![2024-2025學年福建省三明市下學期高三數(shù)學試題第三次適應性考試試卷含解析_第1頁](http://file4.renrendoc.com/view2/M03/26/32/wKhkFma8GXuAS3N-AAIjc4Erjh8158.jpg)
![2024-2025學年福建省三明市下學期高三數(shù)學試題第三次適應性考試試卷含解析_第2頁](http://file4.renrendoc.com/view2/M03/26/32/wKhkFma8GXuAS3N-AAIjc4Erjh81582.jpg)
![2024-2025學年福建省三明市下學期高三數(shù)學試題第三次適應性考試試卷含解析_第3頁](http://file4.renrendoc.com/view2/M03/26/32/wKhkFma8GXuAS3N-AAIjc4Erjh81583.jpg)
![2024-2025學年福建省三明市下學期高三數(shù)學試題第三次適應性考試試卷含解析_第4頁](http://file4.renrendoc.com/view2/M03/26/32/wKhkFma8GXuAS3N-AAIjc4Erjh81584.jpg)
![2024-2025學年福建省三明市下學期高三數(shù)學試題第三次適應性考試試卷含解析_第5頁](http://file4.renrendoc.com/view2/M03/26/32/wKhkFma8GXuAS3N-AAIjc4Erjh81585.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024-2025學年福建省三明市下學期高三數(shù)學試題第三次適應性考試試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若關(guān)于的不等式有正整數(shù)解,則實數(shù)的最小值為()A. B. C. D.2.已知集合,B={y∈N|y=x﹣1,x∈A},則A∪B=()A.{﹣1,0,1,2,3} B.{﹣1,0,1,2} C.{0,1,2} D.{x﹣1≤x≤2}3.已知底面為邊長為的正方形,側(cè)棱長為的直四棱柱中,是上底面上的動點.給出以下四個結(jié)論中,正確的個數(shù)是()①與點距離為的點形成一條曲線,則該曲線的長度是;②若面,則與面所成角的正切值取值范圍是;③若,則在該四棱柱六個面上的正投影長度之和的最大值為.A. B. C. D.4.若復數(shù)(為虛數(shù)單位)的實部與虛部相等,則的值為()A. B. C. D.5.將函數(shù)的圖象沿軸向左平移個單位長度后,得到函數(shù)的圖象,則“”是“是偶函數(shù)”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件6.執(zhí)行如圖所示的程序框圖,若輸入的,則輸出的()A.9 B.31 C.15 D.637.已知復數(shù)滿足(是虛數(shù)單位),則=()A. B. C. D.8.已知等差數(shù)列中,,,則數(shù)列的前10項和()A.100 B.210 C.380 D.4009.設為坐標原點,是以為焦點的拋物線上任意一點,是線段上的點,且,則直線的斜率的最大值為()A. B. C. D.110.已知函數(shù),則不等式的解集為()A. B. C. D.11.偶函數(shù)關(guān)于點對稱,當時,,求()A. B. C. D.12.如圖,設為內(nèi)一點,且,則與的面積之比為A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,,則______.14.函數(shù)的定義域為____.15.在面積為的中,,若點是的中點,點滿足,則的最大值是______.16.雙曲線的焦點坐標是_______________,漸近線方程是_______________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標系中,直線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸正半軸為極軸建立極坐標系,圓的極坐標方程為.(1)求直線和圓的普通方程;(2)已知直線上一點,若直線與圓交于不同兩點,求的取值范圍.18.(12分)圖1是由矩形ADEB,Rt△ABC和菱形BFGC組成的一個平面圖形,其中AB=1,BE=BF=2,∠FBC=60°,將其沿AB,BC折起使得BE與BF重合,連結(jié)DG,如圖2.(1)證明:圖2中的A,C,G,D四點共面,且平面ABC⊥平面BCGE;(2)求圖2中的二面角B?CG?A的大小.19.(12分)已知直線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求直線的普通方程和曲線的直角坐標方程;(2)設點,直線與曲線交于兩點,求的值.20.(12分)已知,,不等式恒成立.(1)求證:(2)求證:.21.(12分)過點P(-4,0)的動直線l與拋物線相交于D、E兩點,已知當l的斜率為時,.(1)求拋物線C的方程;(2)設的中垂線在軸上的截距為,求的取值范圍.22.(10分)已知a>0,b>0,a+b=2.(Ⅰ)求的最小值;(Ⅱ)證明:
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
根據(jù)題意可將轉(zhuǎn)化為,令,利用導數(shù),判斷其單調(diào)性即可得到實數(shù)的最小值.【詳解】因為不等式有正整數(shù)解,所以,于是轉(zhuǎn)化為,顯然不是不等式的解,當時,,所以可變形為.令,則,∴函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,而,所以當時,,故,解得.故選:A.本題主要考查不等式能成立問題的解法,涉及到對數(shù)函數(shù)的單調(diào)性的應用,構(gòu)造函數(shù)法的應用,導數(shù)的應用等,意在考查學生的轉(zhuǎn)化能力,屬于中檔題.2.A【解析】
解出集合A和B即可求得兩個集合的并集.【詳解】∵集合{x∈Z|﹣2<x≤3}={﹣1,0,1,2,3},B={y∈N|y=x﹣1,x∈A}={﹣2,﹣1,0,1,2},∴A∪B={﹣2,﹣1,0,1,2,3}.故選:A.此題考查求集合的并集,關(guān)鍵在于準確求解不等式,根據(jù)描述法表示的集合,準確寫出集合中的元素.3.C【解析】
①與點距離為的點形成以為圓心,半徑為的圓弧,利用弧長公式,可得結(jié)論;②當在(或時,與面所成角(或的正切值為最小,當在時,與面所成角的正切值為最大,可得正切值取值范圍是;③設,,,則,即,可得在前后、左右、上下面上的正投影長,即可求出六個面上的正投影長度之和.【詳解】如圖:①錯誤,因為,與點距離為的點形成以為圓心,半徑為的圓弧,長度為;②正確,因為面面,所以點必須在面對角線上運動,當在(或)時,與面所成角(或)的正切值為最?。橄碌酌婷鎸蔷€的交點),當在時,與面所成角的正切值為最大,所以正切值取值范圍是;③正確,設,則,即,在前后、左右、上下面上的正投影長分別為,,,所以六個面上的正投影長度之,當且僅當在時取等號.故選:.本題以命題的真假判斷為載體,考查了軌跡問題、線面角、正投影等知識點,綜合性強,屬于難題.4.C【解析】
利用復數(shù)的除法,以及復數(shù)的基本概念求解即可.【詳解】,又的實部與虛部相等,,解得.故選:C本題主要考查復數(shù)的除法運算,復數(shù)的概念運用.5.A【解析】
求出函數(shù)的解析式,由函數(shù)為偶函數(shù)得出的表達式,然后利用充分條件和必要條件的定義判斷即可.【詳解】將函數(shù)的圖象沿軸向左平移個單位長度,得到的圖象對應函數(shù)的解析式為,若函數(shù)為偶函數(shù),則,解得,當時,.因此,“”是“是偶函數(shù)”的充分不必要條件.故選:A.本題考查充分不必要條件的判斷,同時也考查了利用圖象變換求三角函數(shù)解析式以及利用三角函數(shù)的奇偶性求參數(shù),考查運算求解能力與推理能力,屬于中等題.6.B【解析】
根據(jù)程序框圖中的循環(huán)結(jié)構(gòu)的運算,直至滿足條件退出循環(huán)體,即可得出結(jié)果.【詳解】執(zhí)行程序框;;;;;,滿足,退出循環(huán),因此輸出,故選:B.本題考查循環(huán)結(jié)構(gòu)輸出結(jié)果,模擬程序運行是解題的關(guān)鍵,屬于基礎題.7.A【解析】
把已知等式變形,再由復數(shù)代數(shù)形式的乘除運算化簡得答案.【詳解】解:由,得,.故選.本題考查復數(shù)代數(shù)形式的乘除運算,考查復數(shù)的基本概念,是基礎題.8.B【解析】
設公差為,由已知可得,進而求出的通項公式,即可求解.【詳解】設公差為,,,,.故選:B.本題考查等差數(shù)列的基本量計算以及前項和,屬于基礎題.9.C【解析】試題分析:設,由題意,顯然時不符合題意,故,則,可得:,當且僅當時取等號,故選C.考點:1.拋物線的簡單幾何性質(zhì);2.均值不等式.【方法點晴】本題主要考查的是向量在解析幾何中的應用及拋物線標準方程方程,均值不等式的靈活運用,屬于中檔題.解題時一定要注意分析條件,根據(jù)條件,利用向量的運算可知,寫出直線的斜率,注意均值不等式的使用,特別是要分析等號是否成立,否則易出問題.10.D【解析】
先判斷函數(shù)的奇偶性和單調(diào)性,得到,且,解不等式得解.【詳解】由題得函數(shù)的定義域為.因為,所以為上的偶函數(shù),因為函數(shù)都是在上單調(diào)遞減.所以函數(shù)在上單調(diào)遞減.因為,所以,且,解得.故選:D本題主要考查函數(shù)的奇偶性和單調(diào)性的判斷,考查函數(shù)的奇偶性和單調(diào)性的應用,意在考查學生對這些知識的理解掌握水平.11.D【解析】
推導出函數(shù)是以為周期的周期函數(shù),由此可得出,代值計算即可.【詳解】由于偶函數(shù)的圖象關(guān)于點對稱,則,,,則,所以,函數(shù)是以為周期的周期函數(shù),由于當時,,則.故選:D.本題考查利用函數(shù)的對稱性和奇偶性求函數(shù)值,推導出函數(shù)的周期性是解答的關(guān)鍵,考查推理能力與計算能力,屬于中等題.12.A【解析】
作交于點,根據(jù)向量比例,利用三角形面積公式,得出與的比例,再由與的比例,可得到結(jié)果.【詳解】如圖,作交于點,則,由題意,,,且,所以又,所以,,即,所以本題答案為A.本題考查三角函數(shù)與向量的結(jié)合,三角形面積公式,屬基礎題,作出合適的輔助線是本題的關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
求出,然后由模的平方轉(zhuǎn)化為向量的平方,利用數(shù)量積的運算計算.【詳解】由題意得,.,.,,.故答案為:.本題考查求向量的模,掌握數(shù)量積的定義與運算律是解題基礎.本題關(guān)鍵是用數(shù)量積的定義把模的運算轉(zhuǎn)化為數(shù)量積的運算.14.【解析】由題意得,解得定義域為.15.【解析】
由任意三角形面積公式與構(gòu)建關(guān)系表示|AB||AC|,再由已知與平面向量的線性運算、平面向量數(shù)量積的運算轉(zhuǎn)化,最后由重要不等式求得最值.【詳解】由△ABC的面積為得|AB||AC|sin∠BAC=,所以|AB||AC|sin∠BAC=,①又,即|AB||AC|cos∠BAC=,②由①與②的平方和得:|AB||AC|=,又點M是AB的中點,點N滿足,所以,當且僅當時,取等號,即的最大值是為.故答案為:本題考查平面向量中由線性運算表示未知向量,進而由重要不等式求最值,屬于中檔題.16.【解析】
通過雙曲線的標準方程,求解,,即可得到所求的結(jié)果.【詳解】由雙曲線,可得,,則,所以雙曲線的焦點坐標是,漸近線方程為:.故答案為:;.本題主要考查了雙曲線的簡單性質(zhì)的應用,考查了運算能力,屬于容易題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1),;(2)【解析】分析:(1)用代入法消參數(shù)可得直線的普通方程,由公式可化極坐標方程為直角坐標方程;(2)把直線的參數(shù)方程代入曲線的直角坐標方程,其中參數(shù)的絕對值表示直線上對應點到的距離,因此有,,直接由韋達定理可得,注意到直線與圓相交,因此判別式>0,這樣可得滿足的不等關(guān)系,由此可求得的取值范圍.詳解:(1)直線的參數(shù)方程為,普通方程為,將代入圓的極坐標方程中,可得圓的普通方程為,(2)解:直線的參數(shù)方程為代入圓的方程為可得:(*),且由題意,,.因為方程(*)有兩個不同的實根,所以,即,又,所以.因為,所以所以.點睛:(1)參數(shù)方程化為普通方程,一般用消參數(shù)法,而消參法有兩種選擇:一是代入法,二是用公式;(2)極坐標方程與直角坐標方程互化一般利用公式;(3)過的直線的參數(shù)方程為(為參數(shù))中參數(shù)具有幾何意義:直線上任一點對應參數(shù),則.18.(1)見詳解;(2).【解析】
(1)因為折紙和粘合不改變矩形,和菱形內(nèi)部的夾角,所以,依然成立,又因和粘在一起,所以得證.因為是平面垂線,所以易證.(2)在圖中找到對應的平面角,再求此平面角即可.于是考慮關(guān)于的垂線,發(fā)現(xiàn)此垂足與的連線也垂直于.按照此思路即證.【詳解】(1)證:,,又因為和粘在一起.,A,C,G,D四點共面.又.平面BCGE,平面ABC,平面ABC平面BCGE,得證.(2)過B作延長線于H,連結(jié)AH,因為AB平面BCGE,所以而又,故平面,所以.又因為所以是二面角的平面角,而在中,又因為故,所以.而在中,,即二面角的度數(shù)為.很新穎的立體幾何考題.首先是多面體粘合問題,考查考生在粘合過程中哪些量是不變的.再者粘合后的多面體不是直棱柱,建系的向量解法在本題中略顯麻煩,突出考查幾何方法.最后將求二面角轉(zhuǎn)化為求二面角的平面角問題考查考生的空間想象能力.19.(1)直線普通方程:,曲線直角坐標方程:;(2).【解析】
(1)消去直線參數(shù)方程中的參數(shù)即可得到其普通方程;將曲線極坐標方程化為,根據(jù)極坐標和直角坐標互化原則可得其直角坐標方程;(2)將直線參數(shù)方程代入曲線的直角坐標方程,根據(jù)參數(shù)的幾何意義可知,利用韋達定理求得結(jié)果.【詳解】(1)由直線參數(shù)方程消去可得普通方程為:曲線極坐標方程可化為:則曲線的直角坐標方程為:,即(2)將直線參數(shù)方程代入曲線的直角坐標方程,整理可得:設兩點對應的參數(shù)分別為:,則,本題考查極坐標與直角坐標的互化、參數(shù)方程與普通方程的互化、直線參數(shù)方程中參數(shù)的幾何意義的應用;求解距離之和的關(guān)鍵是能夠明確直線參數(shù)方程中參數(shù)的幾何意義,利用韋達定理來進行求解.20.(1)證明見解析(2)證明見解析【解析】
(1)先根據(jù)絕對值不等式求得的最大值,從而得到,再利用基本不等式進行證明;(2)利用基本不等式變形得,兩邊開平方得到新的不等式,利用同理可得另外兩個不等式,再進行不等式相加,即可得答案.【詳解】(1)∵,∴.∵,,,∴,∴,∴.(2)∵,,即兩邊開平方得.同理可得,.三式相加,得.本題考查絕對值不等式、應用基本不等式證明不等式,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和推理論證能力.21.;【解析】
根據(jù)題意,求出直線方程并與拋物線方程聯(lián)立,利用韋達定理,結(jié)合,即可求出拋物線C的方程;設,的中點為,把直線l方程與拋物線方程聯(lián)立,利用判別式求出的取值范圍,利用韋達定理求出,進而求出的中垂線方程,即可求得在軸上的截距的表達式,然后根據(jù)的取值范圍求解即可.【詳解】由題意可知,直線l的方程為,與拋物線方程方程聯(lián)立可得,,設,由韋達定理可得,,因為,,所以,解得,所以拋物線C的方程為;設,的中點為,由,消去可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 創(chuàng)建新公司合同范本
- 書買賣協(xié)議合同范例
- 伐木工招聘合同范例
- 別墅老宅轉(zhuǎn)讓合同范例
- 農(nóng)村豪宅出售合同范本
- 個人住宅出售合同范例
- 獸藥批發(fā)市場調(diào)研考核試卷
- 代加工合同范例模版
- 修剪綠化直營合同范本
- 中介代打備案合同范本
- 2025版茅臺酒出口業(yè)務代理及銷售合同模板4篇
- 新版《醫(yī)療器械經(jīng)營質(zhì)量管理規(guī)范》(2024)培訓試題及答案
- 2025年人教版數(shù)學五年級下冊教學計劃(含進度表)
- 北師大版七年級上冊數(shù)學期末考試試題及答案
- 初中信息技術(shù)課堂中的項目式學習實踐研究結(jié)題報告
- 2024安全事故案例
- 生日快樂祝福含生日歌相冊課件模板
- 2025年初級社會工作者綜合能力全國考試題庫(含答案)
- 復工復產(chǎn)安全培訓考試題
- 手術(shù)風險及醫(yī)療意外險告知流程
- 《醫(yī)院重點??平ㄔO專項資金管理辦法》
評論
0/150
提交評論