新高考數(shù)學一輪復習分層提升練習第09練 二次函數(shù)與冪函數(shù)(含解析)_第1頁
新高考數(shù)學一輪復習分層提升練習第09練 二次函數(shù)與冪函數(shù)(含解析)_第2頁
新高考數(shù)學一輪復習分層提升練習第09練 二次函數(shù)與冪函數(shù)(含解析)_第3頁
新高考數(shù)學一輪復習分層提升練習第09練 二次函數(shù)與冪函數(shù)(含解析)_第4頁
新高考數(shù)學一輪復習分層提升練習第09練 二次函數(shù)與冪函數(shù)(含解析)_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

第09講二次函數(shù)與冪函數(shù)(精練)【A組

在基礎(chǔ)中考查功底】一、單選題1.下列函數(shù)中定義域為SKIPIF1<0的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】將分數(shù)指數(shù)冪化為根式,再根據(jù)冪函數(shù)的圖像與性質(zhì)即可得到答案.【詳解】SKIPIF1<0,定義域為SKIPIF1<0,故A錯誤;SKIPIF1<0,定義域為SKIPIF1<0,故B錯誤;SKIPIF1<0,定義域為SKIPIF1<0,故C正確;SKIPIF1<0,定義域為SKIPIF1<0,故D錯誤,故選:C.2.已知冪函數(shù)SKIPIF1<0的圖象經(jīng)過點SKIPIF1<0,則SKIPIF1<0的大致圖象是(

)A. B.C. D.【答案】C【分析】先求出函數(shù)的解析式,再求出函數(shù)的定義域和奇偶性判斷即可.【詳解】設(shè)SKIPIF1<0,因為SKIPIF1<0的圖象經(jīng)過點SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,則SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0為偶函數(shù),排除B、D,因為SKIPIF1<0的定義域為SKIPIF1<0,排除A.因為SKIPIF1<0在SKIPIF1<0內(nèi)單調(diào)遞增,結(jié)合偶函數(shù)可得SKIPIF1<0在SKIPIF1<0內(nèi)單調(diào)遞減,故C滿足,故選:C.3.設(shè)SKIPIF1<0,則“SKIPIF1<0”是“SKIPIF1<0”的(

)A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件【答案】D【分析】根據(jù)充分必要條件的定義結(jié)合不等式的性質(zhì)、對數(shù)函數(shù)性質(zhì)、冪函數(shù)性質(zhì)求解.【詳解】由SKIPIF1<0得SKIPIF1<0即SKIPIF1<0,則有SKIPIF1<0,取SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0推不到SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,取SKIPIF1<0,則SKIPIF1<0,則有SKIPIF1<0,所以SKIPIF1<0推不到SKIPIF1<0,所以“SKIPIF1<0”是“SKIPIF1<0”的既不充分也不必要條件,故選:D.4.已知函數(shù)SKIPIF1<0是冪函數(shù),且在SKIPIF1<0上遞減,則實數(shù)SKIPIF1<0(

)A.SKIPIF1<0 B.2或SKIPIF1<0 C.4 D.2【答案】D【分析】由題可知SKIPIF1<0,且SKIPIF1<0,解出SKIPIF1<0并代入驗證即可.【詳解】由題知SKIPIF1<0是冪函數(shù),則SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上遞減,SKIPIF1<0,將SKIPIF1<0代入可得SKIPIF1<0,不符合題意,故舍去,將SKIPIF1<0代入可得SKIPIF1<0,符合題意,故SKIPIF1<0.故選:D5.已知函數(shù)SKIPIF1<0是冪函數(shù),則下列關(guān)于SKIPIF1<0說法正確的是(

)A.奇函數(shù) B.偶函數(shù) C.定義域為SKIPIF1<0 D.在SKIPIF1<0單調(diào)遞減【答案】C【分析】根據(jù)函數(shù)為冪函數(shù),得到SKIPIF1<0,從而求出定義域和單調(diào)性,并得到SKIPIF1<0既不是奇函數(shù),也不是偶函數(shù).【詳解】SKIPIF1<0為冪函數(shù),故SKIPIF1<0,解得:SKIPIF1<0,所以SKIPIF1<0,定義域為SKIPIF1<0,不關(guān)于原點對稱,所以SKIPIF1<0既不是奇函數(shù),也不是偶函數(shù),AB錯誤,在SKIPIF1<0上單調(diào)遞增,D錯誤.故選:C6.SKIPIF1<0的最大值是(

)A.SKIPIF1<0 B.2 C.SKIPIF1<0 D.4【答案】A【分析】設(shè)SKIPIF1<0可得SKIPIF1<0,配方后利用二次函數(shù)的性質(zhì)求解即可.【詳解】設(shè)SKIPIF1<0,則SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0時,SKIPIF1<0的最大值是SKIPIF1<0,故選:A.7.已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上是單調(diào)函數(shù),則實數(shù)k的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根據(jù)二次函數(shù)的性質(zhì)可得SKIPIF1<0或SKIPIF1<0,解出即可得出實數(shù)k的取值范圍.【詳解】函數(shù)SKIPIF1<0的對稱軸為SKIPIF1<0.若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,則應有SKIPIF1<0,所以SKIPIF1<0;若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,則應有SKIPIF1<0,所以SKIPIF1<0.綜上所述,實數(shù)k的取值范圍是SKIPIF1<0或SKIPIF1<0.故選:C.8.設(shè)SKIPIF1<0是定義在SKIPIF1<0上偶函數(shù),則SKIPIF1<0在區(qū)間SKIPIF1<0上是(

)A.增函數(shù) B.減函數(shù) C.先增后減函數(shù) D.與SKIPIF1<0,SKIPIF1<0有關(guān),不能確定【答案】B【分析】根據(jù)偶函數(shù)的特點解出SKIPIF1<0,然后根據(jù)二次函數(shù)的圖像和性質(zhì)進行判斷即可.【詳解】SKIPIF1<0是定義在SKIPIF1<0上偶函數(shù),∴定義域關(guān)于原點對稱,即SKIPIF1<0,∴SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,∴SKIPIF1<0,函數(shù)圖像拋物線開口向下,對稱軸為SKIPIF1<0,則函數(shù)在區(qū)間SKIPIF1<0上是減函數(shù).故選:B.9.冪函數(shù)SKIPIF1<0在R上單調(diào)遞增,則函數(shù)SKIPIF1<0的圖象過定點(

)A.(1,1) B.(1,2) C.(-3,1) D.(-3,2)【答案】D【分析】由函數(shù)SKIPIF1<0為冪函數(shù)且在R上單調(diào)遞增,可得SKIPIF1<0,再由指數(shù)函數(shù)過定點SKIPIF1<0,即可得函數(shù)SKIPIF1<0所過的定點.【詳解】解:因為SKIPIF1<0為冪函數(shù)且在R上單調(diào)遞增,所以SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,又因為指數(shù)函數(shù)SKIPIF1<0恒過定點SKIPIF1<0,所以SKIPIF1<0恒過定點SKIPIF1<0.故選:D.二、填空題10.若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)存在最小值,則SKIPIF1<0的取值范圍是___________.【答案】SKIPIF1<0【分析】根據(jù)二次函數(shù)的性質(zhì)確定在開區(qū)間SKIPIF1<0內(nèi)存在最小值的情況列不等式,即可得SKIPIF1<0的取值范圍是.【詳解】解:二次函數(shù)SKIPIF1<0的對稱軸為SKIPIF1<0,且二次函數(shù)開口向上若函數(shù)在開區(qū)間SKIPIF1<0內(nèi)存在最小值,則SKIPIF1<0,即SKIPIF1<0,此時函數(shù)在SKIPIF1<0處能取到最小值,故SKIPIF1<0的取值范圍是SKIPIF1<0.故答案為:SKIPIF1<0.11.已知函數(shù)SKIPIF1<0,SKIPIF1<0是嚴格減函數(shù),則實數(shù)SKIPIF1<0的取值范圍是______.【答案】SKIPIF1<0【分析】分SKIPIF1<0,SKIPIF1<0討論,根據(jù)條件可得出關(guān)于實數(shù)SKIPIF1<0的不等式(組),進而可求得實數(shù)SKIPIF1<0的取值范圍.【詳解】當SKIPIF1<0時,函數(shù)為SKIPIF1<0在區(qū)間SKIPIF1<0上為增函數(shù),不合題意;當SKIPIF1<0時,要使函數(shù)SKIPIF1<0,SKIPIF1<0是嚴格減函數(shù),則SKIPIF1<0,解得SKIPIF1<0,即實數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故答案為:SKIPIF1<0.12.已知函數(shù)SKIPIF1<0,則其值域為__________.【答案】SKIPIF1<0【分析】根據(jù)換元法將函數(shù)變?yōu)镾KIPIF1<0,結(jié)合二次函數(shù)的單調(diào)性即可求解最值,進而求解值域.【詳解】SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,由于SKIPIF1<0在SKIPIF1<0單調(diào)遞增,在SKIPIF1<0單調(diào)遞減,故SKIPIF1<0的最小值為SKIPIF1<0,故值域為SKIPIF1<0,故答案為:SKIPIF1<013.已知冪函數(shù)SKIPIF1<0為偶函數(shù),則該函數(shù)的增區(qū)間為_______.【答案】SKIPIF1<0【分析】根據(jù)冪函數(shù)的定義,結(jié)合偶函數(shù)的定義求出SKIPIF1<0,然后利用冪函數(shù)的性質(zhì)進行求解【詳解】因為SKIPIF1<0是冪函數(shù),所以SKIPIF1<0或SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,因為SKIPIF1<0,所以函數(shù)SKIPIF1<0是奇函數(shù),不符合題意,當SKIPIF1<0時,SKIPIF1<0,因為SKIPIF1<0,所以函數(shù)SKIPIF1<0是偶函數(shù),符合題意,故該函數(shù)的增區(qū)間為SKIPIF1<0故答案為:SKIPIF1<014.若函數(shù)SKIPIF1<0是冪函數(shù),且SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0___________.【答案】SKIPIF1<0【分析】由題意可得SKIPIF1<0求出SKIPIF1<0的值,則可求出SKIPIF1<0的解析式,從而可求出SKIPIF1<0.【詳解】因為函數(shù)SKIPIF1<0是冪函數(shù),且SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故答案為:2三、解答題15.比較下列各組數(shù)的大?。?1)SKIPIF1<0;(2)SKIPIF1<0,SKIPIF1<0;【答案】(1)SKIPIF1<0(2)SKIPIF1<0【分析】(1)根據(jù)SKIPIF1<0在SKIPIF1<0的單調(diào)性即可求解,(2)根據(jù)函數(shù)SKIPIF1<0在SKIPIF1<0單調(diào)遞增即可求解.【詳解】(1)由于函數(shù)SKIPIF1<0在SKIPIF1<0單調(diào)遞減,SKIPIF1<0,所以SKIPIF1<0.(2)由于函數(shù)SKIPIF1<0在SKIPIF1<0單調(diào)遞增,SKIPIF1<0,所以SKIPIF1<0故SKIPIF1<0.16.已知冪函數(shù)SKIPIF1<0的圖像關(guān)于SKIPIF1<0軸對稱,且在SKIPIF1<0上是減函數(shù),(1)求SKIPIF1<0的值.(2)若SKIPIF1<0,求SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【分析】(1)冪函數(shù)在SKIPIF1<0上單調(diào)遞減,可得SKIPIF1<0且SKIPIF1<0,可得m的值為1或2,然后根據(jù)已知條件分析即可;(2)由(1)可得不等式,由SKIPIF1<0可得單調(diào)性,然后分類討論,解出不等式求出a的取值范圍.【詳解】(1)因為冪函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,解得SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,因為函數(shù)圖像關(guān)于SKIPIF1<0軸對稱,所以SKIPIF1<0是偶數(shù),因此SKIPIF1<0;(2)由(1)可得SKIPIF1<0,故SKIPIF1<0為SKIPIF1<0,因為SKIPIF1<0在SKIPIF1<0上均為減函數(shù),所以SKIPIF1<0等價于:SKIPIF1<0或SKIPIF1<0或SKIPIF1<0解得SKIPIF1<0或SKIPIF1<0,故SKIPIF1<0的取值范圍為SKIPIF1<0或SKIPIF1<0.【B組

在綜合中考查能力】一、單選題1.下列比較大小中正確的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】利用函數(shù)的單調(diào)性進行判斷即可.【詳解】解:對于A選項,因為SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,故A錯誤,對于B選項,因為SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,故B錯誤,對于C選項,SKIPIF1<0為奇函數(shù),且在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,因為SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,故C正確,對于D選項,SKIPIF1<0在SKIPIF1<0上是遞增函數(shù),又SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故D錯誤.故選:C.2.已知冪函數(shù)的圖象經(jīng)過點SKIPIF1<0,則該冪函數(shù)的大致圖象是(

)A. B.C. D.【答案】A【分析】先求出函數(shù)的解析式,根據(jù)函數(shù)的定義域和單調(diào)性得解.【詳解】設(shè)冪函數(shù)的解析式為SKIPIF1<0,因為該冪函數(shù)的圖象經(jīng)過點SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,即函數(shù)SKIPIF1<0,也即SKIPIF1<0,則函數(shù)的定義域為SKIPIF1<0,所以排除選項CD;又SKIPIF1<0SKIPIF1<0,函數(shù)單調(diào)遞減,故排除B,故選:A.3.已知冪函數(shù)SKIPIF1<0為偶函數(shù),若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上為單調(diào)函數(shù),則實數(shù)SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】根據(jù)冪函數(shù)SKIPIF1<0為偶函數(shù)求出SKIPIF1<0的值,然后對函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的單調(diào)性進行分類討論,可得出關(guān)于實數(shù)SKIPIF1<0的不等式,即可得出實數(shù)SKIPIF1<0的取值范圍.【詳解】因為函數(shù)SKIPIF1<0為冪函數(shù),則SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0為偶函數(shù),合乎題意;當SKIPIF1<0時,SKIPIF1<0為非奇非偶函數(shù),不合乎題意.所以,SKIPIF1<0,則SKIPIF1<0,二次函數(shù)SKIPIF1<0的對稱軸為直線SKIPIF1<0.①若函數(shù)SKIPIF1<0在SKIPIF1<0上為增函數(shù),則SKIPIF1<0,解得SKIPIF1<0;②若函數(shù)SKIPIF1<0在SKIPIF1<0上為減函數(shù),則SKIPIF1<0,解得SKIPIF1<0.綜上所述,實數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故選:B.4.已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上是單調(diào)函數(shù),則實數(shù)k的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】直接利用二次函數(shù)的單調(diào)性列不等式組即可求得.【詳解】函數(shù)SKIPIF1<0的對稱軸為SKIPIF1<0.要使函數(shù)在區(qū)間SKIPIF1<0上是單調(diào)函數(shù),只需SKIPIF1<0或SKIPIF1<0,解得:SKIPIF1<0或SKIPIF1<0.故選:A5.已知冪函數(shù)SKIPIF1<0滿足條件SKIPIF1<0,則實數(shù)a的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】利用冪函數(shù)的概念求得SKIPIF1<0,再利用冪函數(shù)的定義域與單調(diào)性即可解得不等式.【詳解】因為SKIPIF1<0為冪函數(shù),所以SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0的定義域為SKIPIF1<0,且在定義域上為增函數(shù),所以由SKIPIF1<0,可得SKIPIF1<0,解得SKIPIF1<0,故a的取值范圍為SKIPIF1<0.故選:B.6.設(shè)SKIPIF1<0,SKIPIF1<0,函數(shù)SKIPIF1<0,若SKIPIF1<0恒成立,則(

)A.SKIPIF1<0,SKIPIF1<0 B.SKIPIF1<0,SKIPIF1<0C.SKIPIF1<0,SKIPIF1<0 D.SKIPIF1<0,SKIPIF1<0【答案】A【分析】根據(jù)函數(shù)的解析式進行分類討論,當SKIPIF1<0時,結(jié)合二次函數(shù)的圖象和性質(zhì)即可求解.【詳解】因為SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0恒成立,當SKIPIF1<0時,SKIPIF1<0恒成立,則SKIPIF1<0恒成立,因為SKIPIF1<0,則有SKIPIF1<0,故SKIPIF1<0,故選:SKIPIF1<0.二、多選題7.已知冪函數(shù)SKIPIF1<0,則(

)A.SKIPIF1<0,函數(shù)SKIPIF1<0的圖像與坐標軸沒有交點B.SKIPIF1<0,使得SKIPIF1<0是奇函數(shù)C.當SKIPIF1<0時,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增D.當SKIPIF1<0時,函數(shù)SKIPIF1<0的值域為SKIPIF1<0【答案】BCD【分析】對A,B項:當SKIPIF1<0時可說明A錯誤B正確;對C項:分析SKIPIF1<0的取值范圍,根據(jù)冪函數(shù)的單調(diào)性判斷;對D項:當SKIPIF1<0時SKIPIF1<0求定義域與值域即可.【詳解】設(shè)SKIPIF1<0可知SKIPIF1<0可取遍全體正數(shù),所以SKIPIF1<0可取遍全體實數(shù),∴當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,A錯誤,B正確;當SKIPIF1<0時,SKIPIF1<0,由冪函數(shù)性質(zhì),SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,C正確;SKIPIF1<0時,SKIPIF1<0,定義域為SKIPIF1<0,值域為SKIPIF1<0,D正確.故選:BCD三、填空題8.函數(shù)SKIPIF1<0的值域為__________.【答案】SKIPIF1<0【分析】利用二倍角的余弦公式化簡函數(shù)并換元,轉(zhuǎn)化為二次函數(shù)的值域問題,結(jié)合二次函數(shù)性質(zhì),即可求得答案.【詳解】由題意函數(shù)SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0;當SKIPIF1<0時,SKIPIF1<0,故SKIPIF1<0的值域為SKIPIF1<0,故答案為:SKIPIF1<0.9.設(shè)SKIPIF1<0(SKIPIF1<0為常數(shù)),則“函數(shù)SKIPIF1<0的圖象經(jīng)過點SKIPIF1<0”是“函數(shù)SKIPIF1<0為偶函數(shù)”的____________條件.(填“充分不必要”、“必要不充分”、“充要””、“既不充分也不必要”)【答案】充要【分析】利用偶函數(shù)的性質(zhì)結(jié)合充分條件、必要條件的定義判斷可得出結(jié)論.【詳解】若函數(shù)SKIPIF1<0的圖象經(jīng)過點SKIPIF1<0,即SKIPIF1<0,對任意的SKIPIF1<0,則SKIPIF1<0,對任意的SKIPIF1<0,則SKIPIF1<0,此時函數(shù)SKIPIF1<0為偶函數(shù),所以,“函數(shù)SKIPIF1<0的圖象經(jīng)過點SKIPIF1<0”SKIPIF1<0“函數(shù)SKIPIF1<0為偶函數(shù)”;若函數(shù)SKIPIF1<0為偶函數(shù),又因為SKIPIF1<0,則SKIPIF1<0,所以,“函數(shù)SKIPIF1<0的圖象經(jīng)過點SKIPIF1<0”SKIPIF1<0“函數(shù)SKIPIF1<0為偶函數(shù)”.所以,“函數(shù)SKIPIF1<0的圖象經(jīng)過點SKIPIF1<0”是“函數(shù)SKIPIF1<0為偶函數(shù)”的充要條件.故答案為:充要.10.請寫出一個冪函數(shù)SKIPIF1<0,滿足:SKIPIF1<0,SKIPIF1<0.此函數(shù)可以是SKIPIF1<0______.【答案】SKIPIF1<0(答案不唯一)【分析】根據(jù)給定條件,確定函數(shù)SKIPIF1<0的定義域,及函數(shù)SKIPIF1<0的有關(guān)性質(zhì),再寫出符合的函數(shù)解析式作答.【詳解】令冪函數(shù)SKIPIF1<0(SKIPIF1<0為常數(shù)),由SKIPIF1<0,SKIPIF1<0知,函數(shù)SKIPIF1<0的定義域為R,SKIPIF1<0是偶函數(shù),又SKIPIF1<0,SKIPIF1<0,則函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,因此SKIPIF1<0可以為正偶數(shù),所以此函數(shù)可以是SKIPIF1<0.故答案為:SKIPIF1<011.已知函數(shù)SKIPIF1<0,則關(guān)于SKIPIF1<0的表達式SKIPIF1<0的解集為__________.【答案】SKIPIF1<0【分析】利用冪函數(shù)的性質(zhì)及函數(shù)的奇偶性和單調(diào)性即可求解.【詳解】由題意可知,SKIPIF1<0的定義域為SKIPIF1<0,所以SKIPIF1<0,所以函數(shù)SKIPIF1<0是奇函數(shù),由冪函數(shù)的性質(zhì)知,函數(shù)SKIPIF1<0在函數(shù)SKIPIF1<0上單調(diào)遞增,由SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,所以關(guān)于SKIPIF1<0的表達式SKIPIF1<0的解集為SKIPIF1<0.故答案為:SKIPIF1<0.12.已知函數(shù)SKIPIF1<0(SKIPIF1<0),若函數(shù)SKIPIF1<0在SKIPIF1<0的最小值為SKIPIF1<0,則實數(shù)SKIPIF1<0的值為________.【答案】SKIPIF1<0【分析】利用換元法,令SKIPIF1<0,進而得到SKIPIF1<0,再通過SKIPIF1<0的取值范圍與對稱軸之間的關(guān)系,結(jié)合該函數(shù)的單調(diào)性和最小值之間的關(guān)系,即可計算求出SKIPIF1<0【詳解】令SKIPIF1<0,則當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,對稱軸為SKIPIF1<0;當SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,解得:SKIPIF1<0(舍);當SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,解得:SKIPIF1<0(舍)或SKIPIF1<0;當SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0,解得:SKIPIF1<0(舍);綜上所述:SKIPIF1<0.故答案為:SKIPIF1<0.13.設(shè)函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上是嚴格增函數(shù),則實數(shù)SKIPIF1<0的取值范圍為__________.【答案】SKIPIF1<0【分析】對a分類討論,結(jié)合二次函數(shù)的圖象與性質(zhì)即可列式求解.【詳解】當SKIPIF1<0時,SKIPIF1<0為增函數(shù),符合題意;當SKIPIF1<0時,函數(shù)在區(qū)間SKIPIF1<0上是嚴格增函數(shù),則需對稱軸SKIPIF1<0,∴SKIPIF1<0;當SKIPIF1<0時,函數(shù)在區(qū)間SKIPIF1<0上是嚴格增函數(shù),則需對稱軸SKIPIF1<0,∴SKIPIF1<0.綜上,實數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.故答案為:SKIPIF1<014.已知函數(shù)SKIPIF1<0,定義SKIPIF1<0,若SKIPIF1<0恒成立,則實數(shù)SKIPIF1<0的取值范圍是___________.【答案】SKIPIF1<0【分析】比較SKIPIF1<0與SKIPIF1<0的大小,求得SKIPIF1<0,令SKIPIF1<0,求得SKIPIF1<0的最小值為SKIPIF1<0,由SKIPIF1<0即可得出答案.【詳解】SKIPIF1<0,SKIPIF1<0當SKIPIF1<0或SKIPIF1<0時,SKIPIF1<0;當SKIPIF1<0時,SKIPIF1<0,故SKIPIF1<0,令SKIPIF1<0,當SKIPIF1<0或SKIPIF1<0時,SKIPIF1<0;當SKIPIF1<0時,SKIPIF1<0,單調(diào)遞增,則當SKIPIF1<0時,SKIPIF1<0取最小值SKIPIF1<0,所以SKIPIF1<0的最小值為SKIPIF1<0,若SKIPIF1<0恒成立,則SKIPIF1<0,解得SKIPIF1<0.故答案為:SKIPIF1<0.四、解答題15.已知冪函數(shù)SKIPIF1<0是偶函數(shù).(1)求函數(shù)SKIPIF1<0的解析式;(2)若SKIPIF1<0,求x的取值范圍.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【分析】(1)根據(jù)冪函數(shù)的定義求得SKIPIF1<0的值,再結(jié)合冪函數(shù)的奇偶性確定函數(shù)解析式;(2)根據(jù)冪函數(shù)的單調(diào)性與奇偶性列不等式即可求得x的取值范圍.【詳解】(1)已知冪函數(shù)SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0,又函數(shù)SKIPIF1<0為偶函數(shù),所以SKIPIF1<0;(2)由于冪函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,又函數(shù)SKIPIF1<0為偶函數(shù),所以SKIPIF1<0在SKIPIF1<0單調(diào)遞減,若SKIPIF1<0,則SKIPIF1<0,平方后解得SKIPIF1<0,所以x的取值范圍是SKIPIF1<0.16.已知冪函數(shù)SKIPIF1<0為偶函數(shù),SKIPIF1<0.(1)若SKIPIF1<0,求SKIPIF1<0;(2)已知SKIPIF1<0,若關(guān)于x的不等式SKIPIF1<0在SKIPIF1<0上恒成立,求SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【分析】(1)先利用冪函數(shù)的定義及性質(zhì)求出SKIPIF1<0,再利用SKIPIF1<0列方程求出SKIPIF1<0;(2)將問題轉(zhuǎn)化為SKIPIF1<0,構(gòu)造函數(shù)SKIPIF1<0,利用函數(shù)單調(diào)性的定義判斷SKIPIF1<0的單調(diào)性,根據(jù)單調(diào)性可求得SKIPIF1<0,進而可得SKIPIF1<0的取值范圍【詳解】(1)對于冪函數(shù)SKIPIF1<0,得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,又當SKIPIF1<0時,SKIPIF1<0不為偶函數(shù),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0;(2)關(guān)于x的不等式SKIPIF1<0在SKIPIF1<0上恒成立,即SKIPIF1<0在SKIPIF1<0上恒成立,即SKIPIF1<0,先證明SKIPIF1<0在SKIPIF1<0上單調(diào)遞增:任取SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,解得SKIPIF1<0.【C組

在創(chuàng)新中考查思維】一、單選題1.已知A,B,C是單位圓上的三個動點,則AB?AC的最小值是(A.0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】建立平面直角坐標系,設(shè)出SKIPIF1<0,SKIPIF1<0,表達出SKIPIF1<0,結(jié)合SKIPIF1<0,求出最小值.【詳解】以SKIPIF1<0的垂直平分線為SKIPIF1<0軸,建立如圖所示的平面直角坐標系,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0取得最小值,最小值為SKIPIF1<0,由于SKIPIF1<0,故當SKIPIF1<0時,SKIPIF1<0最小,故最小值為SKIPIF1<0,此時SKIPIF1<0,滿足要求,故選:B【點睛】平面向量解決幾何最值問題,通常有兩種思路:①形化,即用平面向量的幾何意義將問題轉(zhuǎn)化為平面幾何中的最值或取值范圍問題,然后根據(jù)平面圖形的特征直接進行求解;②數(shù)化,即利用平面向量的坐標運算,把問題轉(zhuǎn)化為代數(shù)中的函數(shù)最值與值域,不等式的解集,方程有解等問題,然后利用函數(shù),不等式,方程的有關(guān)知識進行求解.2.設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則a,b,c的大小順序是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】利用冪函數(shù)與對數(shù)函數(shù)的單調(diào)性即可得解.【詳解】因為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又因為SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,即SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,又因為SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,即SKIPIF1<0,綜上:SKIPIF1<0.故選:D.3.設(shè)函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,滿足SKIPIF1<0,且當SKIPIF1<0時,SKIPIF1<0.若對任意SKIPIF1<0,都有SKIPIF1<0成立,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】由題設(shè)條件畫出函數(shù)的圖象,由圖象分析得出SKIPIF1<0的取值范圍.【詳解】因為當SKIPIF1<0時,SKIPIF1<0;SKIPIF1<0,所以SKIPIF1<0,即若SKIPIF1<0在SKIPIF1<0上的點的橫坐標增加2,則對應SKIPIF1<0值變?yōu)樵瓉淼腟KIPIF1<0;若減少2,則對應SKIPIF1<0值變?yōu)樵瓉淼?倍.當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,故當SKIPIF1<0時,對任意SKIPIF1<0,SKIPIF1<0不成立,當SKIPIF1<0時,SKIPIF1<0,同理當SKIPIF1<0時,SKIPIF1<0,以此類推,當SKIPIF1<0時,必有SKIPIF1<0.函數(shù)SKIPIF1<0和函數(shù)SKIPIF1<0的圖象如圖所示:因為當SKIPIF1<0時,SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0(舍去),因為當SKIPIF1<0時,SKIPIF1<0成立,所以SKIPIF1<0.故選:A.【點睛】思路點睛:此類問題考慮函數(shù)的“類周期性”,注意根據(jù)已知區(qū)間上函數(shù)的性質(zhì)推證函數(shù)在其他區(qū)間上的性質(zhì),必要時應根據(jù)性質(zhì)繪制函數(shù)的圖象,借助形來尋找臨界點.4.已知冪函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,函數(shù)SKIPIF1<0時,總存在SKIPIF1<0使得SKIPIF1<0,則SKIPIF1<0的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】試題分析:由已知SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0.當SKIPIF1<0時,SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0.又SKIPIF1<0在SKIPIF1<0單調(diào)遞增,∴SKIPIF1<0.∴SKIPIF1<0在SKIPIF1<0上的值域為SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上的值域為SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0.故選D.考點:1、冪函數(shù)的定義和性質(zhì);2、函數(shù)的單調(diào)性及值域.【方法點睛】本題主要考查冪函數(shù)的定義和性質(zhì),函數(shù)的單調(diào)性及函數(shù)的值域的求法,屬于難題.求函數(shù)值域的常見方法有①配方法:若函數(shù)為一元二次函數(shù),常采用配方法求函數(shù)求值域,其關(guān)鍵在于正確化成完全平方式,并且一定要先確定其定義域;②換元法:常用代數(shù)或三角代換法,用換元法求值域時需認真分析換元參數(shù)的范圍變化;③不等式法:借助于基本不等式求函數(shù)的值域,用不等式法求值域時,要注意基本不等式的使用條件“一正、二定、三相等”;④單調(diào)性法:首先確定函數(shù)的定義域,然后準確地找出其單調(diào)區(qū)間,最后再根據(jù)其單調(diào)性求凼數(shù)的值域,⑤圖象法:畫出函數(shù)圖象,根據(jù)圖象的最高和最低點求最值,本題主要是利用方法④求出兩函數(shù)值域后再根據(jù)題意解答的.二、填空題5.設(shè)冪函數(shù)SKIPIF1<0的圖象過點SKIPIF1<0,則:①SKIPIF1<0的定義域為SKIPIF1<0;②SKIPIF1<0是奇函數(shù);③SKIPIF1<0是減函數(shù);④當SKIPIF1<0時,SKIPIF1<0其中正確的有_________(多選、錯選、漏選均不得分).【答案】②④【分析】根據(jù)待定系數(shù)法求出冪函數(shù)SKIPIF1<0,由冪函數(shù)的性質(zhì),即可判斷各項的真假.【詳解】設(shè)SKIPIF1<0,因為函數(shù)SKIPIF1<0的圖象過點SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,根據(jù)冪函數(shù)SKIPIF1<0的圖象,可知①不正確,②正確,③說法有誤,應該是SKIPIF1<0在SKIPIF1<0上是減函數(shù),在SKIPIF1<0上是減函數(shù),但在整個定義域上不是減函數(shù);對于④,設(shè)點SKIPIF1<0,SKIPIF1<0,點SKIPIF1<0為線段SKIPIF1<0的中點,點SKIPIF1<0,由圖可知,點SKIPIF1<0在點SKIPIF1<0的下方,所以SKIPIF1<0.故答案為②④.【點睛】本題主要考查冪函數(shù)的求法和冪函數(shù)的性質(zhì)的判斷與應用.6.已知實數(shù)a、b滿足等式,下列五個關(guān)系式:①0<b<a<1;②?1<a<b<0;③1<a<b;④?1<b<a<0;⑤a=b.其中可能成立的式子有_____

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論