的位置關(guān)系.20.(1).(2)【解析】
(1)根據(jù)題意代入公式化簡即可得到.(2)聯(lián)立極坐標(biāo)方程通過極坐標(biāo)的幾何意義求解,再求點到直線的距離即可算出三角形面積.【詳解】解:(1)曲線,即.∴.曲線的極坐標(biāo)方程為.直線的極坐標(biāo)方程為,即,∴直線的直角坐標(biāo)方程為.(2)設(shè),,∴,解得.又,∴(舍去).∴.點到直線的距離為,∴的面積為.【點睛】此題考查參數(shù)方程,極坐標(biāo),直角坐標(biāo)之間相互轉(zhuǎn)化,注意參數(shù)方程只能先轉(zhuǎn)化為直角坐標(biāo)再轉(zhuǎn)化為極坐標(biāo),屬于較易題目.21.(1)見解析(2)【解析】
(1)通過勾股定理得出,又,進(jìn)而可得平面,則可得到,問題得證;(2)如圖,以為原點,,,所在
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 課題申報參考:巨災(zāi)指數(shù)保險調(diào)節(jié)下政府應(yīng)急物資采儲策略優(yōu)化研究
- 課題申報參考:教育強(qiáng)國與新質(zhì)生產(chǎn)力研究
- 2025年度個人屋頂光伏安裝合同范本3篇
- 2025年塔城b2考貨運資格證要多久
- 2025個人蝦池承包養(yǎng)殖資源整合與開發(fā)合同3篇
- 十佳書香家庭事跡
- 二零二五版智能農(nóng)業(yè)監(jiān)測系統(tǒng)采購合同提升農(nóng)業(yè)效率4篇
- 二零二五學(xué)校與家長聯(lián)合實施家校共育行動計劃3篇
- 2025年度北京商品房買賣合同(含智能家居系統(tǒng)升級承諾)3篇
- 2025年個人間信息保密與責(zé)任承擔(dān)協(xié)議書3篇
- 2024版?zhèn)€人私有房屋購買合同
- 2024爆炸物運輸安全保障協(xié)議版B版
- 2025年度軍人軍事秘密保護(hù)保密協(xié)議與信息安全風(fēng)險評估合同3篇
- 《食品與食品》課件
- 讀書分享會《白夜行》
- 光伏工程施工組織設(shè)計
- DB4101-T 121-2024 類家庭社會工作服務(wù)規(guī)范
- 化學(xué)纖維的鑒別與測試方法考核試卷
- 2024-2025學(xué)年全國中學(xué)生天文知識競賽考試題庫(含答案)
- 自動駕駛汽車道路交通安全性探討研究論文
- 術(shù)后譫妄及護(hù)理
評論
0/150
提交評論