深圳市重點中學2024屆中考數學四模試卷含解析_第1頁
深圳市重點中學2024屆中考數學四模試卷含解析_第2頁
深圳市重點中學2024屆中考數學四模試卷含解析_第3頁
深圳市重點中學2024屆中考數學四模試卷含解析_第4頁
深圳市重點中學2024屆中考數學四模試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

深圳市重點中學2024屆中考數學四模試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.如圖,AD為△ABC的中線,點E為AC邊的中點,連接DE,則下列結論中不一定成立的是()A.DC=DE B.AB=2DE C.S△CDE=S△ABC D.DE∥AB2.如圖,在底邊BC為2,腰AB為2的等腰三角形ABC中,DE垂直平分AB于點D,交BC于點E,則△ACE的周長為()A.2+ B.2+2 C.4 D.33.第四屆濟南國際旅游節(jié)期間,全市共接待游客686000人次.將686000用科學記數法表示為()A.686×104B.68.6×105C.6.86×106D.6.86×1054.若代數式2x2+3x﹣1的值為1,則代數式4x2+6x﹣1的值為()A.﹣3 B.﹣1 C.1 D.35.下列各式中正確的是()A.9=±3B.(-3)2=﹣3C.396.甲、乙兩輛汽車沿同一路線從A地前往B地,甲車以a千米/時的速度勻速行駛,途中出現故障后停車維修,修好后以2a千米/時的速度繼續(xù)行駛;乙車在甲車出發(fā)2小時后勻速前往B地,比甲車早30分鐘到達.到達B地后,乙車按原速度返回A地,甲車以2a千米/時的速度返回A地.設甲、乙兩車與A地相距s(千米),甲車離開A地的時間為t(小時),s與t之間的函數圖象如圖所示.下列說法:①a=40;②甲車維修所用時間為1小時;③兩車在途中第二次相遇時t的值為5.25;④當t=3時,兩車相距40千米,其中不正確的個數為()A.0個 B.1個 C.2個 D.3個7.制作一塊3m×2m長方形廣告牌的成本是120元,在每平方米制作成本相同的情況下,若將此廣告牌的四邊都擴大為原來的3倍,那么擴大后長方形廣告牌的成本是()A.360元 B.720元 C.1080元 D.2160元8.如圖,函數y=的圖象記為c1,它與x軸交于點O和點A1;將c1繞點A1旋轉180°得c2,交x軸于點A2;將c2繞點A2旋轉180°得c3,交x軸于點A3…如此進行下去,若點P(103,m)在圖象上,那么m的值是()A.﹣2 B.2 C.﹣3 D.49.下列四個函數圖象中,當x<0時,函數值y隨自變量x的增大而減小的是()A. B. C. D.10.-5的相反數是()A.5 B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于點D,PE⊥OB于點E.如果點M是OP的中點,則DM的長是_________.12.不等式2x-5<7-(x-5)的解集是______________.13.已知圓錐的底面半徑為3cm,側面積為15πcm2,則這個圓錐的側面展開圖的圓心角°.14.如圖,矩形ABCD中,AB=3,BC=4,點E是BC邊上一點,連接AE,把∠B沿AE折疊,使點B落在點處,當△為直角三角形時,BE的長為.15.把多項式x3﹣25x分解因式的結果是_____16.已知、為兩個連續(xù)的整數,且,則=________.三、解答題(共8題,共72分)17.(8分)某商場計劃購進一批甲、乙兩種玩具,已知一件甲種玩具的進價與一件乙種玩具的進價的和為40元,用90元購進甲種玩具的件數與用150元購進乙種玩具的件數相同.求每件甲種、乙種玩具的進價分別是多少元?商場計劃購進甲、乙兩種玩具共48件,其中甲種玩具的件數少于乙種玩具的件數,商場決定此次進貨的總資金不超過1000元,求商場共有幾種進貨方案?18.(8分)如圖,已知點A(1,a)是反比例函數y1=的圖象上一點,直線y2=﹣與反比例函數y1=的圖象的交點為點B、D,且B(3,﹣1),求:(Ⅰ)求反比例函數的解析式;(Ⅱ)求點D坐標,并直接寫出y1>y2時x的取值范圍;(Ⅲ)動點P(x,0)在x軸的正半軸上運動,當線段PA與線段PB之差達到最大時,求點P的坐標.19.(8分)已知,求代數式的值.20.(8分)計算:﹣3tan30°.21.(8分)計算:3tan30°+|2﹣|﹣(3﹣π)0﹣(﹣1)2018.22.(10分)如圖,AB為⊙O的直徑,點C,D在⊙O上,且點C是的中點,過點C作AD的垂線EF交直線AD于點E.(1)求證:EF是⊙O的切線;(2)連接BC,若AB=5,BC=3,求線段AE的長.23.(12分)如圖,AB是⊙O的直徑,點E是上的一點,∠DBC=∠BED.求證:BC是⊙O的切線;已知AD=3,CD=2,求BC的長.24.如圖,在△ABC中,AB=AC,以AB為直徑作半圓⊙O,交BC于點D,連接AD.過點D作DE⊥AC,垂足為點E.求證:DE是⊙O的切線;當⊙O半徑為3,CE=2時,求BD長.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】

根據三角形中位線定理判斷即可.【詳解】∵AD為△ABC的中線,點E為AC邊的中點,

∴DC=BC,DE=AB,∵BC不一定等于AB,∴DC不一定等于DE,A不一定成立;∴AB=2DE,B一定成立;S△CDE=S△ABC,C一定成立;DE∥AB,D一定成立;故選A.【點睛】本題考查的是三角形中位線定理,掌握三角形的中位線平行于第三邊,并且等于第三邊的一半是解題的關鍵.2、B【解析】分析:根據線段垂直平分線的性質,把三角形的周長問題轉化為線段和的問題解決即可.詳解:∵DE垂直平分AB,∴BE=AE,∴AE+CE=BC=2,∴△ACE的周長=AC+AE+CE=AC+BC=2+2,故選B.點睛:本題考查了等腰三角形性質和線段垂直平分線性質的應用,注意:線段垂直平分線上的點到線段兩個端點的距離相等.3、D【解析】根據科學記數法的表示形式(a×10n,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數)可得:686000=6.86×105,

故選:D.4、D【解析】

由2x2+1x﹣1=1知2x2+1x=2,代入原式2(2x2+1x)﹣1計算可得.【詳解】解:∵2x2+1x﹣1=1,∴2x2+1x=2,則4x2+6x﹣1=2(2x2+1x)﹣1=2×2﹣1=4﹣1=1.故本題答案為:D.【點睛】本題主要考查代數式的求值,運用整體代入的思想是解題的關鍵.5、D【解析】

原式利用平方根、立方根定義計算即可求出值.【詳解】解:A、原式=3,不符合題意;B、原式=|-3|=3,不符合題意;C、原式不能化簡,不符合題意;D、原式=23-3=3,符合題意,故選:D.【點睛】此題考查了立方根,以及算術平方根,熟練掌握各自的性質是解本題的關鍵.6、A【解析】解:①由函數圖象,得a=120÷3=40,故①正確,②由題意,得5.5﹣3﹣120÷(40×2),=2.5﹣1.5,=1.∴甲車維修的時間為1小時;故②正確,③如圖:∵甲車維修的時間是1小時,∴B(4,120).∵乙在甲出發(fā)2小時后勻速前往B地,比甲早30分鐘到達.∴E(5,240).∴乙行駛的速度為:240÷3=80,∴乙返回的時間為:240÷80=3,∴F(8,0).設BC的解析式為y1=k1t+b1,EF的解析式為y2=k2t+b2,由圖象得,,,解得,,∴y1=80t﹣200,y2=﹣80t+640,當y1=y2時,80t﹣200=﹣80t+640,t=5.2.∴兩車在途中第二次相遇時t的值為5.2小時,故弄③正確,④當t=3時,甲車行的路程為:120km,乙車行的路程為:80×(3﹣2)=80km,∴兩車相距的路程為:120﹣80=40千米,故④正確,故選A.7、C【解析】

根據題意求出長方形廣告牌每平方米的成本,根據相似多邊形的性質求出擴大后長方形廣告牌的面積,計算即可.【詳解】3m×2m=6m2,∴長方形廣告牌的成本是120÷6=20元/m2,將此廣告牌的四邊都擴大為原來的3倍,則面積擴大為原來的9倍,∴擴大后長方形廣告牌的面積=9×6=54m2,∴擴大后長方形廣告牌的成本是54×20=1080元,故選C.【點睛】本題考查的是相似多邊形的性質,掌握相似多邊形的面積比等于相似比的平方是解題的關鍵.8、C【解析】

求出與x軸的交點坐標,觀察圖形可知第奇數號拋物線都在x軸上方,然后求出到拋物線平移的距離,再根據向右平移橫坐標加表示出拋物線的解析式,然后把點P的坐標代入計算即可得解.【詳解】令,則=0,解得,,由圖可知,拋物線在x軸下方,相當于拋物線向右平移4×(26?1)=100個單位得到得到,再將繞點旋轉180°得,此時的解析式為y=(x?100)(x?100?4)=(x?100)(x?104),在第26段拋物線上,m=(103?100)(103?104)=?3.故答案是:C.【點睛】本題考查的知識點是二次函數圖象與幾何變換,解題關鍵是根據題意得到p點所在函數表達式.9、D【解析】

A、根據函數的圖象可知y隨x的增大而增大,故本選項錯誤;B、根據函數的圖象可知在第二象限內y隨x的增大而減增大,故本選項錯誤;C、根據函數的圖象可知,當x<0時,在對稱軸的右側y隨x的增大而減小,在對稱軸的左側y隨x的增大而增大,故本選項錯誤;D、根據函數的圖象可知,當x<0時,y隨x的增大而減小;故本選項正確.故選D.【點睛】本題考查了函數的圖象,函數的增減性,熟練掌握各函數的性質是解題的關鍵.10、A【解析】由相反數的定義:“只有符號不同的兩個數互為相反數”可知-5的相反數是5.故選A.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】

由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性質,即可求得PE的值,繼而求得OP的長,然后由直角三角形斜邊上的中線等于斜邊的一半,即可求得DM的長.【詳解】∵OP平分∠AOB,∠AOB=60°,∴∠AOP=∠COP=30°,∵CP∥OA,∴∠AOP=∠CPO,∴∠COP=∠CPO,∴OC=CP=2,∵∠PCE=∠AOB=60°,PE⊥OB,∴∠CPE=30°,∴∴∴∵PD⊥OA,點M是OP的中點,∴故答案為:【點睛】此題考查了等腰三角形的性質與判定、含30°直角三角形的性質以及直角三角形斜邊的中線的性質.此題難度適中,屬于中考常見題型,求出OP的長是解題關鍵.12、x<【解析】解:去括號得:2x-5<7-x+5,移項、合并得:3x<17,解得:x<.故答案為:x<.13、1【解析】試題分析:根據圓錐的側面積公式S=πrl得出圓錐的母線長,再結合扇形面積即可求出圓心角的度數.解:∵側面積為15πcm2,∴圓錐側面積公式為:S=πrl=π×3×l=15π,解得:l=5,∴扇形面積為15π=,解得:n=1,∴側面展開圖的圓心角是1度.故答案為1.考點:圓錐的計算.14、1或.【解析】

當△CEB′為直角三角形時,有兩種情況:

①當點B′落在矩形內部時,如答圖1所示.

連結AC,先利用勾股定理計算出AC=5,根據折疊的性質得∠AB′E=∠B=90°,而當△CEB′為直角三角形時,只能得到∠EB′C=90°,所以點A、B′、C共線,即∠B沿AE折疊,使點B落在對角線AC上的點B′處,則EB=EB′,AB=AB′=1,可計算出CB′=2,設BE=x,則EB′=x,CE=4-x,然后在Rt△CEB′中運用勾股定理可計算出x.

②當點B′落在AD邊上時,如答圖2所示.此時ABEB′為正方形.【詳解】當△CEB′為直角三角形時,有兩種情況:

①當點B′落在矩形內部時,如答圖1所示.

連結AC,

在Rt△ABC中,AB=1,BC=4,

∴AC==5,

∵∠B沿AE折疊,使點B落在點B′處,

∴∠AB′E=∠B=90°,

當△CEB′為直角三角形時,只能得到∠EB′C=90°,

∴點A、B′、C共線,即∠B沿AE折疊,使點B落在對角線AC上的點B′處,

∴EB=EB′,AB=AB′=1,

∴CB′=5-1=2,

設BE=x,則EB′=x,CE=4-x,

在Rt△CEB′中,

∵EB′2+CB′2=CE2,

∴x2+22=(4-x)2,解得,

∴BE=;

②當點B′落在AD邊上時,如答圖2所示.

此時ABEB′為正方形,∴BE=AB=1.

綜上所述,BE的長為或1.

故答案為:或1.15、x(x+5)(x﹣5).【解析】分析:首先提取公因式x,再利用平方差公式分解因式即可.詳解:x3-25x=x(x2-25)=x(x+5)(x-5).故答案為x(x+5)(x-5).點睛:此題主要考查了提取公因式法以及公式法分解因式,正確應用公式是解題關鍵.16、11【解析】

根據無理數的性質,得出接近無理數的整數,即可得出a,b的值,即可得出答案.【詳解】∵a<<b,a、b為兩個連續(xù)的整數,

∴,

∴a=5,b=6,

∴a+b=11.

故答案為11.【點睛】本題考查的是估算無理數的大小,熟練掌握無理數是解題的關鍵.三、解答題(共8題,共72分)17、(1)甲,乙兩種玩具分別是15元/件,1元/件;(2)共有四種方案.【解析】

(1)設甲種玩具進價x元/件,則乙種玩具進價為(40﹣x)元/件,根據已知一件甲種玩具的進價與一件乙種玩具的進價的和為40元,用90元購進甲種玩具的件數與用150元購進乙種玩具的件數相同可列方程求解.(2)設購進甲種玩具y件,則購進乙種玩具(48﹣y)件,根據甲種玩具的件數少于乙種玩具的件數,商場決定此次進貨的總資金不超過1000元,可列出不等式組求解.【詳解】解:設甲種玩具進價x元/件,則乙種玩具進價為(40﹣x)元/件,x=15,經檢驗x=15是原方程的解.∴40﹣x=1.甲,乙兩種玩具分別是15元/件,1元/件;(2)設購進甲種玩具y件,則購進乙種玩具(48﹣y)件,,解得20≤y<2.因為y是整數,甲種玩具的件數少于乙種玩具的件數,∴y取20,21,22,23,共有4種方案.考點:分式方程的應用;一元一次不等式組的應用.18、(1)反比例函數的解析式為y=﹣;(2)D(﹣2,);﹣2<x<0或x>3;(3)P(4,0).【解析】試題分析:(1)把點B(3,﹣1)帶入反比例函數中,即可求得k的值;(2)聯(lián)立直線和反比例函數的解析式構成方程組,化簡為一個一元二次方程,解方程即可得到點D坐標,觀察圖象可得相應x的取值范圍;(3)把A(1,a)是反比例函數的解析式,求得a的值,可得點A坐標,用待定系數法求得直線AB的解析式,令y=0,解得x的值,即可求得點P的坐標.試題解析:(1)∵B(3,﹣1)在反比例函數的圖象上,∴-1=,∴m=-3,∴反比例函數的解析式為;(2),∴=,x2-x-6=0,(x-3)(x+2)=0,x1=3,x2=-2,當x=-2時,y=,∴D(-2,);y1>y2時x的取值范圍是-2<x<0或x>;(3)∵A(1,a)是反比例函數的圖象上一點,∴a=-3,∴A(1,-3),設直線AB為y=kx+b,,∴,∴直線AB為y=x-4,令y=0,則x=4,∴P(4,0)19、12【解析】解:∵,∴.∴.將代數式應用完全平方公式和平方差公式展開后合并同類項,將整體代入求值.20、1.【解析】

直接利用零指數冪的性質、絕對值的性質和負整數指數冪的性質及特殊角三角函數值分別化簡得出答案.【詳解】﹣3tan30°=4+﹣1﹣1﹣3×=1.【點睛】此題主要考查了實數運算及特殊角三角函數值,正確化簡各數是解題關鍵.21、1.【解析】

直接利用絕對值的性質以及特殊角的三角函數值分別化簡得出答案.【詳解】3tan31°+|2﹣|﹣(3﹣π)1﹣(﹣1)2118=3×+2﹣﹣1﹣1=+2﹣﹣1﹣1=1.【點睛】本題考查了絕對值的性質以及特殊角的三角函數值,解題的關鍵是熟練的掌握絕對值的性質以及特殊角的三角函數值.22、(1)證明見解析(2)【解析】

(1)連接OC,根據等腰三角形的性質、平行線的判定得到OC∥AE,得到OC⊥EF,根據切線的判定定理證明;(2)根據勾股定理求出AC,證明△AEC∽△ACB,根據相似三角形的性質列出比例式,計算即可.【詳解】(1)證明:連接OC,∵OA=OC,∴∠OCA=∠BAC,∵點C是的中點,∴∠EAC=∠BAC,∴∠EAC=∠OCA,∴OC∥AE,∵AE⊥EF,∴OC⊥EF,即EF是⊙O的切線;(2)解:∵AB為⊙O的直徑,∴∠BCA=90°,∴AC==4,∵∠EAC=∠BAC,∠AEC=∠ACB=90°,∴△AEC∽△ACB,∴,∴AE=.【點睛】本題考查的是切線的判定、圓周角定理以及相似三角形的判定和性質,掌握切線的判定定理、直徑所對的圓周角是直角是解題的關鍵.23、(1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論