![2022-2023學(xué)年云南省昆明市重點(diǎn)中學(xué)高三數(shù)學(xué)第一學(xué)期期末考試試題含解析_第1頁(yè)](http://file4.renrendoc.com/view7/M02/33/12/wKhkGWa4AzaAGUouAAImRr-O9Gg351.jpg)
![2022-2023學(xué)年云南省昆明市重點(diǎn)中學(xué)高三數(shù)學(xué)第一學(xué)期期末考試試題含解析_第2頁(yè)](http://file4.renrendoc.com/view7/M02/33/12/wKhkGWa4AzaAGUouAAImRr-O9Gg3512.jpg)
![2022-2023學(xué)年云南省昆明市重點(diǎn)中學(xué)高三數(shù)學(xué)第一學(xué)期期末考試試題含解析_第3頁(yè)](http://file4.renrendoc.com/view7/M02/33/12/wKhkGWa4AzaAGUouAAImRr-O9Gg3513.jpg)
![2022-2023學(xué)年云南省昆明市重點(diǎn)中學(xué)高三數(shù)學(xué)第一學(xué)期期末考試試題含解析_第4頁(yè)](http://file4.renrendoc.com/view7/M02/33/12/wKhkGWa4AzaAGUouAAImRr-O9Gg3514.jpg)
![2022-2023學(xué)年云南省昆明市重點(diǎn)中學(xué)高三數(shù)學(xué)第一學(xué)期期末考試試題含解析_第5頁(yè)](http://file4.renrendoc.com/view7/M02/33/12/wKhkGWa4AzaAGUouAAImRr-O9Gg3515.jpg)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若變量,滿足,則的最大值為()A.3 B.2 C. D.102.高斯是德國(guó)著名的數(shù)學(xué)家,近代數(shù)學(xué)奠基者之一,享有“數(shù)學(xué)王子”的稱號(hào),用其名字命名的“高斯函數(shù)”為:設(shè),用表示不超過(guò)的最大整數(shù),則稱為高斯函數(shù),例如:,,已知函數(shù)(),則函數(shù)的值域?yàn)椋ǎ〢. B. C. D.3.將函數(shù)的圖象分別向右平移個(gè)單位長(zhǎng)度與向左平移(>0)個(gè)單位長(zhǎng)度,若所得到的兩個(gè)圖象重合,則的最小值為()A. B. C. D.4.拋物線C:y2=2px的焦點(diǎn)F是雙曲線C2:x2m-y21-m=1A.2+1 B.22+3 C.5.如圖所示,網(wǎng)格紙上小正方形的邊長(zhǎng)為,粗線畫(huà)出的是某多面體的三視圖,則該幾何體的各個(gè)面中最大面的面積為()A. B. C. D.6.已知不同直線、與不同平面、,且,,則下列說(shuō)法中正確的是()A.若,則 B.若,則C.若,則 D.若,則7.甲在微信群中發(fā)了一個(gè)6元“拼手氣”紅包,被乙?丙?丁三人搶完,若三人均領(lǐng)到整數(shù)元,且每人至少領(lǐng)到1元,則乙獲得“最佳手氣”(即乙領(lǐng)到的錢數(shù)多于其他任何人)的概率是()A. B. C. D.8.已知棱錐的三視圖如圖所示,其中俯視圖是等腰直角三角形,則該三棱錐的四個(gè)面中,最大面積為()A. B. C. D.9.設(shè)正項(xiàng)等比數(shù)列的前n項(xiàng)和為,若,,則公比()A. B.4 C. D.210.拋物線的準(zhǔn)線方程是,則實(shí)數(shù)()A. B. C. D.11.已知且,函數(shù),若,則()A.2 B. C. D.12.在平面直角坐標(biāo)系xOy中,已知橢圓的右焦點(diǎn)為,若F到直線的距離為,則E的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知為矩形的對(duì)角線的交點(diǎn),現(xiàn)從這5個(gè)點(diǎn)中任選3個(gè)點(diǎn),則這3個(gè)點(diǎn)不共線的概率為_(kāi)_______.14.已知數(shù)列中,為其前項(xiàng)和,,,則_________,_________.15.已知數(shù)列的前項(xiàng)和為且滿足,則數(shù)列的通項(xiàng)_______.16.正方形的邊長(zhǎng)為2,圓內(nèi)切于正方形,為圓的一條動(dòng)直徑,點(diǎn)為正方形邊界上任一點(diǎn),則的取值范圍是______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在平面直角坐標(biāo)系中,以軸正半軸為始邊的銳角的終邊與單位圓交于點(diǎn),且點(diǎn)的縱坐標(biāo)是.(1)求的值:(2)若以軸正半軸為始邊的鈍角的終邊與單位圓交于點(diǎn),且點(diǎn)的橫坐標(biāo)為,求的值.18.(12分)已知,分別是橢圓:的左,右焦點(diǎn),點(diǎn)在橢圓上,且拋物線的焦點(diǎn)是橢圓的一個(gè)焦點(diǎn).(1)求,的值:(2)過(guò)點(diǎn)作不與軸重合的直線,設(shè)與圓相交于A,B兩點(diǎn),且與橢圓相交于C,D兩點(diǎn),當(dāng)時(shí),求△的面積.19.(12分)在①;②;③這三個(gè)條件中任選一個(gè),補(bǔ)充在下面問(wèn)題中的橫線上,并解答相應(yīng)的問(wèn)題.在中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且滿足________________,,求的面積.20.(12分)已知函數(shù).(1)若函數(shù)不存在單調(diào)遞減區(qū)間,求實(shí)數(shù)的取值范圍;(2)若函數(shù)的兩個(gè)極值點(diǎn)為,,求的最小值.21.(12分)2018年反映社會(huì)現(xiàn)實(shí)的電影《我不是藥神》引起了很大的轟動(dòng),治療特種病的創(chuàng)新藥研發(fā)成了當(dāng)務(wù)之急.為此,某藥企加大了研發(fā)投入,市場(chǎng)上治療一類慢性病的特效藥品的研發(fā)費(fèi)用(百萬(wàn)元)和銷量(萬(wàn)盒)的統(tǒng)計(jì)數(shù)據(jù)如下:研發(fā)費(fèi)用(百萬(wàn)元)2361013151821銷量(萬(wàn)盒)1122.53.53.54.56(1)求與的相關(guān)系數(shù)精確到0.01,并判斷與的關(guān)系是否可用線性回歸方程模型擬合?(規(guī)定:時(shí),可用線性回歸方程模型擬合);(2)該藥企準(zhǔn)備生產(chǎn)藥品的三類不同的劑型,,,并對(duì)其進(jìn)行兩次檢測(cè),當(dāng)?shù)谝淮螜z測(cè)合格后,才能進(jìn)行第二次檢測(cè).第一次檢測(cè)時(shí),三類劑型,,合格的概率分別為,,,第二次檢測(cè)時(shí),三類劑型,,合格的概率分別為,,.兩次檢測(cè)過(guò)程相互獨(dú)立,設(shè)經(jīng)過(guò)兩次檢測(cè)后,,三類劑型合格的種類數(shù)為,求的數(shù)學(xué)期望.附:(1)相關(guān)系數(shù)(2),,,.22.(10分)如圖,在四面體中,.(1)求證:平面平面;(2)若,二面角為,求異面直線與所成角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
畫(huà)出約束條件的可行域,利用目標(biāo)函數(shù)的幾何意義求解最大值即可.【詳解】解:畫(huà)出滿足條件的平面區(qū)域,如圖示:如圖點(diǎn)坐標(biāo)分別為,目標(biāo)函數(shù)的幾何意義為,可行域內(nèi)點(diǎn)與坐標(biāo)原點(diǎn)的距離的平方,由圖可知到原點(diǎn)的距離最大,故.故選:D【點(diǎn)睛】本題考查了簡(jiǎn)單的線性規(guī)劃問(wèn)題,考查數(shù)形結(jié)合思想,屬于中檔題.2、B【解析】
利用換元法化簡(jiǎn)解析式為二次函數(shù)的形式,根據(jù)二次函數(shù)的性質(zhì)求得的取值范圍,由此求得的值域.【詳解】因?yàn)椋ǎ?,令(),則(),函數(shù)的對(duì)稱軸方程為,所以,,所以,所以的值域?yàn)?故選:B【點(diǎn)睛】本小題考查函數(shù)的定義域與值域等基礎(chǔ)知識(shí),考查學(xué)生分析問(wèn)題,解決問(wèn)題的能力,運(yùn)算求解能力,轉(zhuǎn)化與化歸思想,換元思想,分類討論和應(yīng)用意識(shí).3、B【解析】
首先根據(jù)函數(shù)的圖象分別向左與向右平移m,n個(gè)單位長(zhǎng)度后,所得的兩個(gè)圖像重合,那么,利用的最小正周期為,從而求得結(jié)果.【詳解】的最小正周期為,那么(∈),于是,于是當(dāng)時(shí),最小值為,故選B.【點(diǎn)睛】該題考查的是有關(guān)三角函數(shù)的周期與函數(shù)圖象平移之間的關(guān)系,屬于簡(jiǎn)單題目.4、A【解析】
先由題和拋物線的性質(zhì)求得點(diǎn)P的坐標(biāo)和雙曲線的半焦距c的值,再利用雙曲線的定義可求得a的值,即可求得離心率.【詳解】由題意知,拋物線焦點(diǎn)F1,0,準(zhǔn)線與x軸交點(diǎn)F'(-1,0),雙曲線半焦距c=1,設(shè)點(diǎn)Q(-1,y)ΔFPQ是以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形,即PF所以PQ⊥拋物線的準(zhǔn)線,從而PF⊥x軸,所以P1,2∴2a=P即a=故雙曲線的離心率為e=故選A【點(diǎn)睛】本題考查了圓錐曲線綜合,分析題目,畫(huà)出圖像,熟悉拋物線性質(zhì)以及雙曲線的定義是解題的關(guān)鍵,屬于中檔題.5、B【解析】
根據(jù)三視圖可以得到原幾何體為三棱錐,且是有三條棱互相垂直的三棱錐,根據(jù)幾何體的各面面積可得最大面的面積.【詳解】解:分析題意可知,如下圖所示,該幾何體為一個(gè)正方體中的三棱錐,最大面的表面邊長(zhǎng)為的等邊三角形,故其面積為,故選B.【點(diǎn)睛】本題考查了幾何體的三視圖問(wèn)題,解題的關(guān)鍵是要能由三視圖解析出原幾何體,從而解決問(wèn)題.6、C【解析】
根據(jù)空間中平行關(guān)系、垂直關(guān)系的相關(guān)判定和性質(zhì)可依次判斷各個(gè)選項(xiàng)得到結(jié)果.【詳解】對(duì)于,若,則可能為平行或異面直線,錯(cuò)誤;對(duì)于,若,則可能為平行、相交或異面直線,錯(cuò)誤;對(duì)于,若,且,由面面垂直的判定定理可知,正確;對(duì)于,若,只有當(dāng)垂直于的交線時(shí)才有,錯(cuò)誤.故選:.【點(diǎn)睛】本題考查空間中線面關(guān)系、面面關(guān)系相關(guān)命題的辨析,關(guān)鍵是熟練掌握空間中的平行關(guān)系與垂直關(guān)系的相關(guān)命題.7、B【解析】
將所有可能的情況全部枚舉出來(lái),再根據(jù)古典概型的方法求解即可.【詳解】設(shè)乙,丙,丁分別領(lǐng)到x元,y元,z元,記為,則基本事件有,,,,,,,,,,共10個(gè),其中符合乙獲得“最佳手氣”的有3個(gè),故所求概率為,故選:B.【點(diǎn)睛】本題主要考查了枚舉法求古典概型的方法,屬于基礎(chǔ)題型.8、B【解析】
由三視圖可知,該三棱錐如圖,其中底面是等腰直角三角形,平面,結(jié)合三視圖求出每個(gè)面的面積即可.【詳解】由三視圖可知,該三棱錐如圖所示:其中底面是等腰直角三角形,平面,由三視圖知,因?yàn)?,所以,所以,因?yàn)闉榈冗吶切危?所以該三棱錐的四個(gè)面中,最大面積為.故選:B【點(diǎn)睛】本題考查三視圖還原幾何體并求其面積;考查空間想象能力和運(yùn)算求解能力;三視圖正確還原幾何體是求解本題的關(guān)鍵;屬于中檔題、??碱}型.9、D【解析】
由得,又,兩式相除即可解出.【詳解】解:由得,又,∴,∴,或,又正項(xiàng)等比數(shù)列得,∴,故選:D.【點(diǎn)睛】本題主要考查等比數(shù)列的性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.10、C【解析】
根據(jù)準(zhǔn)線的方程寫出拋物線的標(biāo)準(zhǔn)方程,再對(duì)照系數(shù)求解即可.【詳解】因?yàn)闇?zhǔn)線方程為,所以拋物線方程為,所以,即.故選:C【點(diǎn)睛】本題考查拋物線與準(zhǔn)線的方程.屬于基礎(chǔ)題.11、C【解析】
根據(jù)分段函數(shù)的解析式,知當(dāng)時(shí),且,由于,則,即可求出.【詳解】由題意知:當(dāng)時(shí),且由于,則可知:,則,∴,則,則.即.故選:C.【點(diǎn)睛】本題考查分段函數(shù)的應(yīng)用,由分段函數(shù)解析式求自變量.12、A【解析】
由已知可得到直線的傾斜角為,有,再利用即可解決.【詳解】由F到直線的距離為,得直線的傾斜角為,所以,即,解得.故選:A.【點(diǎn)睛】本題考查橢圓離心率的問(wèn)題,一般求橢圓離心率的問(wèn)題時(shí),通常是構(gòu)造關(guān)于的方程或不等式,本題是一道容易題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
基本事件總數(shù),這3個(gè)點(diǎn)共線的情況有兩種和,由此能求出這3個(gè)點(diǎn)不共線的概率.【詳解】解:為矩形的對(duì)角線的交點(diǎn),現(xiàn)從,,,,這5個(gè)點(diǎn)中任選3個(gè)點(diǎn),基本事件總數(shù),這3個(gè)點(diǎn)共線的情況有兩種和,這3個(gè)點(diǎn)不共線的概率為.故答案為:.【點(diǎn)睛】本題考查概率的求法,考查對(duì)立事件概率計(jì)算公式等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,屬于基礎(chǔ)題.14、8(寫為也得分)【解析】
由,得,.當(dāng)時(shí),,所以,所以的奇數(shù)項(xiàng)是以1為首項(xiàng),以2為公比的等比數(shù)列;其偶數(shù)項(xiàng)是以2為首項(xiàng),以2為公比的等比數(shù)列.則,.15、【解析】
先求得時(shí);再由可得時(shí),兩式作差可得,進(jìn)而求解.【詳解】當(dāng)時(shí),,解得;由,可知當(dāng)時(shí),,兩式相減,得,即,所以數(shù)列是首項(xiàng)為,公比為的等比數(shù)列,所以,故答案為:【點(diǎn)睛】本題考查由與的關(guān)系求通項(xiàng)公式,考查等比數(shù)列的通項(xiàng)公式的應(yīng)用.16、【解析】
根據(jù)向量關(guān)系表示,只需求出的取值范圍即可得解.【詳解】由題可得:,故答案為:【點(diǎn)睛】此題考查求平面向量數(shù)量積的取值范圍,涉及基本運(yùn)算,關(guān)鍵在于恰當(dāng)?shù)貙?duì)向量進(jìn)行轉(zhuǎn)換,便于計(jì)算解題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)【解析】
(1)依題意,任意角的三角函數(shù)的定義可知,,進(jìn)而求出.在利用余弦的和差公式即可求出.(2)根據(jù)鈍角的終邊與單位圓交于點(diǎn),且點(diǎn)的橫坐標(biāo)是,得出,進(jìn)而得出,利用正弦的和差公式即可求出,結(jié)合為銳角,為鈍角,即可得出的值.【詳解】解:因?yàn)殇J角的終邊與單位圓交于點(diǎn),點(diǎn)的縱坐標(biāo)是,所以由任意角的三角函數(shù)的定義可知,.從而.(1)于是.(2)因?yàn)殁g角的終邊與單位圓交于點(diǎn),且點(diǎn)的橫坐標(biāo)是,所以,從而.于是.因?yàn)闉殇J角,為鈍角,所以從而.【點(diǎn)睛】本題本題考查正弦函數(shù)余弦函數(shù)的定義,考查正弦余弦的兩角和差公式,是基礎(chǔ)題.18、(1);(2).【解析】
(1)由已知根據(jù)拋物線和橢圓的定義和性質(zhì),可求出,;(2)設(shè)直線方程為,聯(lián)立直線與圓的方程可以求出,再聯(lián)立直線和橢圓的方程化簡(jiǎn),由根與系數(shù)的關(guān)系得到結(jié)論,繼而求出面積.【詳解】(1)焦點(diǎn)為F(1,0),則F1(1,0),F(xiàn)2(1,0),,解得,=1,=1,(Ⅱ)由已知,可設(shè)直線方程為,,聯(lián)立得,易知△>0,則===因?yàn)椋裕?,解得聯(lián)立,得,△=8>0設(shè),則【點(diǎn)睛】本題主要考查拋物線和橢圓的定義與性質(zhì)應(yīng)用,同時(shí)考查利用根與系數(shù)的關(guān)系,解決直線與圓,直線與橢圓的位置關(guān)系問(wèn)題.意在考查學(xué)生的數(shù)學(xué)運(yùn)算能力.19、橫線處任填一個(gè)都可以,面積為.【解析】
無(wú)論選哪一個(gè),都先由正弦定理化邊為角后,由誘導(dǎo)公式,展開(kāi)后,可求得角,再由余弦定理求得,從而易求得三角形面積.【詳解】在橫線上填寫“”.解:由正弦定理,得.由,得.由,得.所以.又(若,則這與矛盾),所以.又,得.由余弦定理及,得,即.將代入,解得.所以.在橫線上填寫“”.解:由及正弦定理,得.又,所以有.因?yàn)椋?從而有.又,所以由余弦定理及,得即.將代入,解得.所以.在橫線上填寫“”解:由正弦定理,得.由,得,所以由二倍角公式,得.由,得,所以.所以,即.由余弦定理及,得.即.將代入,解得.所以.【點(diǎn)睛】本題考查三角形面積公式,考查正弦定理、余弦定理,兩角和的正弦公式等,正弦定理進(jìn)行邊角轉(zhuǎn)換,求三角形面積時(shí),①若三角形中已知一個(gè)角(角的大小或該角的正、余弦值),結(jié)合題意求解這個(gè)角的兩邊或該角的兩邊之積,代入公式求面積;②若已知三角形的三邊,可先求其一個(gè)角的余弦值,再求其正弦值,代入公式求面積,總之,結(jié)合圖形恰當(dāng)選擇面積公式是解題的關(guān)鍵.20、(1)(2)【解析】分析:(1)先求導(dǎo),再令在上恒成立,得到上恒成立,利用基本不等式得到m的取值范圍.(2)先由得到,再求得,再構(gòu)造函數(shù)再利用導(dǎo)數(shù)求其最小值.詳解:(1)由函數(shù)有意義,則由且不存在單調(diào)遞減區(qū)間,則在上恒成立,上恒成立(2)由知,令,即由有兩個(gè)極值點(diǎn)故為方程的兩根,,,則由由,則上單調(diào)遞減,即由知綜上所述,的最小值為.點(diǎn)睛:(1)本題主要考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間和極值,考查利用導(dǎo)數(shù)求函數(shù)的最值,意在考查學(xué)生對(duì)這些知識(shí)的掌握水平和分析推理能力.(2)本題的難點(diǎn)有兩個(gè),其一是求出,其二是構(gòu)造函數(shù)再利用導(dǎo)數(shù)求其最小值.21、(1)0.98;可用線性回歸模型擬合.(2)【解析】
(1)根據(jù)題目提供的數(shù)據(jù)求出,代入相關(guān)系數(shù)公式求出,根據(jù)的大小來(lái)確定結(jié)果;(2)求出藥品的每類劑型經(jīng)過(guò)兩次檢測(cè)后合格的概率,發(fā)現(xiàn)它們相同,那么經(jīng)過(guò)兩次檢測(cè)后,,三
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年農(nóng)產(chǎn)品初加工機(jī)械合作協(xié)議書(shū)
- 完整版幼兒園大班加減混合運(yùn)算
- 公司之間合作協(xié)議書(shū)范本模板
- 2025年鄉(xiāng)村山地承包合同標(biāo)準(zhǔn)版本(三篇)
- 2025年個(gè)人貸款保證合同(2篇)
- 2025年產(chǎn)學(xué)研校企合作協(xié)議標(biāo)準(zhǔn)版本(4篇)
- 2025年個(gè)人汽車抵押合同樣本(2篇)
- 2013-2022年北京市初三一模物理試題匯編:電流與電阻關(guān)系的探究實(shí)驗(yàn)
- 2025年二手車汽車買賣合同常用版(2篇)
- 2025年個(gè)人車庫(kù)轉(zhuǎn)讓協(xié)議(2篇)
- 鋰離子電池健康評(píng)估及剩余使用壽命預(yù)測(cè)方法研究
- c30混凝土路面施工方案
- 頸椎骨折的護(hù)理常規(guī)課件
- 電商運(yùn)營(yíng)銷售計(jì)劃Excel模版
- 2022-2023學(xué)年上海市楊浦區(qū)上海同濟(jì)大附屬存志學(xué)校七年級(jí)數(shù)學(xué)第二學(xué)期期中綜合測(cè)試模擬試題含解析
- 稿件修改說(shuō)明(模板)
- GB/T 33107-2016工業(yè)用碳酸二甲酯
- GB/T 16604-2017滌綸工業(yè)長(zhǎng)絲
- 勞動(dòng)合同法經(jīng)典講義
- 工時(shí)定額編制標(biāo)準(zhǔn)(焊接)
- 三位數(shù)乘一位數(shù)練習(xí)題(精選100道)
評(píng)論
0/150
提交評(píng)論