版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆浙江省湖州市吳興區(qū)中考數(shù)學(xué)猜題卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.剪紙是我國傳統(tǒng)的民間藝術(shù).下列剪紙作品既不是中心對稱圖形,也不是軸對稱圖形的是()A. B. C. D.2.下列左圖表示一個由相同小立方塊搭成的幾何體的俯視圖,小正方形中的數(shù)字表示該位置上小立方塊的個數(shù),則該幾何體的主視圖為()A. B. C. D.3.如圖,△ABC中,∠B=70°,則∠BAC=30°,將△ABC繞點C順時針旋轉(zhuǎn)得△EDC.當(dāng)點B的對應(yīng)點D恰好落在AC上時,∠CAE的度數(shù)是()A.30° B.40° C.50° D.60°4.如圖,將函數(shù)的圖象沿y軸向上平移得到一條新函數(shù)的圖象,其中點A(-4,m),B(-1,n),平移后的對應(yīng)點分別為點A'、B'.若曲線段AB掃過的面積為9(圖中的陰影部分),則新圖象的函數(shù)表達(dá)式是()A. B. C. D.5.有若干個完全相同的小正方體堆成一個如圖所示幾何體,若現(xiàn)在你手頭還有一些相同的小正方體,如果保持俯視圖和左視圖不變,最多可以再添加小正方體的個數(shù)為()A.2 B.3 C.4 D.56.剪紙是我國傳統(tǒng)的民間藝術(shù),下列剪紙作品中既不是軸對稱圖形,也不是中心對稱圖形的是()A. B. C. D.7.下列計算正確的是()A.2a2﹣a2=1 B.(ab)2=ab2 C.a(chǎn)2+a3=a5 D.(a2)3=a68.下列幾何體是棱錐的是()A. B. C. D.9.若,,則的值是()A.2 B.﹣2 C.4 D.﹣410.下列運算中,計算結(jié)果正確的是()A.a(chǎn)2?a3=a6B.a(chǎn)2+a3=a5C.(a2)3=a6D.a(chǎn)12÷a6=a2二、填空題(共7小題,每小題3分,滿分21分)11.閱讀材料:如圖,C為線段BD上一動點,分別過點B、D作AB⊥BD,ED⊥BD,連接AC、EC.設(shè)CD=x,若AB=4,DE=2,BD=8,則可用含x的代數(shù)式表示AC+CE的長為.然后利用幾何知識可知:當(dāng)A、C、E在一條直線上時,x=時,AC+CE的最小值為1.根據(jù)以上閱讀材料,可構(gòu)圖求出代數(shù)式的最小值為_____.12.某校準(zhǔn)備從甲、乙、丙、丁四個科創(chuàng)小組中選出一組,參加區(qū)青少年科技創(chuàng)新大賽,表格反映的是各組平時成績的平均數(shù)(單位:分)及方差S2,如果要選出一個成績較好且狀態(tài)穩(wěn)定的組去參賽,那么應(yīng)選的組是_____.甲乙丙丁7887s211.20.91.813.如圖,在△ABC中,AB=AC,tan∠ACB=2,D在△ABC內(nèi)部,且AD=CD,∠ADC=90°,連接BD,若△BCD的面積為10,則AD的長為_____.14.每一層三角形的個數(shù)與層數(shù)的關(guān)系如圖所示,則第2019層的三角形個數(shù)為_____.15.如圖,在?ABCD中,AD=2,AB=4,∠A=30°,以點A為圓心,AD的長為半徑畫弧交AB于點E,連接CE,則陰影部分的面積是▲(結(jié)果保留π).16.的算術(shù)平方根是_______.17.如圖(1),在矩形ABCD中,將矩形折疊,使點B落在邊AD上,這時折痕與邊AD和BC分別交于點E、點F.然后再展開鋪平,以B、E、F為頂點的△BEF稱為矩形ABCD的“折痕三角形”.如圖(2),在矩形ABCD中,AB=2,BC=4,當(dāng)“折痕△BEF”面積最大時,點E的坐標(biāo)為_________________________.三、解答題(共7小題,滿分69分)18.(10分)某地2015年為做好“精準(zhǔn)扶貧”,投入資金1280萬元用于異地安置,并規(guī)劃投入資金逐年增加,2017年在2015年的基礎(chǔ)上增加投入資金1600萬元.從2015年到2017年,該地投入異地安置資金的年平均增長率為多少?在2017年異地安置的具體實施中,該地計劃投入資金不低于500萬元用于優(yōu)先搬遷租房獎勵,規(guī)定前1000戶(含第1000戶)每戶每天獎勵8元,1000戶以后每戶每天補助5元,按租房400天計算,試求今年該地至少有多少戶享受到優(yōu)先搬遷租房獎勵?19.(5分)如圖,已知拋物線y=ax2﹣2ax+b與x軸交于A、B(3,0)兩點,與y軸交于點C,且OC=3OA,設(shè)拋物線的頂點為D.(1)求拋物線的解析式;(2)在拋物線對稱軸的右側(cè)的拋物線上是否存在點P,使得△PDC是等腰三角形?若存在,求出符合條件的點P的坐標(biāo);若不存在,請說明理由;(3)若平行于x軸的直線與該拋物線交于M、N兩點(其中點M在點N的右側(cè)),在x軸上是否存在點Q,使△MNQ為等腰直角三角形?若存在,請求出點Q的坐標(biāo);若不存在,請說明理由.20.(8分)已知:如圖,在半徑是4的⊙O中,AB、CD是兩條直徑,M是OB的中點,CM的延長線交⊙O于點E,且EM>MC,連接DE,DE=.(1)求證:△AMC∽△EMB;(2)求EM的長;(3)求sin∠EOB的值.21.(10分)(1)計算:()﹣3×[﹣()3]﹣4cos30°+;(2)解方程:x(x﹣4)=2x﹣822.(10分)如圖,某數(shù)學(xué)活動小組為測量學(xué)校旗桿AB的高度,沿旗桿正前方米處的點C出發(fā),沿斜面坡度的斜坡CD前進(jìn)4米到達(dá)點D,在點D處安置測角儀,測得旗桿頂部A的仰角為37°,量得儀器的高DE為1.5米.已知A、B、C、D、E在同一平面內(nèi),AB⊥BC,AB//DE.求旗桿AB的高度.(參考數(shù)據(jù):sin37°≈,cos37°≈,tan37°≈.計算結(jié)果保留根號)23.(12分)如圖,在正方形ABCD中,E為對角線AC上一點,CE=CD,連接EB、ED,延長BE交AD于點F.求證:DF2=EF?BF.24.(14分)如圖所示,一幢樓房AB背后有一臺階CD,臺階每層高0.2米,且AC=17.2米,設(shè)太陽光線與水平地面的夾角為α,當(dāng)α=60°時,測得樓房在地面上的影長AE=10米,現(xiàn)有一老人坐在MN這層臺階上曬太陽.(取1.73)(1)求樓房的高度約為多少米?(2)過了一會兒,當(dāng)α=45°時,問老人能否還曬到太陽?請說明理由.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】試題分析:根據(jù)軸對稱圖形和中心對稱圖形的概念可知:選項A既不是中心對稱圖形,也不是軸對稱圖形,故本選項正確;選項B不是中心對稱圖形,是軸對稱圖形,故本選項錯誤;選項C既是中心對稱圖形,也是軸對稱圖形,故本選項錯誤;選項D既是中心對稱圖形,也是軸對稱圖形,故本選項錯誤.故選A.考點:中心對稱圖形;軸對稱圖形.2、B【解析】
由俯視圖所標(biāo)該位置上小立方塊的個數(shù)可知,左側(cè)一列有2層,右側(cè)一列有1層.【詳解】根據(jù)俯視圖中的每個數(shù)字是該位置小立方塊的個數(shù),得出主視圖有2列,從左到右的列數(shù)分別是2,1.故選B.【點睛】此題考查了三視圖判斷幾何體,用到的知識點是俯視圖、主視圖,關(guān)鍵是根據(jù)三種視圖之間的關(guān)系以及視圖和實物之間的關(guān)系.3、C【解析】
由三角形內(nèi)角和定理可得∠ACB=80°,由旋轉(zhuǎn)的性質(zhì)可得AC=CE,∠ACE=∠ACB=80°,由等腰的性質(zhì)可得∠CAE=∠AEC=50°.【詳解】∵∠B=70°,∠BAC=30°∴∠ACB=80°∵將△ABC繞點C順時針旋轉(zhuǎn)得△EDC.∴AC=CE,∠ACE=∠ACB=80°∴∠CAE=∠AEC=50°故選C.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),等腰三角形的性質(zhì),熟練運用旋轉(zhuǎn)的性質(zhì)是本題的關(guān)鍵.4、D【解析】分析:過A作AC∥x軸,交B′B的延長線于點C,過A′作A′D∥x軸,交B′B的于點D,則C(-1,m),AC=-1-(-1)=3,根據(jù)平移的性質(zhì)以及曲線段AB掃過的面積為9(圖中的陰影部分),得出AA′=3,然后根據(jù)平移規(guī)律即可求解.詳解:過A作AC∥x軸,交B′B的延長線于點C,過A′作A′D∥x軸,交B′B的于點D,則C(-1,m),∴AC=-1-(-1)=3,∵曲線段AB掃過的面積為9(圖中的陰影部分),∴矩形ACDA′的面積等于9,∴AC·AA′=3AA′=9,∴AA′=3,∴新函數(shù)的圖是將函數(shù)y=(x-2)2+1的圖象沿y軸向上平移3個單位長度得到的,∴新圖象的函數(shù)表達(dá)式是y=(x-2)2+1+3=(x-2)2+1.故選D.點睛:此題主要考查了二次函數(shù)圖象變換以及矩形的面積求法等知識,根據(jù)已知得出AA′的長度是解題關(guān)鍵.5、C【解析】若要保持俯視圖和左視圖不變,可以往第2排右側(cè)正方體上添加1個,往第3排中間正方體上添加2個、右側(cè)兩個正方體上再添加1個,即一共添加4個小正方體,故選C.6、C【解析】【分析】根據(jù)軸對稱圖形和中心對稱圖形的概念對各選項分析判斷即可得解.【詳解】A、不是中心對稱圖形,是軸對稱圖形,故本選項錯誤;B、不是中心對稱圖形,是軸對稱圖形,故本選項錯誤;C、既不是中心對稱圖形,也不是軸對稱圖形,故本選項正確;D、是中心對稱圖形,不是軸對稱圖形,故本選項錯誤,故選C.【點睛】本題主要考查軸對稱圖形和中心對稱圖形,在平面內(nèi),如果一個圖形沿一條直線折疊,直線兩旁的部分能夠完全重合,這樣的圖形叫做軸對稱圖形;在平面內(nèi),如果把一個圖形繞某個點旋轉(zhuǎn)180°后,能與原圖形重合,那么就說這個圖形是中心對稱圖形.7、D【解析】
根據(jù)合并同類項法則判斷A、C;根據(jù)積的乘方法則判斷B;根據(jù)冪的乘方法判斷D,由此即可得答案.【詳解】A、2a2﹣a2=a2,故A錯誤;B、(ab)2=a2b2,故B錯誤;C、a2與a3不是同類項,不能合并,故C錯誤;D、(a2)3=a6,故D正確,故選D.【點睛】本題考查冪的乘方與積的乘方,合并同類項,熟練掌握各運算的運算性質(zhì)和運算法則是解題的關(guān)鍵.8、D【解析】分析:根據(jù)棱錐的概念判斷即可.A是三棱柱,錯誤;B是圓柱,錯誤;C是圓錐,錯誤;D是四棱錐,正確.故選D.點睛:本題考查了立體圖形的識別,關(guān)鍵是根據(jù)棱錐的概念判斷.9、D【解析】因為,所以,因為,故選D.10、C【解析】
根據(jù)同底數(shù)冪相乘,底數(shù)不變指數(shù)相加;冪的乘方,底數(shù)不變指數(shù)相減;同底數(shù)冪相除,底數(shù)不變指數(shù)相減對各選項分析判斷即可得解.【詳解】A、a2?a3=a2+3=a5,故本選項錯誤;B、a2+a3不能進(jìn)行運算,故本選項錯誤;C、(a2)3=a2×3=a6,故本選項正確;D、a12÷a6=a12﹣6=a6,故本選項錯誤.故選:C.【點睛】本題考查了同底數(shù)冪的乘法、冪的乘方、同底數(shù)冪的除法,熟練掌握運算法則是解題的關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、4【解析】
根據(jù)已知圖象,重新構(gòu)造直角三角形,利用三角形相似得出CD的長,進(jìn)而利用勾股定理得出最短路徑問題.【詳解】如圖所示:C為線段BD上一動點,分別過點B、D作AB⊥BD,ED⊥BD,連接AC、EC.設(shè)CD=x,若AB=5,DE=3,BD=12,當(dāng)A,C,E,在一條直線上,AE最短,∵AB⊥BD,ED⊥BD,∴AB∥DE,∴△ABC∽EDC,∴,∴,解得:DC=.即當(dāng)x=時,代數(shù)式有最小值,此時為:.故答案是:4.【點睛】考查最短路線問題,利用了數(shù)形結(jié)合的思想,可通過構(gòu)造直角三角形,利用勾股定理求解.12、丙【解析】
先比較平均數(shù)得到乙組和丙組成績較好,然后比較方差得到丙組的狀態(tài)穩(wěn)定,于是可決定選丙組去參賽.【詳解】因為乙組、丙組的平均數(shù)比甲組、丁組大,而丙組的方差比乙組的小,所以丙組的成績比較穩(wěn)定,所以丙組的成績較好且狀態(tài)穩(wěn)定,應(yīng)選的組是丙組.故答案為丙.【點睛】本題考查了方差:一組數(shù)據(jù)中各數(shù)據(jù)與它們的平均數(shù)的差的平方的平均數(shù),叫做這組數(shù)據(jù)的方差.方差是反映一組數(shù)據(jù)的波動大小的一個量.方差越大,則平均值的離散程度越大,穩(wěn)定性也越??;反之,則它與其平均值的離散程度越小,穩(wěn)定性越好.也考查了平均數(shù)的意義.13、5【解析】
作輔助線,構(gòu)建全等三角形和高線DH,設(shè)CM=a,根據(jù)等腰直角三角形的性質(zhì)和三角函數(shù)表示AC和AM的長,根據(jù)三角形面積表示DH的長,證明△ADG≌△CDH(AAS),可得DG=DH=MG=作輔助線,構(gòu)建全等三角形和高線DH,設(shè)CM=a,根據(jù)等腰直角三角形的性質(zhì)和三角函數(shù)表示AC和AM的長,根據(jù)三角形面積表示DH的長,證明△ADG≌△CDH(AAS),可得DG=DH=MG=,AG=CH=a+,根據(jù)AM=AG+MG,列方程可得結(jié)論.,AG=CH=a+,根據(jù)AM=AG+MG,列方程可得結(jié)論.【詳解】解:過D作DH⊥BC于H,過A作AM⊥BC于M,過D作DG⊥AM于G,設(shè)CM=a,∵AB=AC,∴BC=2CM=2a,∵tan∠ACB=2,∴=2,∴AM=2a,由勾股定理得:AC=a,S△BDC=BC?DH=10,?2a?DH=10,DH=,∵∠DHM=∠HMG=∠MGD=90°,∴四邊形DHMG為矩形,∴∠HDG=90°=∠HDC+∠CDG,DG=HM,DH=MG,∵∠ADC=90°=∠ADG+∠CDG,∴∠ADG=∠CDH,在△ADG和△CDH中,∵,∴△ADG≌△CDH(AAS),∴DG=DH=MG=,AG=CH=a+,∴AM=AG+MG,即2a=a++,a2=20,在Rt△ADC中,AD2+CD2=AC2,∵AD=CD,∴2AD2=5a2=100,∴AD=5或?5(舍),故答案為5.【點睛】本題考查了等腰三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、三角形面積的計算;證明三角形全等得出AG=CH是解決問題的關(guān)鍵,并利用方程的思想解決問題.14、2.【解析】
設(shè)第n層有an個三角形(n為正整數(shù)),根據(jù)前幾層三角形個數(shù)的變化,即可得出變化規(guī)律“an=2n﹣2”,再代入n=2029即可求出結(jié)論.【詳解】設(shè)第n層有an個三角形(n為正整數(shù)),∵a2=2,a2=2+2=3,a3=2×2+2=5,a4=2×3+2=7,…,∴an=2(n﹣2)+2=2n﹣2.∴當(dāng)n=2029時,a2029=2×2029﹣2=2.故答案為2.【點睛】本題考查了規(guī)律型:圖形的變化類,根據(jù)圖形中三角形個數(shù)的變化找出變化規(guī)律“an=2n﹣2”是解題的關(guān)鍵.15、3【解析】
過D點作DF⊥AB于點F.∵AD=1,AB=4,∠A=30°,∴DF=AD?sin30°=1,EB=AB﹣AE=1.∴陰影部分的面積=平行四邊形ABCD的面積-扇形ADE面積-三角形CBE的面積=4×故答案為:3-16、3【解析】
根據(jù)算術(shù)平方根定義,先化簡,再求的算術(shù)平方根.【詳解】因為=9所以的算術(shù)平方根是3故答案為3【點睛】此題主要考查了算術(shù)平方根的定義,解題需熟練掌握平方根和算術(shù)平方根的概念且區(qū)分清楚,才不容易出錯.要熟悉特殊數(shù)字0,1,-1的特殊性質(zhì).17、(,2).【解析】
解:如圖,當(dāng)點B與點D重合時,△BEF面積最大,設(shè)BE=DE=x,則AE=4-x,在RT△ABE中,∵EA2+AB2=BE2,∴(4-x)2+22=x2,∴x=,∴BE=ED=,AE=AD-ED=,∴點E坐標(biāo)(,2).故答案為:(,2).【點睛】本題考查翻折變換(折疊問題),利用數(shù)形結(jié)合思想解題是關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1)50%;(2)今年該地至少有1900戶享受到優(yōu)先搬遷租房獎勵.【解析】
(1)設(shè)年平均增長率為x,根據(jù)“2015年投入資金×(1+增長率)2=2017年投入資金”列出方程,解方程即可;(2)設(shè)今年該地有a戶享受到優(yōu)先搬遷租房獎勵,根據(jù)“前1000戶獲得的獎勵總數(shù)+1000戶以后獲得的獎勵總和≥500萬”列不等式求解即可.【詳解】(1)設(shè)該地投入異地安置資金的年平均增長率為x,根據(jù)題意,得:1280(1+x)2=1280+1600,解得:x=0.5或x=﹣2.25(舍),答:從2015年到2017年,該地投入異地安置資金的年平均增長率為50%;(2)設(shè)今年該地有a戶享受到優(yōu)先搬遷租房獎勵,根據(jù)題意,得:1000×8×400+(a﹣1000)×5×400≥5000000,解得:a≥1900,答:今年該地至少有1900戶享受到優(yōu)先搬遷租房獎勵.考點:一元二次方程的應(yīng)用;一元一次不等式的應(yīng)用.19、(1)y=﹣x2+2x+1;(2)P(2,1)或(,);(1)存在,且Q1(1,0),Q2(2﹣,0),Q1(2+,0),Q4(﹣,0),Q5(,0).【解析】
(1)根據(jù)拋物線的解析式,可得到它的對稱軸方程,進(jìn)而可根據(jù)點B的坐標(biāo)來確定點A的坐標(biāo),已知OC=1OA,即可得到點C的坐標(biāo),利用待定系數(shù)法即可求得該拋物線的解析式.(2)求出點C關(guān)于對稱軸的對稱點,求出兩點間的距離與CD相比較可知,PC不可能與CD相等,因此要分兩種情況討論:①CD=PD,根據(jù)拋物線的對稱性可知,C點關(guān)于拋物線對稱軸的對稱點滿足P點的要求,坐標(biāo)易求得;②PD=PC,可設(shè)出點P的坐標(biāo),然后表示出PC、PD的長,根據(jù)它們的等量關(guān)系列式求出點P的坐標(biāo).(1)此題要分三種情況討論:①點Q是直角頂點,那么點Q必為拋物線對稱軸與x軸的交點,由此求得點Q的坐標(biāo);②M、N在x軸上方,且以N為直角頂點時,可設(shè)出點N的坐標(biāo),根據(jù)拋物線的對稱性可知MN正好等于拋物線對稱軸到N點距離的2倍,而△MNQ是等腰直角三角形,則QN=MN,由此可表示出點N的縱坐標(biāo),聯(lián)立拋物線的解析式,即可得到關(guān)于N點橫坐標(biāo)的方程,從而求得點Q的坐標(biāo);根據(jù)拋物線的對稱性知:Q關(guān)于拋物線的對稱點也符合題意;③M、N在x軸下方,且以N為直角頂點時,方法同②.【詳解】解:(1)由y=ax2﹣2ax+b可得拋物線對稱軸為x=1,由B(1,0)可得A(﹣1,0);∵OC=1OA,∴C(0,1);依題意有:,解得;∴y=﹣x2+2x+1.(2)存在.①DC=DP時,由C點(0,1)和x=1可得對稱點為P(2,1);設(shè)P2(x,y),∵C(0,1),P(2,1),∴CP=2,∵D(1,4),∴CD=<2,②由①此時CD⊥PD,根據(jù)垂線段最短可得,PC不可能與CD相等;②PC=PD時,∵CP22=(1﹣y)2+x2,DP22=(x﹣1)2+(4﹣y)2∴(1﹣y)2+x2=(x﹣1)2+(4﹣y)2將y=﹣x2+2x+1代入可得:,∴;∴P2(,).綜上所述,P(2,1)或(,).(1)存在,且Q1(1,0),Q2(2﹣,0),Q1(2+,0),Q4(﹣,0),Q5(,0);①若Q是直角頂點,由對稱性可直接得Q1(1,0);②若N是直角頂點,且M、N在x軸上方時;設(shè)Q2(x,0)(x<1),∴MN=2Q1O2=2(1﹣x),∵△Q2MN為等腰直角三角形;∴y=2(1﹣x)即﹣x2+2x+1=2(1﹣x);∵x<1,∴Q2(,0);由對稱性可得Q1(,0);③若N是直角頂點,且M、N在x軸下方時;同理設(shè)Q4(x,y),(x<1)∴Q1Q4=1﹣x,而Q4N=2(Q1Q4),∵y為負(fù),∴﹣y=2(1﹣x),∴﹣(﹣x2+2x+1)=2(1﹣x),∵x<1,∴x=﹣,∴Q4(-,0);由對稱性可得Q5(+2,0).【點睛】本題考查了二次函數(shù)的知識點,解題的關(guān)鍵是熟練的掌握二次函數(shù)相關(guān)知識點.20、(1)證明見解析;(2)EM=4;(3)sin∠EOB=.【解析】
(1)連接A、C,E、B點,那么只需要求出△AMC和△EMB相似,即可求出結(jié)論,根據(jù)圓周角定理可推出它們的對應(yīng)角相等,即可得△AMC∽△EMB;
(2)根據(jù)圓周角定理,結(jié)合勾股定理,可以推出EC的長度,根據(jù)已知條件推出AM、BM的長度,然后結(jié)合(1)的結(jié)論,很容易就可求出EM的長度;
(3)過點E作EF⊥AB,垂足為點F,通過作輔助線,解直角三角形,結(jié)合已知條件和(1)(2)所求的值,可推出Rt△EOF各邊的長度,根據(jù)銳角三角函數(shù)的定義,便可求得sin∠EOB的值.【詳解】(1)證明:連接AC、EB,如圖1,∵∠A=∠BEC,∠B=∠ACM,∴△AMC∽△EMB;(2)解:∵DC是⊙O的直徑,∴∠DEC=90°,∴DE2+EC2=DC2,∵DE=,CD=8,且EC為正數(shù),∴EC=7,∵M(jìn)為OB的中點,∴BM=2,AM=6,∵AM?BM=EM?CM=EM(EC﹣EM)=EM(7﹣EM)=12,且EM>MC,∴EM=4;(3)解:過點E作EF⊥AB,垂足為點F,如圖2,∵OE=4,EM=4,∴OE=EM,∴OF=FM=1,∴EF=,∴sin∠EOB=.【點睛】本題考查了圓心角、弧、弦、弦心距的關(guān)系與相似三角形的判定與性質(zhì),解題的關(guān)鍵是熟練的掌握圓心角、弧、弦、弦心距的關(guān)系與相似三角形的判定與性質(zhì).21、(1)3;(1)x1=4,x1=1.【解析】
(1)根據(jù)有理數(shù)的混合運算法則計算即可;(1)先移項,再提取公因式求解即可.【詳解】解:(1)原式=8×(﹣)﹣4×+1=8×﹣1+1=3;(1)移項得:x(x﹣4)﹣1(x﹣4)=0,(x﹣4)(x﹣1)=0,x﹣4=0,x﹣1=0,x1=4,x1=1.【點睛】本題考查了有理數(shù)的混合運算與解一元二次方程,解題的關(guān)鍵是熟練的掌握有理數(shù)的混合運算法則與根據(jù)因式分解法解一元二次方程.22、3+3.5【解析】
延長ED交BC延長線于點F,則∠CFD=90°,Rt△CDF中求得CF=CDcos∠DCF=2、DF=CD=2,作EG⊥AB,可得GE=BF=4、GB=EF=3.5,再求出AG=GEtan∠AEG=4
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 2812-2024頭部防護(hù)通用測試方法
- 二零二五版裝修工程合同范本:合同生效與解除條件2篇
- 2024跨區(qū)域電網(wǎng)工程建設(shè)與運營管理合同
- 二零二五版家居行業(yè)導(dǎo)購員聘用與考核合同3篇
- 二零二五年餐飲行業(yè)食堂承包合作協(xié)議范本3篇
- 二零二五版家庭住家保姆綜合能力培訓(xùn)聘用合同3篇
- 2025年度新能源出租車特許經(jīng)營合同3篇
- 二零二五年度跨境電商進(jìn)口商品代理銷售合同9篇
- 二零二五年股權(quán)質(zhì)押貸款擔(dān)保合同3篇
- 二零二五按揭房離婚財產(chǎn)分割與子女監(jiān)護(hù)協(xié)議范本3篇
- 患者跌倒墜床的應(yīng)急預(yù)案試題及答案
- GB/T 24128-2018塑料塑料防霉劑的防霉效果評估
- 福建省地方標(biāo)準(zhǔn)《先張法預(yù)應(yīng)力混凝土管樁基礎(chǔ)技術(shù)規(guī)程》DBJ13-2023
- 危險作業(yè)監(jiān)護(hù)人員培訓(xùn)
- 職業(yè)病防治企業(yè)臺賬樣本
- 充電樁驗收表
- 城市水環(huán)境新型污染物的去除新技術(shù)課件
- 中長期貸款按實際投向統(tǒng)計統(tǒng)計制度
- 新媒體營銷完整版教學(xué)課件最全ppt整套教程電子講義(最新)
- 鍋爐專業(yè)2020年防非停措施
- 中國鐵塔股份有限公司通信鐵塔、機房施工及驗收規(guī)范(試行)
評論
0/150
提交評論