![新高考數(shù)學(xué)一輪復(fù)習(xí)知識(shí)清單+鞏固練習(xí)專(zhuān)題12 數(shù)列通項(xiàng)及數(shù)列前n項(xiàng)和求法(原卷版)_第1頁(yè)](http://file4.renrendoc.com/view8/M03/05/03/wKhkGWa0Fa2Adq9YAAGbOHhf9oo143.jpg)
![新高考數(shù)學(xué)一輪復(fù)習(xí)知識(shí)清單+鞏固練習(xí)專(zhuān)題12 數(shù)列通項(xiàng)及數(shù)列前n項(xiàng)和求法(原卷版)_第2頁(yè)](http://file4.renrendoc.com/view8/M03/05/03/wKhkGWa0Fa2Adq9YAAGbOHhf9oo1432.jpg)
![新高考數(shù)學(xué)一輪復(fù)習(xí)知識(shí)清單+鞏固練習(xí)專(zhuān)題12 數(shù)列通項(xiàng)及數(shù)列前n項(xiàng)和求法(原卷版)_第3頁(yè)](http://file4.renrendoc.com/view8/M03/05/03/wKhkGWa0Fa2Adq9YAAGbOHhf9oo1433.jpg)
![新高考數(shù)學(xué)一輪復(fù)習(xí)知識(shí)清單+鞏固練習(xí)專(zhuān)題12 數(shù)列通項(xiàng)及數(shù)列前n項(xiàng)和求法(原卷版)_第4頁(yè)](http://file4.renrendoc.com/view8/M03/05/03/wKhkGWa0Fa2Adq9YAAGbOHhf9oo1434.jpg)
![新高考數(shù)學(xué)一輪復(fù)習(xí)知識(shí)清單+鞏固練習(xí)專(zhuān)題12 數(shù)列通項(xiàng)及數(shù)列前n項(xiàng)和求法(原卷版)_第5頁(yè)](http://file4.renrendoc.com/view8/M03/05/03/wKhkGWa0Fa2Adq9YAAGbOHhf9oo1435.jpg)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第第④SKIPIF1<02、分組轉(zhuǎn)化法求和(1)適用范圍:某些數(shù)列的求和是將數(shù)列轉(zhuǎn)化為若干個(gè)可求和的新數(shù)列的和或差,從而求得原數(shù)列的和,注意在含有字母的數(shù)列中對(duì)字母的討論.(2)常見(jiàn)類(lèi)型:=1\*GB3①若an=bn±cn,且{bn},{cn}為等差或等比數(shù)列;=2\*GB3②通項(xiàng)公式為an=eq\b\lc\{(\a\vs4\al\co1(bn,n為奇數(shù),,cn,n為偶數(shù)))的數(shù)列,其中數(shù)列{bn},{cn}是等比數(shù)列或等差數(shù)列.3、并項(xiàng)求和法:一個(gè)數(shù)列的前n項(xiàng)和中,可兩兩結(jié)合求解,則稱之為并項(xiàng)求和.形如an=(-1)nf(n)類(lèi)型,可采用兩項(xiàng)合并求解.例如,SKIPIF1<0.4、倒序相加法:如果一個(gè)數(shù)列{an}的前n項(xiàng)中首末兩端等“距離”的兩項(xiàng)的和相等或等于同一個(gè)常數(shù),那么求這個(gè)數(shù)列的前n項(xiàng)和即可用倒序相加法,如等差數(shù)列的前n項(xiàng)和公式即是用此法推導(dǎo)的.5、裂項(xiàng)相消法求和:如果一個(gè)數(shù)列的通項(xiàng)為分式或根式的形式,且能拆成結(jié)構(gòu)相同的兩式之差,那么通過(guò)累加將一些正、負(fù)項(xiàng)相互抵消,只剩下有限的幾項(xiàng),從而求出該數(shù)列的前n項(xiàng)和.6、錯(cuò)位相減法求和:如果一個(gè)數(shù)列的各項(xiàng)是由一個(gè)等差數(shù)列和一個(gè)等比數(shù)列的對(duì)應(yīng)項(xiàng)之積構(gòu)成的,那么這個(gè)數(shù)列的前n項(xiàng)和即可用錯(cuò)位相減法來(lái)求.一、已知Sn求an的三個(gè)步驟(1)利用a1=S1求出a1.(2)當(dāng)n≥2時(shí),利用an=Sn-Sn-1(n≥2)求出an的表達(dá)式.(3)看a1是否符合n≥2時(shí)an的表達(dá)式,如果符合,則可以把數(shù)列的通項(xiàng)公式合寫(xiě);否則應(yīng)寫(xiě)成分段的形式,即an=eq\b\lc\{\rc\(\a\vs4\al\co1(S1,n=1,,Sn-Sn-1,n≥2.))根據(jù)所求結(jié)果的不同要求,將問(wèn)題向兩個(gè)不同的方向轉(zhuǎn)化.(1)利用an=Sn-Sn-1(n≥2)轉(zhuǎn)化為只含Sn,Sn-1的關(guān)系式,再求解.(2)利用Sn-Sn-1=an(n≥2)轉(zhuǎn)化為只含an,an-1的關(guān)系式,再求解.【典例1】已知數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0()A.20B.19C.18D.17【典例2】已知數(shù)列SKIPIF1<0的各項(xiàng)均為正數(shù),記數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0,且滿足SKIPIF1<0,則下列說(shuō)法正確的是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0二、累加法求通項(xiàng)公式形如SKIPIF1<0型的遞推數(shù)列(其中SKIPIF1<0是關(guān)于SKIPIF1<0的函數(shù))可構(gòu)造:SKIPIF1<0【典例1】若數(shù)列SKIPIF1<0滿足:SKIPIF1<0,SKIPIF1<0,則數(shù)列SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0.【典例2】已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0,求數(shù)列SKIPIF1<0的通項(xiàng)公式.【典例3】若SKIPIF1<0是函數(shù)SKIPIF1<0的極值點(diǎn),數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則數(shù)列SKIPIF1<0的通項(xiàng)公式SKIPIF1<0.三、累乘法求通項(xiàng)公式形如SKIPIF1<0SKIPIF1<0型的遞推數(shù)列(其中SKIPIF1<0是關(guān)于SKIPIF1<0的函數(shù))可構(gòu)造:SKIPIF1<0【典例1】若SKIPIF1<0,則通項(xiàng)公式SKIPIF1<0.【典例2】在數(shù)列SKIPIF1<0中,SKIPIF1<0,求SKIPIF1<0.四、形如SKIPIF1<0的構(gòu)造法形如SKIPIF1<0(SKIPIF1<0為常數(shù),SKIPIF1<0且SKIPIF1<0)的遞推式,可構(gòu)造SKIPIF1<0,轉(zhuǎn)化為等比數(shù)列求解.也可以與類(lèi)比式SKIPIF1<0作差,由SKIPIF1<0,構(gòu)造SKIPIF1<0為等比數(shù)列,然后利用疊加法求通項(xiàng).【典例1】若數(shù)列SKIPIF1<0滿足,SKIPIF1<0,SKIPIF1<0,則數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0.【典例2】已知數(shù)列SKIPIF1<0中,SKIPIF1<0,且SKIPIF1<0(SKIPIF1<0,且SKIPIF1<0),則數(shù)列SKIPIF1<0的通項(xiàng)公式為.【典例3】已知數(shù)列SKIPIF1<0中,SKIPIF1<0且SKIPIF1<0,則數(shù)列SKIPIF1<0的通項(xiàng)公式為.五、形如SKIPIF1<0的構(gòu)造法形如SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0)的遞推式,當(dāng)SKIPIF1<0時(shí),兩邊同除以SKIPIF1<0轉(zhuǎn)化為關(guān)于SKIPIF1<0的等差數(shù)列;當(dāng)SKIPIF1<0時(shí),兩邊人可以同除以SKIPIF1<0得SKIPIF1<0,轉(zhuǎn)化為SKIPIF1<0.【典例1】已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,求數(shù)列SKIPIF1<0的通項(xiàng)公式.【典例2】設(shè)數(shù)列SKIPIF1<0滿足:SKIPIF1<0,SKIPIF1<0(SKIPIF1<0),數(shù)列SKIPIF1<0滿足:SKIPIF1<0.求數(shù)列SKIPIF1<0的通項(xiàng)公式.六、形如SKIPIF1<0的構(gòu)造法通過(guò)配湊轉(zhuǎn)化為SKIPIF1<0,通過(guò)待定系數(shù)法確定SKIPIF1<0的值,轉(zhuǎn)化成以SKIPIF1<0為首項(xiàng),以SKIPIF1<0為公比的等比數(shù)列SKIPIF1<0,再利用等比數(shù)列的通項(xiàng)公式求出SKIPIF1<0的通項(xiàng)整理可得SKIPIF1<0【典例1】已知:SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,求SKIPIF1<0的通項(xiàng)公式.【典例2】若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0;【典例3】設(shè)數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則數(shù)列SKIPIF1<0的通項(xiàng)公式為.七、取倒數(shù)法求通項(xiàng)對(duì)于SKIPIF1<0,取倒數(shù)得SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),數(shù)列SKIPIF1<0是等差數(shù)列;當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0,則SKIPIF1<0,可用待定系數(shù)法求解.【典例1】已知數(shù)列SKIPIF1<0中,SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【典例2】在數(shù)列SKIPIF1<0中,已知SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的通項(xiàng)公式為.八、裂項(xiàng)相消法求數(shù)列的前n項(xiàng)和1、用裂項(xiàng)法求和的裂項(xiàng)原則及規(guī)律(1)裂項(xiàng)原則:一般是前邊裂幾項(xiàng),后邊就裂幾項(xiàng),直到發(fā)現(xiàn)被消去項(xiàng)的規(guī)律為止.(2)消項(xiàng)規(guī)律:消項(xiàng)后前邊剩幾項(xiàng),后邊就剩幾項(xiàng),前邊剩第幾項(xiàng),后邊就剩倒數(shù)第幾項(xiàng).【注意】利用裂項(xiàng)相消法求和時(shí),既要注意檢驗(yàn)通項(xiàng)公式裂項(xiàng)前后是否等價(jià),又要注意求和時(shí),正負(fù)項(xiàng)相消消去了哪些項(xiàng),保留了哪些項(xiàng),切不可漏寫(xiě)未被消去的項(xiàng).2、裂項(xiàng)相消法中常見(jiàn)的裂項(xiàng)技巧(1)(2)(3)(4)(5)(6)(7)【典例1】在數(shù)列SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,則數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【典例2】數(shù)列SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0()A.97B.98C.99D.100【典例3】設(shè)數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,SKIPIF1<0.(1)求證數(shù)列SKIPIF1<0為等比數(shù)列,并求數(shù)列SKIPIF1<0的通項(xiàng)公式SKIPIF1<0.(2)若數(shù)列SKIPIF1<0的前m項(xiàng)和SKIPIF1<0,求m的值,九、錯(cuò)位相減法求數(shù)列的前n項(xiàng)和1、解題步驟2、注意解題“3關(guān)鍵”①要善于識(shí)別題目類(lèi)型,特別是等比數(shù)列公比為負(fù)數(shù)的情形.②在寫(xiě)出“Sn”與“qSn”的表達(dá)式時(shí)應(yīng)特別注意將兩式“錯(cuò)項(xiàng)對(duì)齊”以便下一步準(zhǔn)確寫(xiě)出“Sn-qSn”的表達(dá)式.③在應(yīng)用錯(cuò)位相減法求和時(shí),若等比數(shù)列的公比為參數(shù),應(yīng)分公比q=1和q≠1兩種情況求解.3、等差乘等比數(shù)列求和,令SKIPIF1<0,可以用錯(cuò)位相減法.SKIPIF1<0①SKIPIF1<0②SKIPIF1<0得:SKIPIF1<0.整理得:SKIPIF1<0.【典例1】設(shè)SKIPIF1<0是首項(xiàng)為1的等比數(shù)列,數(shù)列SKIPIF1<0滿足SKIPIF1<0,已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等差數(shù)列.(1)求SKIPIF1<0和SKIPIF1<0的通項(xiàng)公式;(2)記SKIPIF1<0和SKIPIF1<0分別為SKIPIF1<0和SKIPIF1<0的前n項(xiàng)和,求SKIPIF1<0和SKIPIF1<0.【典例2】記SKIPIF1<0為數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和,已知SKIPIF1<0.(1)求SKIPIF1<0的通項(xiàng)公式;(2)設(shè)SKIPIF1<0,求SKIPIF1<0.【典例3】已知數(shù)列SKIPIF1<0滿足:SKIPIF1<0.(1)證明數(shù)列SKIPIF1<0是等比數(shù)列,并求數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)若數(shù)列SKIPIF1<0滿足SKIPIF1<0,求數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0.易錯(cuò)點(diǎn)1由SKIPIF1<0求SKIPIF1<0時(shí)忽略對(duì)“SKIPIF1<0”檢驗(yàn)點(diǎn)撥:在數(shù)列問(wèn)題中,數(shù)列的通項(xiàng)SKIPIF1<0與其前n項(xiàng)和SKIPIF1<0之間關(guān)系如下SKIPIF1<0,在使用這個(gè)關(guān)系式時(shí),要牢牢記住其分段的特點(diǎn)。當(dāng)題中給出數(shù)列{SKIPIF1<0}的SKIPIF1<0與SKIPIF1<0關(guān)系時(shí),先令SKIPIF1<0求出首項(xiàng)SKIPIF1<0,然后令SKIPIF1<0求出通項(xiàng)SKIPIF1<0,最后代入驗(yàn)證。解答此類(lèi)題常見(jiàn)錯(cuò)誤為直接令SKIPIF1<0求出通項(xiàng)SKIPIF1<0,也不對(duì)SKIPIF1<0進(jìn)行檢驗(yàn)。【典例1】已知數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【典例2】已知數(shù)列SKIPIF1<0的前n項(xiàng)和SKIPIF1<0,則SKIPIF1<0.【典例3】已知數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,且SKIPIF1<0,則數(shù)列SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 桂林公司辦公室設(shè)備買(mǎi)賣(mài)合同范本
- 消防系統(tǒng)維保合同范本
- 軟件設(shè)計(jì)制作合同范本
- 陶瓷顆粒防滑道路施工方案
- 2025年度綠色能源項(xiàng)目經(jīng)營(yíng)權(quán)轉(zhuǎn)承包合同
- 2025年度河南定額計(jì)價(jià)水利工程項(xiàng)目施工合同標(biāo)準(zhǔn)版
- 暮江吟聽(tīng)評(píng)課記錄
- 2025年度綠色能源貸款擔(dān)保及環(huán)保責(zé)任協(xié)議
- 2025年度空調(diào)設(shè)備研發(fā)與生產(chǎn)安裝一體化合同
- 2025年度招投標(biāo)與合同管理軟件定制開(kāi)發(fā)合同
- 大動(dòng)脈炎患者的血清代謝組學(xué)及口腔微生物群特征的初步研究
- 經(jīng)濟(jì)學(xué)基礎(chǔ)期末試卷和答案
- 普通密碼設(shè)備管理制度范文
- 柯頓電臺(tái)操作使用講座
- 小學(xué)科學(xué)項(xiàng)目化學(xué)習(xí)活動(dòng)作業(yè)方案案例設(shè)計(jì)《設(shè)計(jì)制作動(dòng)力小車(chē)項(xiàng)目化學(xué)習(xí)》
- 茶與健康 第二講 茶成分課件
- 復(fù)工條件驗(yàn)收?qǐng)?bào)告
- 小學(xué)生作文稿紙A4打印稿
- 2023理論學(xué)習(xí)、理論武裝方面存在問(wèn)題及原因剖析18條
- GB/T 10095.2-2023圓柱齒輪ISO齒面公差分級(jí)制第2部分:徑向綜合偏差的定義和允許值
- 運(yùn)動(dòng)技能學(xué)習(xí)與控制課件第三章運(yùn)動(dòng)能力與個(gè)體差異
評(píng)論
0/150
提交評(píng)論