蘇州市高新區(qū)2023-2024學年十校聯考最后數學試題含解析_第1頁
蘇州市高新區(qū)2023-2024學年十校聯考最后數學試題含解析_第2頁
蘇州市高新區(qū)2023-2024學年十校聯考最后數學試題含解析_第3頁
蘇州市高新區(qū)2023-2024學年十校聯考最后數學試題含解析_第4頁
蘇州市高新區(qū)2023-2024學年十校聯考最后數學試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

蘇州市高新區(qū)2023-2024學年十校聯考最后數學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.“趕陀螺”是一項深受人們喜愛的運動.如圖所示是一個陀螺的立體結構圖.已知底面圓的直徑AB=8cm,圓柱的高BC=6cm,圓錐的高CD=3cm,則這個陀螺的表面積是()A.68πcm2 B.74πcm2 C.84πcm2 D.100πcm22.如圖是我國南海地區(qū)圖,圖中的點分別代表三亞市,永興島,黃巖島,渚碧礁,彈丸礁和曾母暗沙,該地區(qū)圖上兩個點之間距離最短的是()A.三亞﹣﹣永興島 B.永興島﹣﹣黃巖島C.黃巖島﹣﹣彈丸礁 D.渚碧礁﹣﹣曾母暗山3.如圖,在平面直角坐標系中,△ABC位于第二象限,點B的坐標是(﹣5,2),先把△ABC向右平移4個單位長度得到△A1B1C1,再作與△A1B1C1關于于x軸對稱的△A2B2C2,則點B的對應點B2的坐標是()A.(﹣3,2) B.(2,﹣3) C.(1,2) D.(﹣1,﹣2)4.下列是我國四座城市的地鐵標志圖,其中是中心對稱圖形的是()A. B. C. D.5.三個等邊三角形的擺放位置如圖,若∠3=60°,則∠1+∠2的度數為()A.90° B.120° C.270° D.360°6.如圖,把一塊直角三角板的直角頂點放在直尺的一邊上,若∠1=40°,則∠2的度數為()A.50° B.40° C.30° D.25°7.若=1,則符合條件的m有()A.1個 B.2個 C.3個 D.4個8.某校航模小分隊年齡情況如表所示,則這12名隊員年齡的眾數、中位數分別是()年齡(歲)1213141516人數12252A.2,14歲 B.2,15歲 C.19歲,20歲 D.15歲,15歲9.如圖,已知BD與CE相交于點A,ED∥BC,AB=8,AC=12,AD=6,那么AE的長等于()A.4 B.9 C.12 D.1610.如圖,已知點P是雙曲線y=上的一個動點,連結OP,若將線段OP繞點O逆時針旋轉90°得到線段OQ,則經過點Q的雙曲線的表達式為()A.y= B.y=﹣ C.y= D.y=﹣11.拋物線y=–x2+bx+c上部分點的橫坐標x、縱坐標y的對應值如下表所示:x…–2–1012…y…04664…從上表可知,下列說法錯誤的是A.拋物線與x軸的一個交點坐標為(–2,0) B.拋物線與y軸的交點坐標為(0,6)C.拋物線的對稱軸是直線x=0 D.拋物線在對稱軸左側部分是上升的12.下列圖形是我國國產品牌汽車的標識,在這些汽車標識中,是中心對稱圖形的是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,利用標桿測量建筑物的高度,已知標桿高1.2,測得,則建筑物的高是__________.14.如圖,在平面直角坐標系中,點O為坐標原點,點P在第一象限,⊙P與x軸交于O,A兩點,點A的坐標為(6,0),⊙P的半徑為,則點P的坐標為_______.15.如圖,四邊形ACDF是正方形,和都是直角,且點三點共線,,則陰影部分的面積是__________.16.觀察下列一組數:,它們是按一定規(guī)律排列的,那么這一組數的第n個數是_____.17.如圖,把一塊含有45°角的直角三角板的兩個頂點放在直尺的對邊上.如果∠1=20°,那么∠2的度數是_____.18.如圖,AB是⊙O的直徑,點C在⊙O上,AE是⊙O的切線,A為切點,連接BC并延長交AE于點D.若AOC=80°,則ADB的度數為()A.40°B.50°C.60°D.20°三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)元旦放假期間,小明和小華準備到西安的大雁塔(記為A)、白鹿原(記為B)、興慶公園(記為C)、秦嶺國家植物園(記為D)中的一個景點去游玩,他們各自在這四個景點中任選一個,每個景點被選中的可能性相同.(1)求小明選擇去白鹿原游玩的概率;(2)用樹狀圖或列表的方法求小明和小華都選擇去秦嶺國家植物園游玩的概率.20.(6分)在△ABC中,AB=BC=2,∠ABC=120°,將△ABC繞著點B順時針旋轉角a(0°<a<90°)得到△A1BC;A1B交AC于點E,A1C1分別交AC、BC于D、F兩點.(1)如圖1,觀察并猜想,在旋轉過程中,線段BE與BF有怎樣的數量關系?并證明你的結論.(2)如圖2,當a=30°時,試判斷四邊形BC1DA的形狀,并證明.(3)在(2)的條件下,求線段DE的長度.21.(6分)計算:÷+8×2﹣1﹣(+1)0+2?sin60°.22.(8分)商場某種商品平均每天可銷售30件,每件盈利50元,為了盡快減少庫存,商場決定采取適當的降價措施.經調査發(fā)現,每件商品每降價1元,商場平均每天可多售出2件.若某天該商品每件降價3元,當天可獲利多少元?設每件商品降價x元,則商場日銷售量增加____件,每件商品,盈利______元(用含x的代數式表示);在上述銷售正常情況下,每件商品降價多少元時,商場日盈利可達到2000元?23.(8分)已知拋物線y=ax2+bx+2過點A(5,0)和點B(﹣3,﹣4),與y軸交于點C.(1)求拋物線y=ax2+bx+2的函數表達式;(2)求直線BC的函數表達式;(3)點E是點B關于y軸的對稱點,連接AE、BE,點P是折線EB﹣BC上的一個動點,①當點P在線段BC上時,連接EP,若EP⊥BC,請直接寫出線段BP與線段AE的關系;②過點P作x軸的垂線與過點C作的y軸的垂線交于點M,當點M不與點C重合時,點M關于直線PC的對稱點為點M′,如果點M′恰好在坐標軸上,請直接寫出此時點P的坐標.24.(10分)如圖,在10×10的網格中,每個小方格都是邊長為1的小正方形,每個小正方形的頂點稱為格點.如果拋物線經過圖中的三個格點,那么以這三個格點為頂點的三角形稱為該拋物線的“內接格點三角形”.設對稱軸平行于y軸的拋物線與網格對角線OM的兩個交點為A,B,其頂點為C,如果△ABC是該拋物線的內接格點三角形,AB=3,且點A,B,C的橫坐標xA,xB,xC滿足xA<xC<xB,那么符合上述條件的拋物線條數是()A.7 B.8 C.14 D.1625.(10分)二次函數y=ax2+bx+c(a,b,c為常數,且a≠1)中的x與y的部分對應值如表x

﹣1

1

1

3

y

﹣1

3

5

3

下列結論:①ac<1;②當x>1時,y的值隨x值的增大而減?。?是方程ax2+(b﹣1)x+c=1的一個根;④當﹣1<x<3時,ax2+(b﹣1)x+c>1.其中正確的結論是.26.(12分)如圖所示,AC=AE,∠1=∠2,AB=AD.求證:BC=DE.27.(12分)拋物線y=x2+bx+c經過點A、B、C,已知A(﹣1,0),C(0,﹣3).求拋物線的解析式;如圖1,拋物線頂點為E,EF⊥x軸于F點,M(m,0)是x軸上一動點,N是線段EF上一點,若∠MNC=90°,請指出實數m的變化范圍,并說明理由.如圖2,將拋物線平移,使其頂點E與原點O重合,直線y=kx+2(k>0)與拋物線相交于點P、Q(點P在左邊),過點P作x軸平行線交拋物線于點H,當k發(fā)生改變時,請說明直線QH過定點,并求定點坐標.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】試題分析:∵底面圓的直徑為8cm,高為3cm,∴母線長為5cm,∴其表面積=π×4×5+42π+8π×6=84πcm2,故選C.考點:圓錐的計算;幾何體的表面積.2、A【解析】

根據兩點直線距離最短可在圖中看出三亞-永興島之間距離最短.【詳解】由圖可得,兩個點之間距離最短的是三亞-永興島.故答案選A.【點睛】本題考查的知識點是兩點之間直線距離最短,解題的關鍵是熟練的掌握兩點之間直線距離最短.3、D【解析】

首先利用平移的性質得到△A1B1C1中點B的對應點B1坐標,進而利用關于x軸對稱點的性質得到△A2B2C2中B2的坐標,即可得出答案.【詳解】解:把△ABC向右平移4個單位長度得到△A1B1C1,此時點B(-5,2)的對應點B1坐標為(-1,2),則與△A1B1C1關于于x軸對稱的△A2B2C2中B2的坐標為(-1,-2),故選D.【點睛】此題主要考查了平移變換以及軸對稱變換,正確掌握變換規(guī)律是解題關鍵.4、D【解析】

根據中心對稱圖形的定義解答即可.【詳解】選項A不是中心對稱圖形;選項B不是中心對稱圖形;選項C不是中心對稱圖形;選項D是中心對稱圖形.故選D.【點睛】本題考查了中心對稱圖形的定義,熟練運用中心對稱圖形的定義是解決問題的關鍵.5、B【解析】

先根據圖中是三個等邊三角形可知三角形各內角等于60°,用∠1,∠2,∠3表示出△ABC各角的度數,再根據三角形內角和定理即可得出結論.【詳解】∵圖中是三個等邊三角形,∠3=60°,

∴∠ABC=180°-60°-60°=60°,∠ACB=180°-60°-∠2=120°-∠2,

∠BAC=180°-60°-∠1=120°-∠1,

∵∠ABC+∠ACB+∠BAC=180°,

∴60°+(120°-∠2)+(120°-∠1)=180°,

∴∠1+∠2=120°.

故選B.【點睛】考查的是等邊三角形的性質,熟知等邊三角形各內角均等于60°是解答此題的關鍵.6、A【解析】

由兩直線平行,同位角相等,可求得∠3的度數,然后求得∠2的度數.【詳解】如圖,∵∠1=40°,∴∠3=∠1=40°,∴∠2=90°-40°=50°.故選A.【點睛】此題考查了平行線的性質.利用兩直線平行,同位角相等是解此題的關鍵.7、C【解析】

根據有理數的乘方及解一元二次方程-直接開平方法得出兩個有關m的等式,即可得出.【詳解】=1m2-9=0或m-2=1即m=3或m=3,m=1m有3個值故答案選C.【點睛】本題考查的知識點是有理數的乘方及解一元二次方程-直接開平方法,解題的關鍵是熟練的掌握有理數的乘方及解一元二次方程-直接開平方法.8、D【解析】

眾數是一組數據中出現次數最多的數據,注意眾數可以不只一個;找中位數要把數據按從小到大的順序排列,位于最中間的一個數(或兩個數的平均數)為中位數.【詳解】解:數據1出現了5次,最多,故為眾數為1;按大小排列第6和第7個數均是1,所以中位數是1.故選D.【點睛】本題主要考查了確定一組數據的中位數和眾數的能力.一些學生往往對這個概念掌握不清楚,計算方法不明確而誤選其它選項.注意找中位數的時候一定要先排好順序,然后再根據奇數和偶數個來確定中位數,如果數據有奇數個,則正中間的數字即為所求.如果是偶數個則找中間兩位數的平均數.9、B【解析】

由于ED∥BC,可證得△ABC∽△ADE,根據相似三角形所得比例線段,即可求得AE的長.【詳解】∵ED∥BC,∴△ABC∽△ADE,∴=,∴==,即AE=9;∴AE=9.故答案選B.【點睛】本題考查的知識點是相似三角形的判定與性質,解題的關鍵是熟練的掌握相似三角形的判定與性質.10、D【解析】

過P,Q分別作PM⊥x軸,QN⊥x軸,利用AAS得到兩三角形全等,由全等三角形對應邊相等及反比例函數k的幾何意義確定出所求即可.【詳解】過P,Q分別作PM⊥x軸,QN⊥x軸,∵∠POQ=90°,∴∠QON+∠POM=90°,∵∠QON+∠OQN=90°,∴∠POM=∠OQN,由旋轉可得OP=OQ,在△QON和△OPM中,,∴△QON≌△OPM(AAS),∴ON=PM,QN=OM,設P(a,b),則有Q(-b,a),由點P在y=上,得到ab=3,可得-ab=-3,則點Q在y=-上.故選D.【點睛】此題考查了待定系數法求反比例函數解析式,反比例函數圖象上點的坐標特征,以及坐標與圖形變化,熟練掌握待定系數法是解本題的關鍵.11、C【解析】當x=-2時,y=0,

∴拋物線過(-2,0),

∴拋物線與x軸的一個交點坐標為(-2,0),故A正確;

當x=0時,y=6,

∴拋物線與y軸的交點坐標為(0,6),故B正確;

當x=0和x=1時,y=6,

∴對稱軸為x=,故C錯誤;

當x<時,y隨x的增大而增大,

∴拋物線在對稱軸左側部分是上升的,故D正確;

故選C.12、B【解析】由中心對稱圖形的定義:“把一個圖形繞一個點旋轉180°后,能夠與自身完全重合,這樣的圖形叫做中心對稱圖形”分析可知,上述圖形中,A、C、D都不是中心對稱圖形,只有B是中心對稱圖形.故選B.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、10.5【解析】

先證△AEB∽△ABC,再利用相似的性質即可求出答案.【詳解】解:由題可知,BE⊥AC,DC⊥AC∵BE//DC,∴△AEB∽△ADC,∴,即:,∴CD=10.5(m).故答案為10.5.【點睛】本題考查了相似的判定和性質.利用相似的性質列出含所求邊的比例式是解題的關鍵.14、(3,2).【解析】

過點P作PD⊥x軸于點D,連接OP,先由垂徑定理求出OD的長,再根據勾股定理求出PD的長,故可得出答案.【詳解】過點P作PD⊥x軸于點D,連接OP,∵A(6,0),PD⊥OA,∴OD=OA=3,在Rt△OPD中∵OP=OD=3,∴PD=2∴P(3,2).故答案為(3,2).【點睛】本題考查的是垂徑定理,根據題意作出輔助線,構造出直角三角形是解答此題的關鍵.15、8【解析】【分析】證明△AEC≌△FBA,根據全等三角形對應邊相等可得EC=AB=4,然后再利用三角形面積公式進行求解即可.【詳解】∵四邊形ACDF是正方形,∴AC=FA,∠CAF=90°,∴∠CAE+∠FAB=90°,∵∠CEA=90°,∴∠CAE+∠ACE=90°,∴∠ACE=∠FAB,又∵∠AEC=∠FBA=90°,∴△AEC≌△FBA,∴CE=AB=4,∴S陰影==8,故答案為8.【點睛】本題考查了正方形的性質、全等三角形的判定與性質,三角形面積等,求出CE=AB是解題的關鍵.16、【解析】試題解析:根據題意得,這一組數的第個數為:故答案為點睛:觀察已知一組數發(fā)現:分子為從1開始的連續(xù)奇數,分母為從2開始的連續(xù)正整數的平方,寫出第個數即可.17、25°.【解析】∵直尺的對邊平行,∠1=20°,∴∠3=∠1=20°,∴∠2=45°-∠3=45°-20°=25°.18、B.【解析】試題分析:根據AE是⊙O的切線,A為切點,AB是⊙O的直徑,可以先得出∠BAD為直角.再由同弧所對的圓周角等于它所對的圓心角的一半,求出∠B,從而得到∠ADB的度數.由題意得:∠BAD=90°,∵∠B=∠AOC=40°,∴∠ADB=90°-∠B=50°.故選B.考點:圓的基本性質、切線的性質.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1);(2)【解析】

(1)利用概率公式直接計算即可;

(2)首先根據題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與小明和小華都選擇去同一個地方游玩的情況,再利用概率公式即可求得答案.【詳解】(1)∵小明準備到西安的大雁塔(記為A)、白鹿原(記為B)、興慶公園(記為C)、秦嶺國家植物園(記為D)中的一個景點去游玩,∴小明選擇去白鹿原游玩的概率=;(2)畫樹狀圖分析如下:兩人選擇的方案共有16種等可能的結果,其中選擇同種方案有1種,所以小明和小華都選擇去秦嶺國家植物園游玩的概率=.【點睛】本題考查了列表法與樹狀圖法:利用列表法和樹狀圖法展示所有可能的結果求出n,再從中選出符合事件A或B的結果數目m,求出概率.20、(1)(2)四邊形是菱形.(3)【解析】

(1)根據等邊對等角及旋轉的特征可得即可證得結論;

(2)先根據兩組對邊分別平行的四邊形是平行四邊形,再得到鄰邊相等即可判斷結論;

(3)過點E作于點G,解可得AE的長,結合菱形的性質即可求得結果.【詳解】(1)證明:(證法一)由旋轉可知,∴∴又∴即(證法二)由旋轉可知,而∴∴∴即(2)四邊形是菱形.證明:同理∴四邊形是平行四邊形.又∴四邊形是菱形(3)過點作于點,則在中,.由(2)知四邊形是菱形,∴∴【點睛】解答本題的關鍵是掌握好旋轉的性質,平行四邊形判定與性質,的菱形的判定與性質,選擇適當的條件解決問題.21、6+.【解析】

利用負整數指數冪、零指數冪的意義和特殊角的三角函數值進行計算.【詳解】解:原式=+8×﹣1+2×=3+4﹣1+=6+.【點睛】本題考查了二次根式的混合運算:先把各二次根式化簡為最簡二次根式,然后進行二次根式的乘除運算,再合并即可.在二次根式的混合運算中,如能結合題目特點,靈活運用二次根式的性質,選擇恰當的解題途徑,往往能事半功倍.22、(1)若某天該商品每件降價3元,當天可獲利1692元;(2)2x;50﹣x.(3)每件商品降價1元時,商場日盈利可達到2000元.【解析】

(1)根據“盈利=單件利潤×銷售數量”即可得出結論;

(2)根據“每件商品每降價1元,商場平均每天可多售出2件”結合每件商品降價x元,即可找出日銷售量增加的件數,再根據原來沒見盈利50元,即可得出降價后的每件盈利額;

(3)根據“盈利=單件利潤×銷售數量”即可列出關于x的一元二次方程,解之即可得出x的值,再根據盡快減少庫存即可確定x的值.【詳解】(1)當天盈利:(50-3)×(30+2×3)=1692(元).

答:若某天該商品每件降價3元,當天可獲利1692元.

(2)∵每件商品每降價1元,商場平均每天可多售出2件,

∴設每件商品降價x元,則商場日銷售量增加2x件,每件商品,盈利(50-x)元.

故答案為2x;50-x.

(3)根據題意,得:(50-x)×(30+2x)=2000,

整理,得:x2-35x+10=0,

解得:x1=10,x2=1,

∵商城要盡快減少庫存,

∴x=1.

答:每件商品降價1元時,商場日盈利可達到2000元.【點睛】考查了一元二次方程的應用,解題的關鍵是根據題意找出數量關系列出一元二次方程(或算式).23、(1)y=﹣310x2+1110x+2;(2)y=2x+2;(3)①線段BP與線段AE的關系是相互垂直;②點P的坐標為:(﹣4+23,﹣8+43)或(﹣4﹣23,﹣8﹣43)或(0,﹣4)或(﹣【解析】

(1)將A(5,0)和點B(﹣3,﹣4)代入y=ax2+bx+2,即可求解;(2)C點坐標為(0,2),把點B、C的坐標代入直線方程y=kx+b即可求解;(3)①AE直線的斜率kAE=2,而直線BC斜率的kAE=2即可求解;②考慮當P點在線段BC上時和在線段BE上時兩種情況,利用PM′=PM即可求解.【詳解】(1)將A(5,0)和點B(﹣3,﹣4)代入y=ax2+bx+2,解得:a=﹣,b=,故函數的表達式為y=﹣x2+x+2;(2)C點坐標為(0,2),把點B、C的坐標代入直線方程y=kx+b,解得:k=2,b=2,故:直線BC的函數表達式為y=2x+2,(3)①E是點B關于y軸的對稱點,E坐標為(3,﹣4),則AE直線的斜率kAE=2,而直線BC斜率的kAE=2,∴AE∥BC,而EP⊥BC,∴BP⊥AE而BP=AE,∴線段BP與線段AE的關系是相互垂直;②設點P的橫坐標為m,當P點在線段BC上時,P坐標為(m,2m+2),M坐標為(m,2),則PM=2m,直線MM′⊥BC,∴kMM′=﹣,直線MM′的方程為:y=﹣x+(2+m),則M′坐標為(0,2+m)或(4+m,0),由題意得:PM′=PM=2m,PM′2=42+m2=(2m)2,此式不成立,或PM′2=m2+(2m+2)2=(2m)2,解得:m=﹣4±2,故點P的坐標為(﹣4±2,﹣8±4);當P點在線段BE上時,點P坐標為(m,﹣4),點M坐標為(m,2),則PM=6,直線MM′的方程不變,為y=﹣x+(2+m),則M′坐標為(0,2+m)或(4+m,0),PM′2=m2+(6+m)2=(2m)2,解得:m=0,或﹣;或PM′2=42+42=(6)2,無解;故點P的坐標為(0,﹣4)或(﹣,﹣4);綜上所述:點P的坐標為:(﹣4+2,﹣8+4)或(﹣4﹣2,﹣8﹣4)或(0,﹣4)或(﹣,﹣4).【點睛】主要考查了二次函數的解析式的求法和與幾何圖形結合的綜合能力的培養(yǎng).要會利用數形結合的思想把代數和幾何圖形結合起來,利用點的坐標的意義表示線段的長度,從而求出線段之間的關系.24、C【解析】

根據在OB上的兩個交點之間的距離為3,可知兩交點的橫坐標的差為3,然后作出最左邊開口向下的拋物線,再向右平移1個單位,向上平移1個單位得到開口向下的拋物線的條數,同理可得開口向上的拋物線的條數,然后相加即可得解.【詳解】解:如圖,開口向下,經過點(0,0),(1,3),(3,3)的拋物線的解析式為y=﹣x2+4x,然后向右平移1個單位,向上平移1個單位一次得到一條拋物線,可平移6次,所以,一共有7條拋物線,同理可得開口向上的拋物線也有7條,所以,滿足上述條件且對稱軸平行于y軸的拋物線條數是:7+7=1.故選C.【點睛】本題是二次函數綜合題.主要考查了網格結構的知識與二次函數的性質,二次函數圖象與幾何變換,作出圖形更形象直觀.25、①③④.【解析】試題分析:∵x=﹣1時y=﹣1,x=1時,y=3,x=1時,y=5,∴,解得,∴y=﹣x2+3x+3,∴ac=﹣1×3=﹣3<1,故①正確;對稱軸為直線,所以,當x>時,y的值隨x值的增大而減小,故②錯誤;方程為﹣x2+2x+3=1,整理得,x2﹣2x﹣3=1,解得x1=﹣1,x2=3,所以,3是方程ax2+(b﹣1)x+c

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論