




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2021-2022高考數(shù)學(xué)模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),若函數(shù)有三個零點(diǎn),則實(shí)數(shù)的取值范圍是()A. B. C. D.2.設(shè)復(fù)數(shù)滿足,則()A.1 B.-1 C. D.3.已知定義在上的奇函數(shù),其導(dǎo)函數(shù)為,當(dāng)時,恒有.則不等式的解集為().A. B.C.或 D.或4.關(guān)于圓周率,數(shù)學(xué)發(fā)展史上出現(xiàn)過許多很有創(chuàng)意的求法,如著名的蒲豐實(shí)驗(yàn)和查理斯實(shí)驗(yàn).受其啟發(fā),某同學(xué)通過下面的隨機(jī)模擬方法來估計(jì)的值:先用計(jì)算機(jī)產(chǎn)生個數(shù)對,其中,都是區(qū)間上的均勻隨機(jī)數(shù),再統(tǒng)計(jì),能與構(gòu)成銳角三角形三邊長的數(shù)對的個數(shù)﹔最后根據(jù)統(tǒng)計(jì)數(shù)來估計(jì)的值.若,則的估計(jì)值為()A. B. C. D.5.執(zhí)行如圖所示的程序框圖,輸出的結(jié)果為()A. B.4 C. D.6.設(shè),均為非零的平面向量,則“存在負(fù)數(shù),使得”是“”的A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件7.已知函數(shù),,若成立,則的最小值為()A.0 B.4 C. D.8.如圖,正三棱柱各條棱的長度均相等,為的中點(diǎn),分別是線段和線段的動點(diǎn)(含端點(diǎn)),且滿足,當(dāng)運(yùn)動時,下列結(jié)論中不正確的是A.在內(nèi)總存在與平面平行的線段B.平面平面C.三棱錐的體積為定值D.可能為直角三角形9.設(shè)等差數(shù)列的前項(xiàng)和為,若,,則()A.21 B.22 C.11 D.1210.已知,滿足條件(為常數(shù)),若目標(biāo)函數(shù)的最大值為9,則()A. B. C. D.11.已知復(fù)數(shù)滿足,則()A. B.2 C.4 D.312.已知函數(shù)滿足:當(dāng)時,,且對任意,都有,則()A.0 B.1 C.-1 D.二、填空題:本題共4小題,每小題5分,共20分。13.將函數(shù)的圖像向右平移個單位,得到函數(shù)的圖像,則函數(shù)在區(qū)間上的值域?yàn)開_________.14.點(diǎn)P是△ABC所在平面內(nèi)一點(diǎn)且在△ABC內(nèi)任取一點(diǎn),則此點(diǎn)取自△PBC內(nèi)的概率是____15.如圖,棱長為2的正方體中,點(diǎn)分別為棱的中點(diǎn),以為圓心,1為半徑,分別在面和面內(nèi)作弧和,并將兩弧各五等分,分點(diǎn)依次為、、、、、以及、、、、、.一只螞蟻欲從點(diǎn)出發(fā),沿正方體的表面爬行至,則其爬行的最短距離為________.參考數(shù)據(jù):;;)16.已知雙曲線(,)的左,右焦點(diǎn)分別為,,過點(diǎn)的直線與雙曲線的左,右兩支分別交于,兩點(diǎn),若,,則雙曲線的離心率為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)手工藝是一種生活態(tài)度和對傳統(tǒng)的堅(jiān)持,在我國有很多手工藝品制作村落,村民的手工技藝世代相傳,有些村落制造出的手工藝品不僅全國聞名,還大量遠(yuǎn)銷海外.近年來某手工藝品村制作的手工藝品在國外備受歡迎,該村村民成立了手工藝品外銷合作社,為嚴(yán)把質(zhì)量關(guān),合作社對村民制作的每件手工藝品都請3位行家進(jìn)行質(zhì)量把關(guān),質(zhì)量把關(guān)程序如下:(i)若一件手工藝品3位行家都認(rèn)為質(zhì)量過關(guān),則該手工藝品質(zhì)量為A級;(ii)若僅有1位行家認(rèn)為質(zhì)量不過關(guān),再由另外2位行家進(jìn)行第二次質(zhì)量把關(guān),若第二次質(zhì)量把關(guān)這2位行家都認(rèn)為質(zhì)量過關(guān),則該手工藝品質(zhì)量為B級,若第二次質(zhì)量把關(guān)這2位行家中有1位或2位認(rèn)為質(zhì)量不過關(guān),則該手工藝品質(zhì)量為C級;(iii)若有2位或3位行家認(rèn)為質(zhì)量不過關(guān),則該手工藝品質(zhì)量為D級.已知每一次質(zhì)量把關(guān)中一件手工藝品被1位行家認(rèn)為質(zhì)量不過關(guān)的概率為,且各手工藝品質(zhì)量是否過關(guān)相互獨(dú)立.(1)求一件手工藝品質(zhì)量為B級的概率;(2)若一件手工藝品質(zhì)量為A,B,C級均可外銷,且利潤分別為900元,600元,300元,質(zhì)量為D級不能外銷,利潤記為100元.①求10件手工藝品中不能外銷的手工藝品最有可能是多少件;②記1件手工藝品的利潤為X元,求X的分布列與期望.18.(12分)如圖,在三棱柱中,是邊長為2的等邊三角形,,,.(1)證明:平面平面;(2),分別是,的中點(diǎn),是線段上的動點(diǎn),若二面角的平面角的大小為,試確定點(diǎn)的位置.19.(12分)已知,均為給定的大于1的自然數(shù),設(shè)集合,.(Ⅰ)當(dāng),時,用列舉法表示集合;(Ⅱ)當(dāng)時,,且集合滿足下列條件:①對任意,;②.證明:(?。┤?,則(集合為集合在集合中的補(bǔ)集);(ⅱ)為一個定值(不必求出此定值);(Ⅲ)設(shè),,,其中,,若,則.20.(12分)已知橢圓:的長半軸長為,點(diǎn)(為橢圓的離心率)在橢圓上.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)如圖,為直線上任一點(diǎn),過點(diǎn)橢圓上點(diǎn)處的切線為,,切點(diǎn)分別,,直線與直線,分別交于,兩點(diǎn),點(diǎn),的縱坐標(biāo)分別為,,求的值.21.(12分)在中,角所對的邊分別為,若,,,且.(1)求角的值;(2)求的最大值.22.(10分)已知矩陣的逆矩陣.若曲線:在矩陣A對應(yīng)的變換作用下得到另一曲線,求曲線的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】
根據(jù)所給函數(shù)解析式,畫出函數(shù)圖像.結(jié)合圖像,分段討論函數(shù)的零點(diǎn)情況:易知為的一個零點(diǎn);對于當(dāng)時,由代入解析式解方程可求得零點(diǎn),結(jié)合即可求得的范圍;對于當(dāng)時,結(jié)合導(dǎo)函數(shù),結(jié)合導(dǎo)數(shù)的幾何意義即可判斷的范圍.綜合后可得的范圍.【詳解】根據(jù)題意,畫出函數(shù)圖像如下圖所示:函數(shù)的零點(diǎn),即.由圖像可知,,所以是的一個零點(diǎn),當(dāng)時,,若,則,即,所以,解得;當(dāng)時,,則,且若在時有一個零點(diǎn),則,綜上可得,故選:B.【點(diǎn)睛】本題考查了函數(shù)圖像的畫法,函數(shù)零點(diǎn)定義及應(yīng)用,根據(jù)零點(diǎn)個數(shù)求參數(shù)的取值范圍,導(dǎo)數(shù)的幾何意義應(yīng)用,屬于中檔題.2.B【解析】
利用復(fù)數(shù)的四則運(yùn)算即可求解.【詳解】由.故選:B【點(diǎn)睛】本題考查了復(fù)數(shù)的四則運(yùn)算,需掌握復(fù)數(shù)的運(yùn)算法則,屬于基礎(chǔ)題.3.D【解析】
先通過得到原函數(shù)為增函數(shù)且為偶函數(shù),再利用到軸距離求解不等式即可.【詳解】構(gòu)造函數(shù),則由題可知,所以在時為增函數(shù);由為奇函數(shù),為奇函數(shù),所以為偶函數(shù);又,即即又為開口向上的偶函數(shù)所以,解得或故選:D【點(diǎn)睛】此題考查根據(jù)導(dǎo)函數(shù)構(gòu)造原函數(shù),偶函數(shù)解不等式等知識點(diǎn),屬于較難題目.4.B【解析】
先利用幾何概型的概率計(jì)算公式算出,能與構(gòu)成銳角三角形三邊長的概率,然后再利用隨機(jī)模擬方法得到,能與構(gòu)成銳角三角形三邊長的概率,二者概率相等即可估計(jì)出.【詳解】因?yàn)?,都是區(qū)間上的均勻隨機(jī)數(shù),所以有,,若,能與構(gòu)成銳角三角形三邊長,則,由幾何概型的概率計(jì)算公式知,所以.故選:B.【點(diǎn)睛】本題考查幾何概型的概率計(jì)算公式及運(yùn)用隨機(jī)數(shù)模擬法估計(jì)概率,考查學(xué)生的基本計(jì)算能力,是一個中檔題.5.A【解析】
模擬執(zhí)行程序框圖,依次寫出每次循環(huán)得到的的值,當(dāng),,退出循環(huán),輸出結(jié)果.【詳解】程序運(yùn)行過程如下:,;,;,;,;,;,;,,退出循環(huán),輸出結(jié)果為,故選:A.【點(diǎn)睛】該題考查的是有關(guān)程序框圖的問題,涉及到的知識點(diǎn)有判斷程序框圖輸出結(jié)果,屬于基礎(chǔ)題目.6.B【解析】
根據(jù)充分條件、必要條件的定義進(jìn)行分析、判斷后可得結(jié)論.【詳解】因?yàn)?,均為非零的平面向量,存在?fù)數(shù),使得,所以向量,共線且方向相反,所以,即充分性成立;反之,當(dāng)向量,的夾角為鈍角時,滿足,但此時,不共線且反向,所以必要性不成立.所以“存在負(fù)數(shù),使得”是“”的充分不必要條件.故選B.【點(diǎn)睛】判斷p是q的什么條件,需要從兩方面分析:一是由條件p能否推得條件q;二是由條件q能否推得條件p,定義法是判斷充分條件、必要條件的基本的方法,解題時注意選擇恰當(dāng)?shù)姆椒ㄅ袛嗝}是否正確.7.A【解析】
令,進(jìn)而求得,再轉(zhuǎn)化為函數(shù)的最值問題即可求解.【詳解】∵∴(),∴,令:,,在上增,且,所以在上減,在上增,所以,所以的最小值為0.故選:A【點(diǎn)睛】本題主要考查了導(dǎo)數(shù)在研究函數(shù)最值中的應(yīng)用,考查了轉(zhuǎn)化的數(shù)學(xué)思想,恰當(dāng)?shù)挠靡粋€未知數(shù)來表示和是本題的關(guān)鍵,屬于中檔題.8.D【解析】
A項(xiàng)用平行于平面ABC的平面與平面MDN相交,則交線與平面ABC平行;B項(xiàng)利用線面垂直的判定定理;C項(xiàng)三棱錐與三棱錐體積相等,三棱錐的底面積是定值,高也是定值,則體積是定值;D項(xiàng)用反證法說明三角形DMN不可能是直角三角形.【詳解】A項(xiàng),用平行于平面ABC的平面截平面MND,則交線平行于平面ABC,故正確;B項(xiàng),如圖:當(dāng)M、N分別在BB1、CC1上運(yùn)動時,若滿足BM=CN,則線段MN必過正方形BCC1B1的中心O,由DO垂直于平面BCC1B1可得平面平面,故正確;C項(xiàng),當(dāng)M、N分別在BB1、CC1上運(yùn)動時,△A1DM的面積不變,N到平面A1DM的距離不變,所以棱錐N-A1DM的體積不變,即三棱錐A1-DMN的體積為定值,故正確;D項(xiàng),若△DMN為直角三角形,則必是以∠MDN為直角的直角三角形,但MN的最大值為BC1,而此時DM,DN的長大于BB1,所以△DMN不可能為直角三角形,故錯誤.故選D【點(diǎn)睛】本題考查了命題真假判斷、棱柱的結(jié)構(gòu)特征、空間想象力和思維能力,意在考查對線面、面面平行、垂直的判定和性質(zhì)的應(yīng)用,是中檔題.9.A【解析】
由題意知成等差數(shù)列,結(jié)合等差中項(xiàng),列出方程,即可求出的值.【詳解】解:由為等差數(shù)列,可知也成等差數(shù)列,所以,即,解得.故選:A.【點(diǎn)睛】本題考查了等差數(shù)列的性質(zhì),考查了等差中項(xiàng).對于等差數(shù)列,一般用首項(xiàng)和公差將已知量表示出來,繼而求出首項(xiàng)和公差.但是這種基本量法計(jì)算量相對比較大,如果能結(jié)合等差數(shù)列性質(zhì),可使得計(jì)算量大大減少.10.B【解析】
由目標(biāo)函數(shù)的最大值為9,我們可以畫出滿足條件件為常數(shù))的可行域,根據(jù)目標(biāo)函數(shù)的解析式形式,分析取得最優(yōu)解的點(diǎn)的坐標(biāo),然后根據(jù)分析列出一個含參數(shù)的方程組,消參后即可得到的取值.【詳解】畫出,滿足的為常數(shù))可行域如下圖:由于目標(biāo)函數(shù)的最大值為9,可得直線與直線的交點(diǎn),使目標(biāo)函數(shù)取得最大值,將,代入得:.故選:.【點(diǎn)睛】如果約束條件中含有參數(shù),我們可以先畫出不含參數(shù)的幾個不等式對應(yīng)的平面區(qū)域,分析取得最優(yōu)解是哪兩條直線的交點(diǎn),然后得到一個含有參數(shù)的方程(組,代入另一條直線方程,消去,后,即可求出參數(shù)的值.11.A【解析】
由復(fù)數(shù)除法求出,再由模的定義計(jì)算出模.【詳解】.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)的除法法則,考查復(fù)數(shù)模的運(yùn)算,屬于基礎(chǔ)題.12.C【解析】
由題意可知,代入函數(shù)表達(dá)式即可得解.【詳解】由可知函數(shù)是周期為4的函數(shù),.故選:C.【點(diǎn)睛】本題考查了分段函數(shù)和函數(shù)周期的應(yīng)用,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
根據(jù)圖像的平移變換得到函數(shù)的解析式,再利用整體思想求函數(shù)的值域.【詳解】函數(shù)的圖像向右平移個單位得,,,.故答案為:.【點(diǎn)睛】本題考查三角函數(shù)圖像的平移變換、值域的求解,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運(yùn)算求解能力,求解時注意整體思想的運(yùn)用.14.【解析】
設(shè)是中點(diǎn),根據(jù)已知條件判斷出三點(diǎn)共線且是線段靠近的三等分點(diǎn),由此求得,結(jié)合幾何概型求得點(diǎn)取自三角形的概率.【詳解】設(shè)是中點(diǎn),因?yàn)?,所以,所以三點(diǎn)共線且點(diǎn)是線段靠近的三等分點(diǎn),故,所以此點(diǎn)取自內(nèi)的概率是.故答案為:【點(diǎn)睛】本小題主要考查三點(diǎn)共線的向量表示,考查幾何概型概率計(jì)算,屬于基礎(chǔ)題.15.【解析】
根據(jù)空間位置關(guān)系,將平面旋轉(zhuǎn)后使得各點(diǎn)在同一平面內(nèi),結(jié)合角的關(guān)系即可求得兩點(diǎn)間距離的三角函數(shù)表達(dá)式.根據(jù)所給參考數(shù)據(jù)即可得解.【詳解】棱長為2的正方體中,點(diǎn)分別為棱的中點(diǎn),以為圓心,1為半徑,分別在面和面內(nèi)作弧和.將平面繞旋轉(zhuǎn)至與平面共面的位置,如下圖所示:則,所以;將平面繞旋轉(zhuǎn)至與平面共面的位置,將繞旋轉(zhuǎn)至與平面共面的位置,如下圖所示:則,所以;因?yàn)?,且由誘導(dǎo)公式可得,所以最短距離為,故答案為:.【點(diǎn)睛】本題考查了空間幾何體中最短距離的求法,注意將空間幾何體展開至同一平面內(nèi)求解的方法,三角函數(shù)誘導(dǎo)公式的應(yīng)用,綜合性強(qiáng),屬于難題.16.【解析】
設(shè),由雙曲線的定義得出:,由得為等腰三角形,設(shè),根據(jù),可求出,得出,再結(jié)合焦點(diǎn)三角形,利用余弦定理:求出和的關(guān)系,即可得出離心率.【詳解】解:設(shè),由雙曲線的定義得出:,,由圖可知:,又,即,則,為等腰三角形,,設(shè),,則,,即,解得:,則,,解得:,,解得:,,在中,由余弦定理得:,即:,解得:,即.故答案為:.【點(diǎn)睛】本題考查雙曲線的定義的應(yīng)用,以及余弦定理的應(yīng)用,求雙曲線離心率.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2)①可能是2件;②詳見解析【解析】
(1)由一件手工藝品質(zhì)量為B級的情形,并結(jié)合相互獨(dú)立事件的概率公式,列式計(jì)算即可;(2)①先求得一件手工藝品質(zhì)量為D級的概率為,設(shè)10件手工藝品中不能外銷的手工藝品可能是件,可知,分別令、、,可求出使得最大的整數(shù),進(jìn)而可求出10件手工藝品中不能外銷的手工藝品的最有可能件數(shù);②分別求出一件手工藝品質(zhì)量為A、B、C、D級的概率,進(jìn)而可列出X的分布列,求出期望即可.【詳解】(1)一件手工藝品質(zhì)量為B級的概率為.(2)①由題意可得一件手工藝品質(zhì)量為D級的概率為,設(shè)10件手工藝品中不能外銷的手工藝品可能是件,則,則,其中,.由得,整數(shù)不存在,由得,所以當(dāng)時,,即,由得,所以當(dāng)時,,所以當(dāng)時,最大,即10件手工藝品中不能外銷的手工藝品最有可能是2件.②由題意可知,一件手工藝品質(zhì)量為A級的概率為,一件手工藝品質(zhì)量為B級的概率為,一件手工藝品質(zhì)量為C級的概率為,一件手工藝品質(zhì)量為D級的概率為,所以X的分布列為:X900600300100P則期望為.【點(diǎn)睛】本題考查相互獨(dú)立事件的概率計(jì)算,考查離散型隨機(jī)變量的分布列及數(shù)學(xué)期望,考查學(xué)生的計(jì)算求解能力,屬于中檔題.18.(1)證明見解析;(2)為線段上靠近點(diǎn)的四等分點(diǎn),且坐標(biāo)為【解析】
(1)先通過線面垂直的判定定理證明平面,再根據(jù)面面垂直的判定定理即可證明;(2)分析位置關(guān)系并建立空間直角坐標(biāo)系,根據(jù)二面角的余弦值與平面法向量夾角的余弦值之間的關(guān)系,即可計(jì)算出的坐標(biāo)從而位置可確定.【詳解】(1)證明:因?yàn)?,,,所以,?又因?yàn)?,,所以,,所以平?因?yàn)槠矫?,所以平面平?(2)解:連接,因?yàn)?,是的中點(diǎn),所以.由(1)知,平面平面,所以平面.以為原點(diǎn)建立如圖所示的空間直角坐標(biāo)系,則平面的一個法向量是,,,.設(shè),,,,代入上式得,,,所以.設(shè)平面的一個法向量為,,,由,得.令,得.因?yàn)槎娼堑钠矫娼堑拇笮?,所以,即,解?所以點(diǎn)為線段上靠近點(diǎn)的四等分點(diǎn),且坐標(biāo)為.【點(diǎn)睛】本題考查面面垂直的證明以及利用向量法求解二面角有關(guān)的問題,難度一般.(1)證明面面垂直,可通過先證明線面垂直,再證明面面垂直;(2)二面角的余弦值不一定等于平面法向量夾角的余弦值,要注意結(jié)合圖形分析.19.(Ⅰ);(Ⅱ)(?。┰斠娊馕觯áⅲ┰斠娊馕?(Ⅲ)詳見解析.【解析】
(Ⅰ)當(dāng),時,,,,,,.即可得出.(Ⅱ)(i)當(dāng)時,,2,3,,,又,,,,,,必然有,否則得出矛盾.(ii)由.可得.又,即可得出為定值.(iii)由設(shè),,,,其中,,,2,,.,可得,通過求和即可證明結(jié)論.【詳解】(Ⅰ)解:當(dāng),時,,,,,..(Ⅱ)證明:(i)當(dāng)時,,2,3,,,又,,,,,,必然有,否則,而,與已知對任意,矛盾.因
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五三方借款及保證協(xié)議
- 臨時工程合同樣本
- 個人木炭售賣合同樣本
- 勞動派遣用工合同范例
- 親子超市采購合同樣本
- 專利權(quán)質(zhì)押合同二零二五年
- 二零二五公司自然人借款合同
- 個人購車借款合同樣本
- 統(tǒng)編版語文四年級上冊第五單元教學(xué)設(shè)計(jì)
- 中醫(yī)館改造合同標(biāo)準(zhǔn)文本
- 初中語文記敘文閱讀專題訓(xùn)練題20套(帶答案)含解析
- 2024年河南信息統(tǒng)計(jì)職業(yè)學(xué)院高職單招數(shù)學(xué)歷年參考題庫含答案解析
- 2025屆遼寧省沈陽市高三上學(xué)期一模英語試卷含答案
- 2025國藥控股集團(tuán)安陽公司(上市公司)招聘22人(河南)高頻重點(diǎn)提升(共500題)附帶答案詳解
- 小學(xué)生春節(jié)寫作課件
- 企業(yè)研究方法知到智慧樹章節(jié)測試課后答案2024年秋華東理工大學(xué)
- 2025年中考語文專題復(fù)習(xí):寫作技巧 課件
- 【MOOC】聲樂作品賞析與演唱-揚(yáng)州大學(xué) 中國大學(xué)慕課MOOC答案
- 2025年中考數(shù)學(xué)一輪復(fù)習(xí) 統(tǒng)計(jì)與概率 解答題練習(xí)七(含答案)
- 信息化戰(zhàn)爭課件
- 中班課件恐龍教學(xué)課件
評論
0/150
提交評論