版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
第04講基本不等式(精講)題型目錄一覽①直接法求最值②常規(guī)湊配法求最值③消參法求最值④“1”的代換求最值⑤基本不等式及其應用⑥利用基本不等式解決實際問題⑦利用基本不等式證明一、知識點梳理一、知識點梳理1.基本不等式如果SKIPIF1<0,那么SKIPIF1<0,當且僅當SKIPIF1<0時,等號成立.其中,SKIPIF1<0叫作SKIPIF1<0的算術平均數(shù),SKIPIF1<0叫作SKIPIF1<0的幾何平均數(shù).即正數(shù)SKIPIF1<0的算術平均數(shù)不小于它們的幾何平均數(shù).基本不等式1:若SKIPIF1<0SKIPIF1<0,則SKIPIF1<0,當且僅當SKIPIF1<0時取等號;基本不等式2:若SKIPIF1<0SKIPIF1<0,則SKIPIF1<0(或SKIPIF1<0),當且僅當SKIPIF1<0時取等號.注:(1)基本不等式的前提是“一正”“二定”“三相等”;其中“一正”指正數(shù),“二定”指求最值時和或積為定值,“三相等”指滿足等號成立的條件.(2)連續(xù)使用不等式要注意等號取得一致.(1)幾個重要的不等式①SKIPIF1<0②基本不等式:如果SKIPIF1<0,則SKIPIF1<0(當且僅當“SKIPIF1<0”時取“”).特例:SKIPIF1<0(SKIPIF1<0同號).(2)其他變形:①SKIPIF1<0(溝通兩和SKIPIF1<0與兩平方和SKIPIF1<0的不等關系式)②SKIPIF1<0(溝通兩積SKIPIF1<0與兩平方和SKIPIF1<0的不等關系式)③SKIPIF1<0(溝通兩積SKIPIF1<0與兩和SKIPIF1<0的不等關系式)④重要不等式串:SKIPIF1<0即調和平均值SKIPIF1<0幾何平均值SKIPIF1<0算數(shù)平均值SKIPIF1<0平方平均值(注意等號成立的條件).2.均值定理已知SKIPIF1<0.(1)如果SKIPIF1<0(定值),則SKIPIF1<0(當且僅當“SKIPIF1<0”時取“=”).即“和為定值,積有最大值”.(2)如果SKIPIF1<0(定值),則SKIPIF1<0(當且僅當“SKIPIF1<0”時取“=”).即積為定值,和有最小值”.3.常見求最值模型模型一:SKIPIF1<0,當且僅當SKIPIF1<0時等號成立;模型二:SKIPIF1<0,當且僅當SKIPIF1<0時等號成立;模型三:SKIPIF1<0,當且僅當SKIPIF1<0時等號成立;模型四:SKIPIF1<0,當且僅當SKIPIF1<0時等號成立.二、題型分類精講二、題型分類精講題型一直接法求最值策略方法直接利用基本不等式求解,注意取等條件【典例1】下列不等式一定成立的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)各項所給條件,結合均值不等式分析、判斷作答.【詳解】對于A,當SKIPIF1<0時,SKIPIF1<0,A不正確;對于B,當SKIPIF1<0時,SKIPIF1<0,且SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0,B不正確;對于C,SKIPIF1<0,則SKIPIF1<0,即C不正確;對于D,當SKIPIF1<0時,由均值不等式得SKIPIF1<0成立,當且僅當SKIPIF1<0時取等號,則D正確.故選:D【題型訓練】一、單選題1.(2021·全國·統(tǒng)考高考真題)下列函數(shù)中最小值為4的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根據(jù)二次函數(shù)的性質可判斷SKIPIF1<0選項不符合題意,再根據(jù)基本不等式“一正二定三相等”,即可得出SKIPIF1<0不符合題意,SKIPIF1<0符合題意.【詳解】對于A,SKIPIF1<0,當且僅當SKIPIF1<0時取等號,所以其最小值為SKIPIF1<0,A不符合題意;對于B,因為SKIPIF1<0,SKIPIF1<0,當且僅當SKIPIF1<0時取等號,等號取不到,所以其最小值不為SKIPIF1<0,B不符合題意;對于C,因為函數(shù)定義域為SKIPIF1<0,而SKIPIF1<0,SKIPIF1<0,當且僅當SKIPIF1<0,即SKIPIF1<0時取等號,所以其最小值為SKIPIF1<0,C符合題意;對于D,SKIPIF1<0,函數(shù)定義域為SKIPIF1<0,而SKIPIF1<0且SKIPIF1<0,如當SKIPIF1<0,SKIPIF1<0,D不符合題意.故選:C.【點睛】本題解題關鍵是理解基本不等式的使用條件,明確“一正二定三相等”的意義,再結合有關函數(shù)的性質即可解出.2.(2021·全國·統(tǒng)考高考真題)已知SKIPIF1<0,SKIPIF1<0是橢圓SKIPIF1<0:SKIPIF1<0的兩個焦點,點SKIPIF1<0在SKIPIF1<0上,則SKIPIF1<0的最大值為(
)A.13 B.12 C.9 D.6【答案】C【分析】本題通過利用橢圓定義得到SKIPIF1<0,借助基本不等式SKIPIF1<0即可得到答案.【詳解】由題,SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0(當且僅當SKIPIF1<0時,等號成立).故選:C.【點睛】3.(2022秋·重慶南岸·高三重慶市第十一中學校??茧A段練習)下列不等式一定成立的是(
)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】C【分析】由對數(shù)的運算性質對A進行化簡,對B由基本不等式成立的條件即可判斷,對C化成完全平方即可判斷,對D由分式的運算即可求得.【詳解】對于A:SKIPIF1<0,當SKIPIF1<0,SKIPIF1<0時取等號,即SKIPIF1<0,故A錯誤;對于B:當SKIPIF1<0為負數(shù)時,SKIPIF1<0不成立,故B錯誤;對于C:SKIPIF1<0,即SKIPIF1<0,故C正確;對于D:SKIPIF1<0,故D錯誤.故選:C.4.(2022秋·安徽合肥·高三??计谥校稁缀卧尽肪恝虻膸缀未鷶?shù)法成了后世西方數(shù)學家處理數(shù)學問題的重要依據(jù),通過這一原理,很多代數(shù)的公理或定理都能夠通過圖形實現(xiàn)證明,也稱之為無字證明SKIPIF1<0現(xiàn)有如圖所示圖形,點SKIPIF1<0在半圓SKIPIF1<0上,點SKIPIF1<0在直徑SKIPIF1<0上,且SKIPIF1<0,設SKIPIF1<0,SKIPIF1<0,則該圖形可以直接完成的無字證明為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】由圖形可知用a、b表示出OF、OC,在SKIPIF1<0中由勾股定理可求CF,根據(jù)SKIPIF1<0即可得出結論.【詳解】由圖形可知:SKIPIF1<0,SKIPIF1<0.在SKIPIF1<0中,由勾股定理可得:SKIPIF1<0.SKIPIF1<0,SKIPIF1<0.SKIPIF1<0.故選:C.5.(2023·陜西寶雞·統(tǒng)考二模)設a,SKIPIF1<0,則“SKIPIF1<0”是“SKIPIF1<0”的(
)A.充要條件 B.必要不充分條件 C.充分不必要條件 D.既不充分也不必要條件【答案】C【分析】由基本不等式結合充分條件和必要條件的定義即可得出答案.【詳解】若SKIPIF1<0,則SKIPIF1<0成立,當且僅當SKIPIF1<0時取等,若SKIPIF1<0,不妨設SKIPIF1<0,則SKIPIF1<0不成立,所以“SKIPIF1<0”是“SKIPIF1<0”的充分不必要條件.故選:C.二、填空題6.(2022秋·廣東·高三校聯(lián)考階段練習)已知正數(shù)SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最大值為__________.【答案】SKIPIF1<0【分析】根據(jù)題意,結合基本不等式代入計算,即可得到結果.【詳解】因為SKIPIF1<0,所以SKIPIF1<0,從而SKIPIF1<0,當且僅當SKIPIF1<0,SKIPIF1<0時,等號成立.故答案為:SKIPIF1<07.(2023·高三課時練習)已知SKIPIF1<0,有下列不等式:①SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0;④SKIPIF1<0;⑤SKIPIF1<0.其中,恒成立的是______.(寫出所有滿足要求的不等式序號)【答案】①③⑤【分析】利用基本不等式對5個式子一一判斷.【詳解】因為SKIPIF1<0,所以利用基本不等式:對于①:SKIPIF1<0(當且僅當SKIPIF1<0,即SKIPIF1<0時等號成立).故①正確;對于②:SKIPIF1<0(當且僅當SKIPIF1<0時等號成立).故②錯誤;對于③:SKIPIF1<0(當且僅當SKIPIF1<0時等號成立).故③正確;對于④:SKIPIF1<0(當且僅當SKIPIF1<0時等號成立).故④錯誤;對于⑤:SKIPIF1<0(當且僅當SKIPIF1<0時等號成立).故⑤正確.故答案為:①③⑤題型二常規(guī)湊配法求最值策略方法1.通過添項、拆項、變系數(shù)等方法湊成和為定值或積為定值的形式.2.注意驗證取得條件.【典例1】若SKIPIF1<0,則SKIPIF1<0取最大值時x的值是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】由基本不等式求得最大值.【詳解】SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,當且僅當SKIPIF1<0即SKIPIF1<0時等號成立.故選:C.【典例2】已知實數(shù)x滿足SKIPIF1<0,則SKIPIF1<0的最大值為(
)A.SKIPIF1<0 B.0 C.4 D.8【答案】B【分析】由已知得到SKIPIF1<0,對題中所給的式子進行轉化,利用基本不等式求最大值.【詳解】由SKIPIF1<0得到SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0SKIPIF1<0,當且僅當SKIPIF1<0上式取等號,則SKIPIF1<0的最大值為0.故選:B.【典例3】當SKIPIF1<0時,函數(shù)SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.4【答案】B【分析】使用變量分離,將SKIPIF1<0化為SKIPIF1<0,使用基本不等式解決.【詳解】因為SKIPIF1<0,所以SKIPIF1<0,當且僅當SKIPIF1<0,即SKIPIF1<0時,等號成立.故選:B.【題型訓練】一、單選題1.(江西省贛州市十六縣市二十校2023屆高三上學期期中聯(lián)考數(shù)學(理)試題)已知正數(shù)SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最大值為(
)A.3 B.6 C.9 D.12【答案】C【分析】根據(jù)給定條件,利用均值不等式直接計算作答.【詳解】SKIPIF1<0,SKIPIF1<0為正數(shù),SKIPIF1<0,則SKIPIF1<0,當且僅當SKIPIF1<0時取等號,所以當SKIPIF1<0時,SKIPIF1<0取得最大值9.故選:C2.已知SKIPIF1<0,則函數(shù)SKIPIF1<0的最大值是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】將SKIPIF1<0化為SKIPIF1<0,利用基本不等式即可求得答案.【詳解】∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0,當且僅當SKIPIF1<0時,即SKIPIF1<0時等號成立,因此,函數(shù)SKIPIF1<0,SKIPIF1<0的最大值為SKIPIF1<0,故選:C.3.已知SKIPIF1<0,則SKIPIF1<0的最大值為()A.2 B.4 C.5 D.6【答案】A【分析】由基本不等式求解即可【詳解】因為SKIPIF1<0,所以可得SKIPIF1<0,則SKIPIF1<0,當且僅當SKIPIF1<0,即SKIPIF1<0時,上式取得等號,SKIPIF1<0的最大值為2.故選:A.4.函數(shù)SKIPIF1<0的最小值是(
)A.10 B.12 C.13 D.14【答案】A【分析】令SKIPIF1<0,則SKIPIF1<0,后由基本不等式可得答案.【詳解】令SKIPIF1<0,SKIPIF1<0SKIPIF1<0,當且僅當SKIPIF1<0,即SKIPIF1<0時取等號.故選:A5.(廣東省湛江市2023屆高三二模數(shù)學試題)當SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0恒成立,則m的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】將左側分式的分子因式分解成SKIPIF1<0的形式,再利用均值不等式的結論進行計算即可以得到結果.【詳解】當SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0,當且僅當SKIPIF1<0,即SKIPIF1<0時,等號成立,所以SKIPIF1<0的最大值為SKIPIF1<0.所以SKIPIF1<0,即SKIPIF1<0.故選:A.二、填空題6.(貴州省貴陽市五校2023屆高三聯(lián)合考試(五)數(shù)學(文)試題)若SKIPIF1<0,則SKIPIF1<0的最小值為__________.【答案】3【分析】利用基本不等式,變形求函數(shù)的最小值.【詳解】因為SKIPIF1<0,由基本不等式得:SKIPIF1<0,當且僅當SKIPIF1<0,且SKIPIF1<0,即SKIPIF1<0時等號成立.故答案為:37.(第06講基本不等式及應用-備戰(zhàn)2023年高考數(shù)學一輪復習考點幫(新高考專用)【學科網名師堂】)(1)已知SKIPIF1<0,則SKIPIF1<0取得最大值時SKIPIF1<0的值為________.(2)已知SKIPIF1<0,則SKIPIF1<0的最大值為________.(3)函數(shù)SKIPIF1<0的最小值為________.【答案】SKIPIF1<01SKIPIF1<0/SKIPIF1<0【分析】(1)積的形式轉化為和的形式,利用基本不等式求最值,并要檢驗等號成立的條件;(2)結構為和的形式轉化為積的形式,并使積為定值,同時要檢驗等號成立的條件;(3)二次式除以一次式求最值,一般二次式用一次式表示出來,然后再分離,最后用基本不等式求解即可.【詳解】解:(1)SKIPIF1<0,當且僅當SKIPIF1<0,即SKIPIF1<0時,取等號.故答案為:SKIPIF1<0.(2)因為SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,當且僅當SKIPIF1<0,即SKIPIF1<0時,取等號.故SKIPIF1<0的最大值為1.故答案為:1.(3)SKIPIF1<0SKIPIF1<0.當且僅當SKIPIF1<0,即SKIPIF1<0時,等號成立.故答案為:SKIPIF1<0.8.(2021·天津·統(tǒng)考高考真題)若SKIPIF1<0,則SKIPIF1<0的最小值為____________.【答案】SKIPIF1<0【分析】兩次利用基本不等式即可求出.【詳解】SKIPIF1<0SKIPIF1<0,SKIPIF1<0,當且僅當SKIPIF1<0且SKIPIF1<0,即SKIPIF1<0時等號成立,所以SKIPIF1<0的最小值為SKIPIF1<0.故答案為:SKIPIF1<0.9.(2020·天津·統(tǒng)考高考真題)已知SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最小值為_________.【答案】4【分析】根據(jù)已知條件,將所求的式子化為SKIPIF1<0,利用基本不等式即可求解.【詳解】SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,當且僅當SKIPIF1<0=4時取等號,結合SKIPIF1<0,解得SKIPIF1<0,或SKIPIF1<0時,等號成立.故答案為:SKIPIF1<0【點睛】本題考查應用基本不等式求最值,“1”的合理變換是解題的關鍵,屬于基礎題.10.(天津市紅橋區(qū)2023屆高三一模數(shù)學試題)已知SKIPIF1<0,則SKIPIF1<0的最小值為___________.【答案】SKIPIF1<0【分析】將不等式變?yōu)镾KIPIF1<0SKIPIF1<0,再由基本不等式即可得出答案.【詳解】SKIPIF1<0,當且僅當SKIPIF1<0,即SKIPIF1<0時取等.故答案為:SKIPIF1<0.11.(湖南省部分校2023屆高三下學期4月月考數(shù)學試題)當SKIPIF1<0時,SKIPIF1<0的最小值為_________.【答案】0【分析】代數(shù)式湊配后利用二次函數(shù)性質和基本不等式求解.【詳解】SKIPIF1<0SKIPIF1<0,當且僅當SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0的最小值為0.故答案為:0.題型三消參法求最值策略方法消參法就是對應不等式中的兩元問題,用一個參數(shù)表示另一個參數(shù),再利用基本不等式進行求解.解題過程中要注意“一正,二定,三相等”這三個條件缺一不可!【典例1】若SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最小值是(
)A.5 B.8 C.13 D.16【答案】C【分析】由SKIPIF1<0可得SKIPIF1<0,從而將SKIPIF1<0化為SKIPIF1<0,利用基本不等式即可求得答案.【詳解】由題意SKIPIF1<0,SKIPIF1<0,SKIPIF1<0得SKIPIF1<0,故SKIPIF1<0,由于SKIPIF1<0,故SKIPIF1<0,當且僅當SKIPIF1<0即SKIPIF1<0時取等號,即SKIPIF1<0,故SKIPIF1<0的最小值是13,故選:C【題型訓練】一、單選題1.(2023秋·江西鷹潭·高三貴溪市實驗中學??茧A段練習)已知正數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.1 B.SKIPIF1<0 C.2 D.SKIPIF1<0【答案】B【分析】用SKIPIF1<0來表示SKIPIF1<0得SKIPIF1<0,代入得SKIPIF1<0,再利用基本不等式即可求出最小值.【詳解】SKIPIF1<0,SKIPIF1<0,則有SKIPIF1<0,SKIPIF1<0,當且僅當SKIPIF1<0,即SKIPIF1<0時等號成立,此時SKIPIF1<0,故選:B.2.(2023·全國·高三專題練習)若正數(shù)x,y滿足SKIPIF1<0,則SKIPIF1<0的最小值是(
).A.3 B.6 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】依題意可得SKIPIF1<0,即可得到SKIPIF1<0,再利用基本不等式計算可得.【詳解】解:因為正數(shù)SKIPIF1<0滿足SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,當且僅當SKIPIF1<0,即SKIPIF1<0時,等號成立.故選:B二、多選題3.(2023春·江蘇揚州·高三統(tǒng)考開學考試)已知實數(shù)a,b>0,2a+b=4,則下列說法中正確的有(
)A.SKIPIF1<0有最小值SKIPIF1<0 B.a2+b2有最小值SKIPIF1<0C.4a+2b有最小值8 D.lna+lnb有最小值ln2【答案】BC【分析】根據(jù)基本不等式、配方法,結合指數(shù)運算、對數(shù)的運算性質逐一判斷即可.【詳解】因為實數(shù)a,b>0,2a+b=4,所以有SKIPIF1<0,當且僅當SKIPIF1<0時取等號,即當SKIPIF1<0時取等號,故選項A不正確;因為2a+b=4,所以SKIPIF1<0,當SKIPIF1<0時,a2+b2有最小值SKIPIF1<0,故選項B正確;SKIPIF1<0,當且僅當SKIPIF1<0時取等號,即SKIPIF1<0時取等號,故選項C正確;因為實數(shù)a,b>0,2a+b=4,所以SKIPIF1<0,當SKIPIF1<0,SKIPIF1<0時,lna+lnb有最大值ln2,因此選項D不正確,故選:BC4.(2023·全國·高三專題練習)已知SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】ACD【分析】對于A選項對SKIPIF1<0直接利用基本不等式即可得證;對于B選項對SKIPIF1<0利用基本不等式可得SKIPIF1<0,由此即可判斷;對于C選項由題意可知SKIPIF1<0,構造函數(shù)SKIPIF1<0,易證函數(shù)SKIPIF1<0在SKIPIF1<0上單調遞增,則可得SKIPIF1<0;對于D選項易證SKIPIF1<0即可得SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0.【詳解】對于A選項:因為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,當且僅當“SKIPIF1<0”,即“SKIPIF1<0”時,等號成立,正確;對于B選項:因為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,當且僅當“SKIPIF1<0”,即“SKIPIF1<0”時,等號成立,所以SKIPIF1<0,錯誤;對于C選項:因為SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,記SKIPIF1<0,則SKIPIF1<0,易知SKIPIF1<0在SKIPIF1<0上單調遞減,且SKIPIF1<0,所以當SKIPIF1<0時SKIPIF1<0,即函數(shù)SKIPIF1<0在SKIPIF1<0上單調遞增,又SKIPIF1<0,所以當SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,正確;對于D選項:記SKIPIF1<0,則SKIPIF1<0恒成立,且SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調遞增,又SKIPIF1<0,所以SKIPIF1<0,即當SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0,因為SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,正確;故選:ACD三、填空題5.(2020·江蘇·統(tǒng)考高考真題)已知SKIPIF1<0,則SKIPIF1<0的最小值是_______.【答案】SKIPIF1<0【分析】根據(jù)題設條件可得SKIPIF1<0,可得SKIPIF1<0,利用基本不等式即可求解.【詳解】∵SKIPIF1<0∴SKIPIF1<0且SKIPIF1<0∴SKIPIF1<0,當且僅當SKIPIF1<0,即SKIPIF1<0時取等號.∴SKIPIF1<0的最小值為SKIPIF1<0.故答案為:SKIPIF1<0.【點睛】本題考查了基本不等式在求最值中的應用.利用基本不等式求最值時,一定要正確理解和掌握“一正,二定,三相等”的內涵:一正是,首先要判斷參數(shù)是否為正;二定是,其次要看和或積是否為定值(和定積最大,積定和最?。蝗嗟仁?,最后一定要驗證等號能否成立(主要注意兩點,一是相等時參數(shù)否在定義域內,二是多次用SKIPIF1<0或SKIPIF1<0時等號能否同時成立).6.(2023春·上?!じ呷虾J袑嶒瀸W校??茧A段練習)若正數(shù)SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最大值為__________.【答案】SKIPIF1<0【分析】利用消元法,再結合二次函數(shù)的性質即可得解.【詳解】由SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,則SKIPIF1<0,所以當SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0取得最大值SKIPIF1<0.故答案為:SKIPIF1<0.7.(2023·河北邢臺·校聯(lián)考模擬預測)已知SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最小值為___________.【答案】SKIPIF1<0【分析】利用等式SKIPIF1<0求解SKIPIF1<0,代入SKIPIF1<0計算,結合基本不等式,即可求得SKIPIF1<0的最小值.【詳解】因為SKIPIF1<0,解得:SKIPIF1<0,則SKIPIF1<0當且僅當SKIPIF1<0,SKIPIF1<0時,“=”成立故答案為:SKIPIF1<0.題型四“1”的代換求最值策略方法1的代換就是指湊出1,使不等式通過變形出來后達到運用基本不等式的條件,即積為定值,湊的過程中要特別注意等價變形.1.根據(jù)條件,湊出“1”,利用乘“1”法.2.注意驗證取得條件.【典例1】已知函數(shù)SKIPIF1<0恒過定點SKIPIF1<0,則SKIPIF1<0的最小值為(
).A.SKIPIF1<0 B.SKIPIF1<0 C.3 D.SKIPIF1<0【答案】A【分析】利用基本不等式常數(shù)“1”的代換即可求出結果.【詳解】由題意可知SKIPIF1<0,則SKIPIF1<0,當且僅當SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0的最小值為SKIPIF1<0,故選:A.【題型訓練】一、單選題1.(2023·江西南昌·校聯(lián)考模擬預測)已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.4 B.6 C.8 D.12【答案】B【分析】條件等式兩邊取對數(shù)后,得SKIPIF1<0,再結合換底公式,以及基本不等式“1”的妙用,即可求解.【詳解】因為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,當且僅當SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0時等號成立,所以SKIPIF1<0的最小值為6.故選:B.2.(2023·全國·高三專題練習)已知SKIPIF1<0,SKIPIF1<0,直線SKIPIF1<0與曲線SKIPIF1<0相切,則SKIPIF1<0的最小值是(
)A.16 B.12 C.8 D.4【答案】D【分析】根據(jù)導數(shù)的幾何意義結合已知方程求出SKIPIF1<0的關系,再根據(jù)不等式中“1”的整體代換即可得出答案.【詳解】對SKIPIF1<0求導得SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,當且僅當SKIPIF1<0時取等號.故選:D.3.(2023·湖北·荊州中學校聯(lián)考二模)已知SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,那么SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.2 C.SKIPIF1<0 D.4【答案】C【分析】由題意可得SKIPIF1<0,再由基本不等式求解即可求出答案.【詳解】因為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0SKIPIF1<0SKIPIF1<0.當且僅當SKIPIF1<0即SKIPIF1<0時取等.故選:C.二、多選題4.(2023·黑龍江大慶·大慶中學??寄M預測)已知SKIPIF1<0,且SKIPIF1<0,若不等式SKIPIF1<0恒成立,則SKIPIF1<0的值可以為(
)A.10 B.9 C.8 D.7【答案】BCD【分析】根據(jù)題意和基本不等式,求得SKIPIF1<0,由SKIPIF1<0恒成立,得到SKIPIF1<0,結合選項,即可求解.【詳解】由SKIPIF1<0,且SKIPIF1<0,可得SKIPIF1<0,當且僅當SKIPIF1<0時,即SKIPIF1<0時,等號成立,又因為不等式SKIPIF1<0恒成立,所以SKIPIF1<0,結合選項,可得選項B、C、D符合題意.故選:BCD.5.(2023春·遼寧·高三朝陽市第一高級中學校聯(lián)考階段練習)下列能使式子SKIPIF1<0最小值為1的是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】AD【分析】由SKIPIF1<0得出SKIPIF1<0,結合不等式“1”的妙用,即可求出SKIPIF1<0的最小值為1,判斷出A正確;由SKIPIF1<0得SKIPIF1<0,代入SKIPIF1<0,結合基本不等式,即可判斷出B錯誤;假設SKIPIF1<0,則SKIPIF1<0,即可判斷出C錯誤;由SKIPIF1<0,設SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,代入SKIPIF1<0化簡,結合SKIPIF1<0的范圍,即可得出當SKIPIF1<0即SKIPIF1<0時,取得最小值1,即可判斷D正確.【詳解】對于A:當SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,當且僅當SKIPIF1<0,即SKIPIF1<0時等號成立,故A正確;對于B:由SKIPIF1<0得,SKIPIF1<0,則SKIPIF1<0,當且僅當SKIPIF1<0時,即SKIPIF1<0時,等號成立,故最小值為SKIPIF1<0,故B錯誤;對于C:假設SKIPIF1<0,則SKIPIF1<0,故C錯誤;對于D:SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0得,SKIPIF1<0,設SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,當SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0時,取得最小值1,故D正確,故選:AD.三、填空題6.(2023·全國·高三專題練習)已知向量SKIPIF1<0,SKIPIF1<0,其中SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的最小值為_______.【答案】SKIPIF1<0【分析】根據(jù)向量運算可得SKIPIF1<0,再由均值不等式求解即可.【詳解】SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,由SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,當且僅當SKIPIF1<0,即SKIPIF1<0時等號成立,故SKIPIF1<0的最小值為SKIPIF1<0.故答案為:SKIPIF1<07.(2023·全國·高三專題練習)已知函數(shù)SKIPIF1<0在點SKIPIF1<0處的切線過點SKIPIF1<0,則SKIPIF1<0的最小值為__________.【答案】12【分析】根據(jù)導數(shù)的幾何意義求得函數(shù)SKIPIF1<0在點SKIPIF1<0處的切線方程,可推出SKIPIF1<0,將SKIPIF1<0化為SKIPIF1<0,結合基本不等式即可求得答案.【詳解】由函數(shù)SKIPIF1<0可得SKIPIF1<0,則SKIPIF1<0,故函數(shù)SKIPIF1<0在點SKIPIF1<0處的切線方程為SKIPIF1<0,即SKIPIF1<0,則由題意可得SKIPIF1<0,故SKIPIF1<0,當且僅當SKIPIF1<0,即SKIPIF1<0取等號,即SKIPIF1<0的最小值為12,故答案為:128.(2023·遼寧沈陽·高三校聯(lián)考學業(yè)考試)已知SKIPIF1<0,則SKIPIF1<0的最小值是______.【答案】SKIPIF1<0【分析】變形條件等式得SKIPIF1<0,然后展開,利用基本不等式求最小值.【詳解】SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,當且僅當SKIPIF1<0,即SKIPIF1<0時等號成立,SKIPIF1<0的最小值是SKIPIF1<0.故答案為:SKIPIF1<0.9.(2023·陜西渭南·統(tǒng)考二模)設SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的最小值是___________.【答案】SKIPIF1<0/SKIPIF1<0【分析】利用基本不等式中“1”的代換法求最小值.【詳解】∵SKIPIF1<0,若SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0,當且僅當SKIPIF1<0,又SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0時等號成立,故答案為:SKIPIF1<0.題型五基本不等式及其應用策略方法熟記基本不等式成立的條件,合理選擇基本不等式的形式解題,要注意對不等式等號是否成立進行驗證.【典例1】已知實數(shù)SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】由均值定理即可求得SKIPIF1<0的最小值.【詳解】SKIPIF1<0,當且僅當SKIPIF1<0時等號成立,所以SKIPIF1<0的最小值為SKIPIF1<0.故選:A.【題型訓練】一、單選題1.(浙江省杭州市2023屆高三下學期教學質量檢測(二模)數(shù)學試題)已知SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則ab的最小值為(
)A.4 B.8 C.16 D.32【答案】C【分析】運用對數(shù)運算及換底公式可得SKIPIF1<0,運用基本不等式可求得SKIPIF1<0的最小值.【詳解】∵SKIPIF1<0,∴SKIPIF1<0,即:SKIPIF1<0∴SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,當且僅當SKIPIF1<0即SKIPIF1<0時取等號,即:SKIPIF1<0,當且僅當SKIPIF1<0時取等號,故SKIPIF1<0的最小值為16.故選:C.2.(廣西柳州高級中學、南寧市第三中學2023屆高三聯(lián)考數(shù)學(文)試題)若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.1 D.2【答案】D【分析】根據(jù)基本不等式推出SKIPIF1<0,進而根據(jù)不等式可得SKIPIF1<0,即可得出答案.【詳解】由已知可得SKIPIF1<0.因為SKIPIF1<0,SKIPIF1<0,由基本不等式知SKIPIF1<0,當且僅當SKIPIF1<0時,等號成立.所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0的最小值為2.故選:D.3.(廣西柳州高級中學、南寧市第三中學2023屆高三聯(lián)考數(shù)學(理)試題)若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.2 C.SKIPIF1<0 D.4【答案】C【分析】利用基本不等式即可求出最值.【詳解】SKIPIF1<0,SKIPIF1<0,當且僅當SKIPIF1<0,即SKIPIF1<0時等號成立,所以SKIPIF1<0的最小值為SKIPIF1<0.故選:C.4.(江西省南昌市2023屆高三第一次模擬測試數(shù)學(文)試題)已知x,y為正實數(shù),則“SKIPIF1<0”是“SKIPIF1<0”的(
)A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件【答案】B【分析】利用特值法、基本不等式,結合充分條件與必要條件的定義判斷即可.【詳解】當SKIPIF1<0時,取SKIPIF1<0,則SKIPIF1<0,所以“SKIPIF1<0”不是“SKIPIF1<0”的充分條件;當SKIPIF1<0時,得SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,所以“SKIPIF1<0”是“SKIPIF1<0”的必要條件,所以“SKIPIF1<0”是“SKIPIF1<0”的必要不充分條件.故選:B.5.(安徽省安慶市2023屆高三模擬考試(二模)數(shù)學試題)已知非零向量SKIPIF1<0,SKIPIF1<0的夾角為SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則夾角SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】應用向量數(shù)量積運算律及題設可得SKIPIF1<0,注意等號成立條件,結合已知不等條件求SKIPIF1<0范圍,即可得最小值.【詳解】由SKIPIF1<0有SKIPIF1<0,即SKIPIF1<0,前一個等號成立條件為SKIPIF1<0,整理得SKIPIF1<0.由于SKIPIF1<0,所以SKIPIF1<0,于是夾角為SKIPIF1<0的最小值為SKIPIF1<0.故選:C二、多選題6.(湖北省孝感市2022-2023學年高一上學期1月期末數(shù)學試題)下列結論中,正確的結論有(
)A.如果SKIPIF1<0,那么SKIPIF1<0的最小值是2B.如果SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,那么SKIPIF1<0的最大值為3C.函數(shù)SKIPIF1<0的最小值為2D.如果SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,那么SKIPIF1<0的最小值為2【答案】BD【分析】對A.如果SKIPIF1<0,那么SKIPIF1<0,命題不成立;對B.使用基本不等式得SKIPIF1<0即可得SKIPIF1<0的最大值;對C.函數(shù)SKIPIF1<0,當且僅當SKIPIF1<0時取等號,此時SKIPIF1<0無解;對D.根據(jù)題意構造SKIPIF1<0,將“1”替換為SKIPIF1<0,代入用基本不等式求解.【詳解】對于A:如果SKIPIF1<0,那么SKIPIF1<0,最小值是2不成立;對于B:如果SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,整理得SKIPIF1<0,所以SKIPIF1<0,當且僅當SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年生物基因技術研究合作合同
- DB3304T 090-2022 智慧安防街道系統(tǒng)建設技術規(guī)范
- 共享出行平臺服務合同
- 2024年跨國貨物買賣協(xié)議書
- 鄉(xiāng)村規(guī)劃建設實務指南
- 瑜伽平衡板課程設計
- “專業(yè)-思政-實踐”一體化教學模式在“畢業(yè)設計”課程中的應用
- 二零二五年度建筑工程承包合同環(huán)境保護與綠色施工規(guī)范3篇
- 二零二五年度企業(yè)股權質押借款合同2篇
- 智能出行技術研發(fā)合作協(xié)議
- 中央銀行理論與實務期末復習題
- 國家開放大學電大本科《國際私法》案例題題庫及答案(b試卷號:1020)
- 喜慶中國節(jié)春節(jié)習俗文化PPT模板
- 測井儀器設計規(guī)范--電子設計
- 北師大版小學五年級上冊數(shù)學第六單元《組合圖形的面積》單元測評培優(yōu)試卷
- 用特征方程求數(shù)列的通項
- 四年級奧數(shù)題(一)找規(guī)律
- 素材庫管理系統(tǒng)架構(共13頁)
- 監(jiān)理平行檢驗記錄表
- 縣領導在新錄用公務員培訓班開班典禮上的講話
- 2022年工會會計制度——會計科目和會計報表
評論
0/150
提交評論