版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
專題09利用導(dǎo)數(shù)研究函數(shù)的性質(zhì)1、(2023年全國甲卷數(shù)學(xué)(文))曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】設(shè)曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程為SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0所以SKIPIF1<0所以曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程為SKIPIF1<0.故選:C2、(2023年新課標(biāo)全國Ⅱ卷)已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,則a的最小值為(
).A.SKIPIF1<0 B.e C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】依題可知,SKIPIF1<0在SKIPIF1<0上恒成立,顯然SKIPIF1<0,所以SKIPIF1<0,設(shè)SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0,即a的最小值為SKIPIF1<0.故選:C.3、(2023年新課標(biāo)全國Ⅱ卷)(多選題).若函數(shù)SKIPIF1<0既有極大值也有極小值,則(
).A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】BCD【詳解】函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,求導(dǎo)得SKIPIF1<0,因?yàn)楹瘮?shù)SKIPIF1<0既有極大值也有極小值,則函數(shù)SKIPIF1<0在SKIPIF1<0上有兩個(gè)變號(hào)零點(diǎn),而SKIPIF1<0,因此方程SKIPIF1<0有兩個(gè)不等的正根SKIPIF1<0,于是SKIPIF1<0,即有SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,顯然SKIPIF1<0,即SKIPIF1<0,A錯(cuò)誤,BCD正確.故選:BCD4、(2023年全國乙卷數(shù)學(xué)(文)).函數(shù)SKIPIF1<0存在3個(gè)零點(diǎn),則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】SKIPIF1<0,則SKIPIF1<0,若SKIPIF1<0要存在3個(gè)零點(diǎn),則SKIPIF1<0要存在極大值和極小值,則SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0的極大值為SKIPIF1<0,極小值為SKIPIF1<0,若SKIPIF1<0要存在3個(gè)零點(diǎn),則SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,故選:B.5、(2023年全國乙卷數(shù)學(xué)(理))設(shè)SKIPIF1<0,若函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,則a的取值范圍是______.【答案】SKIPIF1<0【詳解】由函數(shù)的解析式可得SKIPIF1<0在區(qū)間SKIPIF1<0上恒成立,則SKIPIF1<0,即SKIPIF1<0在區(qū)間SKIPIF1<0上恒成立,故SKIPIF1<0,而SKIPIF1<0,故SKIPIF1<0,故SKIPIF1<0即SKIPIF1<0,故SKIPIF1<0,結(jié)合題意可得實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故答案為:SKIPIF1<06、【2022年新高考2卷】曲線y=ln【答案】
y=1e【解析】因?yàn)閥=ln當(dāng)x>0時(shí)y=lnx,設(shè)切點(diǎn)為x0,lnx0又切線過坐標(biāo)原點(diǎn),所以?lnx0=1x0當(dāng)x<0時(shí)y=ln?x,設(shè)切點(diǎn)為x1,ln?x又切線過坐標(biāo)原點(diǎn),所以?ln?x1=1x故答案為:y=1e7、【2022年新高考1卷】已知函數(shù)f(x)=xA.f(x)有兩個(gè)極值點(diǎn) B.f(x)有三個(gè)零點(diǎn)C.點(diǎn)(0,1)是曲線y=f(x)的對(duì)稱中心 D.直線y=2x是曲線y=f(x)的切線【答案】AC【解析】由題,f'x=3x2?1,令令f'(x)<0得所以f(x)在(?33,33所以x=±3因f(?33)=1+23所以,函數(shù)fx在?當(dāng)x≥33時(shí),fx≥f3綜上所述,函數(shù)f(x)有一個(gè)零點(diǎn),故B錯(cuò)誤;令?(x)=x3?x,該函數(shù)的定義域?yàn)镽則?(x)是奇函數(shù),(0,0)是?(x)的對(duì)稱中心,將?(x)的圖象向上移動(dòng)一個(gè)單位得到f(x)的圖象,所以點(diǎn)(0,1)是曲線y=f(x)的對(duì)稱中心,故C正確;令f'x=3x2當(dāng)切點(diǎn)為(1,1)時(shí),切線方程為y=2x?1,當(dāng)切點(diǎn)為(?1,1)時(shí),切線方程為y=2x+3,故D錯(cuò)誤.故選:AC.8、(2023年全國乙卷數(shù)學(xué)(文))6.已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程.(2)若函數(shù)SKIPIF1<0在SKIPIF1<0單調(diào)遞增,求SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【詳解】(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,據(jù)此可得SKIPIF1<0,所以函數(shù)在SKIPIF1<0處的切線方程為SKIPIF1<0,即SKIPIF1<0.(2)由函數(shù)的解析式可得SKIPIF1<0,滿足題意時(shí)SKIPIF1<0在區(qū)間SKIPIF1<0上恒成立.令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,原問題等價(jià)于SKIPIF1<0在區(qū)間SKIPIF1<0上恒成立,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),由于SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,此時(shí)SKIPIF1<0,不合題意;令SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0,SKIPIF1<0時(shí),由于SKIPIF1<0,所以SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,即SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,滿足題意.當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0可得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,即SKIPIF1<0單調(diào)遞減,注意到SKIPIF1<0,故當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減,由于SKIPIF1<0,故當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,不合題意.綜上可知:實(shí)數(shù)SKIPIF1<0得取值范圍是SKIPIF1<0.題組一、函數(shù)圖像的切線問題1-1、(2023·重慶·統(tǒng)考三模)已知直線y=ax-a與曲線SKIPIF1<0相切,則實(shí)數(shù)a=(
)A.0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】由SKIPIF1<0且x不為0,得SKIPIF1<0設(shè)切點(diǎn)為SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,可得SKIPIF1<0.故選:C1-2、(2023·江蘇南京·??家荒#┤糁本€SKIPIF1<0與曲線SKIPIF1<0相切,則SKIPIF1<0_________.【答案】SKIPIF1<0【分析】設(shè)切點(diǎn)為SKIPIF1<0,根據(jù)導(dǎo)數(shù)的幾何意義可推導(dǎo)得到SKIPIF1<0,根據(jù)切點(diǎn)坐標(biāo)同時(shí)滿足直線與曲線方程可構(gòu)造方程求得SKIPIF1<0,代入可得結(jié)果.【詳解】設(shè)直線SKIPIF1<0與曲線SKIPIF1<0相切于點(diǎn)SKIPIF1<0,由SKIPIF1<0得:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0.故答案為:SKIPIF1<0.1-3、(2023·黑龍江大慶·統(tǒng)考一模)函數(shù)SKIPIF1<0的圖象在點(diǎn)SKIPIF1<0處的切線方程為______.【答案】SKIPIF1<0【分析】先求導(dǎo),再由導(dǎo)數(shù)的幾何意義和點(diǎn)斜式即可求解【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0.因?yàn)镾KIPIF1<0,SKIPIF1<0,所以所求切線方程為SKIPIF1<0,即SKIPIF1<0.故答案為:SKIPIF1<0.1-4、(2023·吉林通化·梅河口市第五中學(xué)校考一模)若直線SKIPIF1<0是函數(shù)SKIPIF1<0的圖象在某點(diǎn)處的切線,則實(shí)數(shù)SKIPIF1<0______.【答案】2【分析】設(shè)切點(diǎn)為SKIPIF1<0,由點(diǎn)在兩線上及切線斜率建立方程組解得參數(shù).【詳解】設(shè)切點(diǎn)為SKIPIF1<0,則有SKIPIF1<0.故答案為:2.1-5、(2023·河北唐山·統(tǒng)考三模)已知曲線SKIPIF1<0與SKIPIF1<0有公共切線,則實(shí)數(shù)SKIPIF1<0的取值范圍為__________.【答案】SKIPIF1<0【詳解】設(shè)公切線與曲線SKIPIF1<0和SKIPIF1<0的切點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,其中SKIPIF1<0,對(duì)于SKIPIF1<0有SKIPIF1<0,則SKIPIF1<0上的切線方程為SKIPIF1<0,即SKIPIF1<0,對(duì)于SKIPIF1<0有SKIPIF1<0,則SKIPIF1<0上的切線方程為SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,有SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減,所以SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0.∴正實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故答案為:SKIPIF1<0.題組二、利用導(dǎo)數(shù)研究函數(shù)的最值、極值與零點(diǎn)問題2-1、(2022·江蘇蘇州·高三期末)已知函數(shù)SKIPIF1<0,則()A.SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上均有極值B.SKIPIF1<0,使得函數(shù)SKIPIF1<0在SKIPIF1<0上無極值C.SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上有且僅有一個(gè)零點(diǎn)D.SKIPIF1<0,使得函數(shù)SKIPIF1<0在SKIPIF1<0上有兩個(gè)零點(diǎn)【答案】BC【解析】SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0無極值,A錯(cuò),B對(duì).SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0在SKIPIF1<0有且僅有一個(gè)零點(diǎn).SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0恒成立,SKIPIF1<0在SKIPIF1<0SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0有且僅有一個(gè)零點(diǎn).SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0或0,SKIPIF1<0在SKIPIF1<0,SKIPIF1<0SKIPIF1<0.SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0有且僅有一個(gè)零點(diǎn).SKIPIF1<0,SKIPIF1<0有且僅有一個(gè)零點(diǎn),C對(duì),D錯(cuò).故選:BC2-2、(2022·江蘇海門·高三期末)已知函數(shù)SKIPIF1<0有三個(gè)零點(diǎn),則實(shí)數(shù)SKIPIF1<0的取值范圍是()A.(0,SKIPIF1<0) B.[0,SKIPIF1<0) C.[0,SKIPIF1<0] D.(0,SKIPIF1<0)【答案】A【解析】SKIPIF1<0有三個(gè)零點(diǎn),即方程SKIPIF1<0有三個(gè)根,不妨令SKIPIF1<0,則SKIPIF1<0SKIPIF1<0SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0單調(diào)遞減,在SKIPIF1<0單調(diào)遞增,在SKIPIF1<0單調(diào)遞減,SKIPIF1<0,且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立.當(dāng)SKIPIF1<0趨近于負(fù)無窮時(shí),SKIPIF1<0趨近于正無窮;SKIPIF1<0趨近于正無窮時(shí),SKIPIF1<0趨近于SKIPIF1<0,故當(dāng)SKIPIF1<0時(shí),滿足題意.故選:A.2-3、(2023·山西運(yùn)城·統(tǒng)考三模)(多選題)已知函數(shù)SKIPIF1<0,則下列說法正確的是(
)A.曲線SKIPIF1<0在SKIPIF1<0處的切線與直線SKIPIF1<0垂直B.SKIPIF1<0在SKIPIF1<0上單調(diào)遞增C.SKIPIF1<0的極小值為SKIPIF1<0D.SKIPIF1<0在SKIPIF1<0上的最小值為SKIPIF1<0【答案】BC【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故A錯(cuò)誤;令SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,而SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,故B正確;當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,所以SKIPIF1<0的單調(diào)遞減區(qū)間為SKIPIF1<0,所以SKIPIF1<0的極小值為SKIPIF1<0,故C正確;SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以最小值為SKIPIF1<0,故D錯(cuò)誤;故選:BC2-4、(2023·山西晉中·統(tǒng)考三模)設(shè)SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】只需比較SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的大?。涣頢KIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0時(shí)SKIPIF1<0單調(diào)遞增,又SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0;故選:A.2-5、(2023·安徽黃山·統(tǒng)考三模)已知定義域?yàn)镾KIPIF1<0的函數(shù)SKIPIF1<0,其導(dǎo)函數(shù)為SKIPIF1<0,且滿足SKIPIF1<0,SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】SKIPIF1<0,則SKIPIF1<0,因?yàn)镾KIPIF1<0在SKIPIF1<0上恒成立,所以SKIPIF1<0在SKIPIF1<0上恒成立,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,SKIPIF1<0,故A不正確;所以SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,故B不正確;SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,故C正確;SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,故D不正確;故選:C.題組三、利用導(dǎo)數(shù)研究函數(shù)性質(zhì)的綜合性問題3-1、(2022·江蘇通州·高三期末)(多選題)已知函數(shù)f(x)=ekx,g(x)=SKIPIF1<0,其中k≠0,則()A.若點(diǎn)P(a,b)在f(x)的圖象上,則點(diǎn)Q(b,a)在g(x)的圖象上B.當(dāng)k=e時(shí),設(shè)點(diǎn)A,B分別在f(x),g(x)的圖象上,則|AB|的最小值為SKIPIF1<0C.當(dāng)k=1時(shí),函數(shù)F(x)=f(x)-g(x)的最小值小于SKIPIF1<0D.當(dāng)k=-2e時(shí),函數(shù)G(x)=f(x)-g(x)有3個(gè)零點(diǎn)【答案】ACD【解析】由SKIPIF1<0得SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0是SKIPIF1<0的反函數(shù),它們的圖象關(guān)于直線SKIPIF1<0對(duì)稱,A正確;SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,SKIPIF1<0,所以函數(shù)SKIPIF1<0的與直線SKIPIF1<0平行的切線的切點(diǎn)是SKIPIF1<0,SKIPIF1<0到直線SKIPIF1<0的距離是SKIPIF1<0,所以SKIPIF1<0,B錯(cuò);SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0是增函數(shù),SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0,即在SKIPIF1<0上存在唯一零點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上遞減,在SKIPIF1<0上遞增,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,由對(duì)勾函數(shù)知SKIPIF1<0在SKIPIF1<0上是減函數(shù),SKIPIF1<0,所以SKIPIF1<0,C正確;SKIPIF1<0時(shí),SKIPIF1<0是減函數(shù),SKIPIF1<0也是減函數(shù),它們互為反函數(shù),作出它們的圖象,如圖,易知它們有一個(gè)交點(diǎn)在直線SKIPIF1<0上,在右側(cè),SKIPIF1<0的圖象在SKIPIF1<0軸上方,而SKIPIF1<0的圖象在SKIPIF1<0處穿過SKIPIF1<0軸過渡到SKIPIF1<0軸下方,之間它們有一個(gè)交點(diǎn),根據(jù)對(duì)稱性,在左上方,靠近SKIPIF1<0處也有一個(gè)交點(diǎn),因此函數(shù)SKIPIF1<0SKIPIF1<0與SKIPIF1<0SKIPIF1<0的圖象有3個(gè)交點(diǎn),所以SKIPIF1<0有3個(gè)零點(diǎn),D正確.故選:ACD.3-2、(2023·浙江溫州·統(tǒng)考三模)(多選題)已知函數(shù)SKIPIF1<0,其中SKIPIF1<0是其圖象上四個(gè)不重合的點(diǎn),直線SKIPIF1<0為函數(shù)SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線,則(
)A.函數(shù)SKIPIF1<0的圖象關(guān)于SKIPIF1<0中心對(duì)稱B.函數(shù)SKIPIF1<0的極大值有可能小于零C.對(duì)任意的SKIPIF1<0,直線SKIPIF1<0的斜率恒大于直線SKIPIF1<0的斜率D.若SKIPIF1<0三點(diǎn)共線,則SKIPIF1<0.【答案】AD【詳解】設(shè)SKIPIF1<0因?yàn)镾KIPIF1<0所以SKIPIF1<0為奇函數(shù),圖象關(guān)于原點(diǎn)對(duì)稱,所以SKIPIF1<0的圖象關(guān)于點(diǎn)SKIPIF1<0中心對(duì)稱,A正確;令SKIPIF1<0,解得SKIPIF1<0,當(dāng)SKIPIF1<0或SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得極大值,由單調(diào)性可知,SKIPIF1<0,故B錯(cuò)誤;SKIPIF1<0因?yàn)镾KIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,C錯(cuò)誤;同上,可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0三點(diǎn)共線時(shí),則有SKIPIF1<0整理得SKIPIF1<0因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0又SKIPIF1<0,所以SKIPIF1<0,整理得SKIPIF1<0因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,D正確.故選:AD3-3、(2023·江蘇南京·??家荒#ǘ噙x題)定義在SKIPIF1<0上的函數(shù)SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則下列說法正確的是(
)A.SKIPIF1<0在SKIPIF1<0處取得極大值,極大值為SKIPIF1<0B.SKIPIF1<0有兩個(gè)零點(diǎn)C.若SKIPIF1<0在SKIPIF1<0上恒成立,則SKIPIF1<0D.SKIPIF1<0【答案】ACD【分析】根據(jù)給定條件,求出函數(shù)SKIPIF1<0的解析式,再逐項(xiàng)分析即可判斷作答.【詳解】SKIPIF1<0,由SKIPIF1<0得:SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,而SKIPIF1<0,則SKIPIF1<0,即有SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,于是得SKIPIF1<0在SKIPIF1<0處取得極大值SKIPIF1<0,A正確;顯然SKIPIF1<0,即函數(shù)SKIPIF1<0在SKIPIF1<0上有1個(gè)零點(diǎn),而SKIPIF1<0時(shí),SKIPIF1<0恒成立,即函數(shù)SKIPIF1<0在SKIPIF1<0無零點(diǎn),因此,函數(shù)SKIPIF1<0在定義域上只有1個(gè)零點(diǎn),B不正確;SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即函數(shù)SKIPIF1<0在SKIPIF1<0上遞增,在SKIPIF1<0上遞減,因此,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,C正確;因函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,而SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,D正確.故選:ACD.1、(2023·江蘇南京·南京市秦淮中學(xué)??寄M預(yù)測(cè))設(shè)a為實(shí)數(shù),函數(shù)SKIPIF1<0的導(dǎo)函數(shù)是SKIPIF1<0,且SKIPIF1<0是偶函數(shù),則曲線SKIPIF1<0在原點(diǎn)處的切線方程為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】利用導(dǎo)數(shù)加法法則,可得SKIPIF1<0,結(jié)合偶函數(shù)概念可得SKIPIF1<0,根據(jù)曲線在某點(diǎn)處的導(dǎo)數(shù)幾何意義,可得結(jié)果.【詳解】由SKIPIF1<0所以SKIPIF1<0,又SKIPIF1<0是偶函數(shù),所以SKIPIF1<0,即SKIPIF1<0所以SKIPIF1<0則SKIPIF1<0,所以曲線SKIPIF1<0在原點(diǎn)處的切線方程為SKIPIF1<0故選:A.2、(2023·山東聊城·統(tǒng)考三模)若直線SKIPIF1<0與曲線SKIPIF1<0相切,則SKIPIF1<0的最大值為()A.0 B.1 C.2 D.SKIPIF1<0【答案】B【詳解】設(shè)切點(diǎn)坐標(biāo)為SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,故切線的斜率為:SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0.又由于切點(diǎn)SKIPIF1<0在切線SKIPIF1<0與曲線SKIPIF1<0上,所以SKIPIF1<0,所以SKIPIF1<0.令SKIPIF1<0,則SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0得:SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0是增函數(shù);當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0是減函數(shù).所以SKIPIF1<0.所以SKIPIF1<0的最大值為:1.故選:B.3、(2023·江蘇徐州·徐州市第七中學(xué)??家荒#┮阎猄KIPIF1<0,SKIPIF1<0,SKIPIF1<0(其中SKIPIF1<0為自然常數(shù)),則SKIPIF1<0、SKIPIF1<0、SKIPIF1<0的大小關(guān)系為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】將SKIPIF1<0變形,得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,構(gòu)造函數(shù)SKIPIF1<0SKIPIF1<0,利用導(dǎo)數(shù)得SKIPIF1<0在SKIPIF1<0上為減函數(shù),在SKIPIF1<0上為增函數(shù),根據(jù)單調(diào)性可得SKIPIF1<0,SKIPIF1<0,再根據(jù)SKIPIF1<0可得答案.【詳解】SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,設(shè)SKIPIF1<0SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上為減函數(shù),在SKIPIF1<0上為增函數(shù),因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,因?yàn)镾KIPIF1<0SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 齒輪齒條升降 課程設(shè)計(jì)
- 臭豆腐制作教學(xué)課程設(shè)計(jì)
- 高中政治跨學(xué)科課程設(shè)計(jì)
- 超聲波測(cè)距 課程設(shè)計(jì)
- 晚托課程設(shè)計(jì)核心
- 職務(wù)違法犯罪課程設(shè)計(jì)
- 黑芝麻丸制作課程設(shè)計(jì)
- 項(xiàng)目化學(xué)習(xí)課程設(shè)計(jì)
- 閱書課程設(shè)計(jì)和方法
- 課程設(shè)計(jì)貼吧
- 2025年工程合作協(xié)議書
- 2025年山東省東營市東營區(qū)融媒體中心招聘全媒體采編播專業(yè)技術(shù)人員10人歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025年宜賓人才限公司招聘高頻重點(diǎn)提升(共500題)附帶答案詳解
- KAT1-2023井下探放水技術(shù)規(guī)范
- 竣工驗(yàn)收程序流程圖
- 清華經(jīng)管工商管理碩士研究生培養(yǎng)計(jì)劃
- 口腔科診斷證明書模板
- 管溝挖槽土方計(jì)算公式
- 國網(wǎng)浙江省電力公司住宅工程配電設(shè)計(jì)技術(shù)規(guī)定
- 煙花爆竹零售應(yīng)急預(yù)案
- RNA介導(dǎo)的DNA甲基化
評(píng)論
0/150
提交評(píng)論