![遼寧省營口市2020年中考數(shù)學(xué)試卷_第1頁](http://file4.renrendoc.com/view2/M01/20/05/wKhkFmatO7KAACzlAAEtra7q5Ww314.jpg)
![遼寧省營口市2020年中考數(shù)學(xué)試卷_第2頁](http://file4.renrendoc.com/view2/M01/20/05/wKhkFmatO7KAACzlAAEtra7q5Ww3142.jpg)
![遼寧省營口市2020年中考數(shù)學(xué)試卷_第3頁](http://file4.renrendoc.com/view2/M01/20/05/wKhkFmatO7KAACzlAAEtra7q5Ww3143.jpg)
![遼寧省營口市2020年中考數(shù)學(xué)試卷_第4頁](http://file4.renrendoc.com/view2/M01/20/05/wKhkFmatO7KAACzlAAEtra7q5Ww3144.jpg)
![遼寧省營口市2020年中考數(shù)學(xué)試卷_第5頁](http://file4.renrendoc.com/view2/M01/20/05/wKhkFmatO7KAACzlAAEtra7q5Ww3145.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
絕密★啟用前
遼寧省營口市2021年中考數(shù)學(xué)試卷
試卷副標(biāo)題
考試范圍:xxx;考試時間:100分鐘;命題人:xxx
學(xué)校:______姓名:.班級:考號:
考前須知:
1.答題前填寫好自己的姓名、班級、考號等信息$2.請將答案正確填寫在答題卡上
第I卷(選擇題)
請點(diǎn)擊修改第I卷的文字說明
一、單項(xiàng)選擇題
1.-6的絕對值是0
]_
A.-6B.6C.--D.
66
【答案】B
【解析】
【分析】
在數(shù)軸上,表示一個數(shù)的點(diǎn)到原點(diǎn)的距離叫做這個數(shù)的絕對值.
【詳解】
負(fù)數(shù)的絕對值等于它的相反數(shù),所以-6的絕對值是6
應(yīng)選B
【點(diǎn)睛】
考點(diǎn):絕對值.
2.如下圖的幾何體是由四個完全相同的小正方體搭成的,它的俯視圖是()
Bc
|—pj-IIl-U_ID.L-y
【答案】c
【解析】
【分析】
找到從上面看所得到的圖形即可,所有的看到的棱都應(yīng)表現(xiàn)在俯視圖中.
【詳解】
解:從上面看易得俯視圖:
應(yīng)選:c.
【點(diǎn)睛】
此題考查幾何體的俯視圖,關(guān)鍵在于牢記俯視圖的定義.
3.以下計(jì)算正確的選項(xiàng)是()
13
A.X2,X3=X6B.姬---xy2=-xy2
44
C.(x+y)2=/+,2口.(Zxy2)2=4XJ4
【答案】B
【解析】
【分析】
根據(jù)完全平方公式、同底數(shù)幕的乘法、合并同類項(xiàng)、積的乘方的運(yùn)算法那么分別進(jìn)行計(jì)
算后,可得到正確答案.
【詳解】
解:A、*2.爐=彳5,原計(jì)算錯誤,故此選項(xiàng)不符合題意;
13
B、孫2-一孫2=一孫2,原計(jì)算正確,故此選項(xiàng)符合題意;
44
C、(x+y)2=/+4空凡原計(jì)算錯誤,故此選項(xiàng)不符合題意;
。、2=以2y,原計(jì)算錯誤,故此選項(xiàng)不符合題意.
應(yīng)選:B.
【點(diǎn)睛】
此題考查完全平方公式、同底數(shù)累的乘法、合并同類項(xiàng)、積的乘方的運(yùn)算法那么,關(guān)鍵
在于熟練掌握根底運(yùn)算方法.
4.如圖,AB//CD,ZEFD=64°,NFE8的角平分線EG交于點(diǎn)G,那么NGEB
的度數(shù)為()
A.66°B.56°C.68°D.58°
【答案】D
【解析】
【分析】
根據(jù)平行線的性質(zhì)求得NBEF,再根據(jù)角平分線的定義求得/GEB.
【詳解】
解::AB〃CD,
/BEF+/EFD=180。,
...NBEF=180°-64°=116°;
;EG平分NBEF,
.,.ZGEB=58°.
應(yīng)選:D.
【點(diǎn)睛】
此題考查了平行線的性質(zhì)以及角平分線的定義的運(yùn)用,解答此題時注意:兩直線平行,
同旁內(nèi)角互補(bǔ).
5.反比例函數(shù)(x<0)的圖象位于()
x
A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限
【答案】C
【解析】
【分析】
根據(jù)題目中的函數(shù)解析式和x的取值范圍,可以解答此題.
【詳解】
解:;反比例函數(shù)y=,5<0)中,%=1>0,
x
該函數(shù)圖象在第三象限,
應(yīng)選:C.
【點(diǎn)睛】
此題考查反比例函數(shù)的圖象,關(guān)鍵在于熟記反比例函數(shù)圖象的性質(zhì).
6.如圖,在△A8C中,DE//AB,且匚=一,那么上1的值為()
BD2CA
,3243
A.-B.—C.-D.一
5352
【答案】A
【解析】
【分析】
根據(jù)平行線分線段成比例定理得到比例式即可解答.
【詳解】
解:?:DE//AB,
.CECD3
"'~AE~~BD~2
CE3
???一的值為;.
CA5
故答案為A.
【點(diǎn)睛】
此題考查的是平行線分線段成比例定理,靈活運(yùn)用定理確定對應(yīng)比例關(guān)系是解答此題的
關(guān)鍵.
7.如圖,A3為。。的直徑,點(diǎn)C,點(diǎn)。是。。上的兩點(diǎn),連接C4,CD,AD.假設(shè)
NCAB=40°,那么NAOC的度數(shù)是()
A.110°B.130°C.140°D.160°
【答案】B
【解析】
【分析】
連接3C,如圖,利用圓周角定理得到NAC8=90°,那么48=50°,然后利用圓的內(nèi)
接四邊形的性質(zhì)求NAZJC的度數(shù).
【詳解】
解:如圖,連接BC,
;AB為。。的直徑,
AZACB=90°,
:.ZB=900-ZCAB=90°-40°=50°,
;NB+/A£)C=180°,
...NAQC=180°-50°=130°.
應(yīng)選:B.
【點(diǎn)睛】
此題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條
弧所對的圓心角的一半.半圓(或直徑)所對的圓周角是直角,90。的圓周角所對的弦
是直徑.
8.一元二次方程*2-5x+6=0的解為()
A.xi=2,X2=-3B.xi=-2,*2=3
C.xi=-2,X2=-3D.xi=2,*2=3
【答案】D
【解析】
【分析】
利用因式分解法解方程.
【詳解】
解:(x-2)(x-3)=0,
x-2=0或x-3=0,
x1-2?X2=3.
應(yīng)選:D.
【點(diǎn)睛】
此題考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解
的方法,這種方法簡便易用,是解一元二次方程最常用的方法.
9.某射擊運(yùn)發(fā)動在同一條件下的射擊成績記錄如下:
射擊次數(shù)20801002004001000
“射中九
環(huán)以上"186882168327823
的次數(shù)
“射中九
環(huán)以上〃
的頻率(結(jié)0.900.850.820.840.820.82
果保存兩
位小數(shù))
根據(jù)頻率的穩(wěn)定性,估計(jì)這名運(yùn)發(fā)動射擊一次時“射中九環(huán)以上”的概率約是()
A.0.90B.0.82C.0.85D.0.84
【答案】B
【解析】
【分析】
根據(jù)大量的實(shí)驗(yàn)結(jié)果穩(wěn)定在0.82左右即可得出結(jié)論.
【詳解】
解:;從頻率的波動情況可以發(fā)現(xiàn)頻率穩(wěn)定在0.82附近,
???這名運(yùn)發(fā)動射擊一次時“射中九環(huán)以上"的概率是0.82.
應(yīng)選:B.
【點(diǎn)睛】
此題主要考查的是利用頻率估計(jì)概率,熟知大量重復(fù)實(shí)驗(yàn)時,事件發(fā)生的頻率在某個固
定位置左右擺動,并且擺動的幅度越來越小,根據(jù)這個頻率穩(wěn)定性定理,可以用頻率的
集中趨勢來估計(jì)概率,這個固定的近似值就是這個事件的概率是解答此題的關(guān)鍵.
10.如圖,在平面直角坐標(biāo)系中,△0A5的邊。4在x軸正半軸上,其中NQ4B=90°,
k
AO=AB,點(diǎn)C為斜邊OB的中點(diǎn),反比例函數(shù)>=一(*>0,x>0)的圖象過點(diǎn)C且
x
3
交線段A8于點(diǎn)。,連接CO,OD,假設(shè)—,那么&的值為()
2
5
A.3B.-C.2D.1
2
【答案】C
【解析】
【分析】
mm1
根據(jù)題意設(shè)B(小,宿,那么A(〃z,0),C(―,—D(加,一W,然后根據(jù)SKOD
224
1tnITL13
=SACOE+S梯形ADCE-SAAOO=S樹形AOC£,得至!]二(一十—)?Un--m}=一,即可求
24222
2
得仁竺=2.
4
【詳解】
解:根據(jù)題意設(shè)B(,〃,〃?),那么A(m,0),
?.?點(diǎn)C為斜邊08的中點(diǎn),
,m機(jī)、
:.C(一,一),
22
?.?反比例函數(shù)y=&口>0,x>0)的圖象過點(diǎn)C,
X
mm帆2
???仁一x一=竺,
224
VZOAB=90°,
工。的橫坐標(biāo)為m,
??,反比例函數(shù)y="口>0,x>0)的圖象過點(diǎn)。,
x
的縱坐標(biāo)為竺,
4
作CELx軸于E,
S&COD=SACOASWADCE-S&AOD=SmiADCEiS^OCD~~,
131mm、(1、3
—[AD+CE)?4E=-,即一—H----J?[m--m)
2224222
??---------1f
8
應(yīng)選:c.
【點(diǎn)睛】
此題考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征和反比例函數(shù)系數(shù)k的幾何意義,根據(jù)
SACOD-SACOE+SADCE-SAAOD-S攆彩ADCE,得到關(guān)于m的方程是解題的關(guān)鍵.
第H卷(非選擇題)
請點(diǎn)擊修改第II卷的文字說明
評卷人得分
11.ax2-2axy+ay2=.
【答案】?U-y)2
【解析】
【分析】
首先提取公因式”,再利用完全平方公式分解因式即可.
【詳解】
解:ax2-laxy+ay2
=a(x2-Ixy+y1]
=a(x-y)2.
故答案為:a(x-y)2.
【點(diǎn)睛】
此題主要考查了提取公因式法以及公式法分解因式,正確運(yùn)用乘法公式是解題關(guān)鍵.
12.長江的流域面積大約是1800000平方千米,1800000用科學(xué)記數(shù)法表示為.
【答案】1.8X106
【解析】
【分析】
根據(jù)科學(xué)記數(shù)法的表示方法:?X10?,可得答案.
【詳解】
解:將1800000用科學(xué)記數(shù)法表示為1.8X106,
故答案為:1.8X106.
【點(diǎn)睛】
此題考查了科學(xué)記數(shù)法,科學(xué)記數(shù)法的表示方法:aXl(r,確定n的值是解題關(guān)鍵,n
是整數(shù)數(shù)位減1.
13.(372+76)(3>/2-V6)=.
【答案】12
【解析】
【分析】
直接利用I平方差公式計(jì)算得出答案.
【詳解】
解:原式=(372產(chǎn)-(76)2
=18-6
=12.
故答案為:12.
【點(diǎn)睛】
此題考查了二次根式的混合運(yùn)算,正確運(yùn)用乘法公式是解題關(guān)鍵.
14.從甲、乙、丙三人中選拔一人參加職業(yè)技能大賽,經(jīng)過幾輪初賽選拔,他們的平均
2
成績都是87.9分,方差分別是S單2=3.83,S乙2=2.71,SH=1.52.假設(shè)選取成績穩(wěn)定
的一人參加比賽,你認(rèn)為適合參加比賽的選手是.
【答案】丙
【解析】
【分析】
根據(jù)方差表示數(shù)據(jù)的波動大小的量即可解答.
【詳解】
解::平均成績都是87.9分,解2=3.83,S乙2=2.71,S丙2=1.52,
222
:.slfi<s^<sv,
選手內(nèi)的成績更穩(wěn)定,即適合參加比賽的選手是丙.
故答案為:丙.
【點(diǎn)睛】
此題考查了方差的意義,理解方差是表示數(shù)據(jù)波動大小的量是解答此題的關(guān)鍵.
15.一個圓錐的底面半徑為3,高為4,那么此圓錐的側(cè)面積為.
【答案】15n
【解析】
【分析】
首先根據(jù)底面半徑和高利用勾股定理求得母線長,然后直接利用圓錐的側(cè)面積公式代入
求出即可.
【詳解】
解:?.?圓錐的底面半徑為3,高為4,
.?.母線長為5,
???圓錐的側(cè)面積為:Jtr/=7rX3X5=15n,
故答案為:15兀
【點(diǎn)睛】
此題考查圓錐的側(cè)面積,關(guān)鍵在于熟知圓錐的展開面是扇形,利用扇形面積公式求解.
16.如圖,在菱形ABC。中,對角線AC,BD交于點(diǎn)0,其中。4=1,08=2,那么
菱形ABCD的面積為.
【答案】4
【解析】
【分析】
根據(jù)菱形的面積等于對角線之積的一半可得答案.
【詳解】
解:':OA=\,03=2,
:.AC=2,BD=4,
菱形ABC。的面積為gX2X4=4.
故答案為:4.
【點(diǎn)睛】
此題考查菱形的性質(zhì),關(guān)鍵在于熟練掌握根底知識.
17.如圖,△A3C為等邊三角形,邊長為6,ADVBC,垂足為點(diǎn)。,點(diǎn)E和點(diǎn)廠分別
是線段AO和48上的兩個動點(diǎn),連接CE,EF,那么CE+EF"的最小值為.
【答案】3百
【解析】
【分析】
過C作CFLAB交于E,那么此時,CE+EF的值最小,且CE+所的最小值為CF,
根據(jù)等邊三角形的性質(zhì)得到BF=』A8=,x6=3,根據(jù)勾股定理即可得到結(jié)論.
22
【詳解】
解:過C作CFJ_AB交AQ于E,
那么此時,CE+EF的值最小,且CE+EF的最小值為CF,
為等邊三角形,邊長為6,
11
BF=—AB=—x6=3,
22
CF=7BC2-BF2=V62-32=3也,
.?.CE+EF的最小值為3百,
故答案為:3G.
【點(diǎn)睛】
此題考查了軸對稱-最短路線問題,解題的關(guān)鍵是畫出符合條件的圖形.
18.如圖,ZMON=60°,點(diǎn)4在射線ON上,且。41=1,過點(diǎn)4作45i_LON交
射線OM于點(diǎn)8i,在射線ON上截取41A2,使得4/2=4BI;過點(diǎn)A2作A%,ON交
射線于點(diǎn)此,在射線ON上截取A2A3,使得4認(rèn)3=4282;…;按照此規(guī)律進(jìn)行下
去,那么A2021b2021長為.
【答案】(1+V3)2021
【解析】
【分析】
解直角三角形求出AiBi,AIB2,A3B3,…,探究規(guī)律利用規(guī)律即可解決問題.
【詳解】
解:在RSOAIBI中,
VZOAiBi=90°,ZMON=60°,OAi=l,
AiBi=AiA2=OAi?tan600=百,
VAIBI^A2B2,
.44一
?,AgOA,,
.AB1+V3
731
:4B2=6(1+V3).
同法可得,AAB3=下)(1+5/3)2,
由此規(guī)律可知,A2021B202I—\[?>(1+百)2021,
故答案為:G(1+73)2021.
【點(diǎn)睛】
此題考查解直角三角形,規(guī)律型問題,解題的關(guān)鍵是學(xué)會探究規(guī)律的方法,屬于中考常
考題型.
評卷人得分
19.先化簡,再求值:+土工,請?jiān)?WxW2的范圍內(nèi)選一個適宜的整
x-ix-1
數(shù)代入求值.
【答案】-2-X,-2
【解析】
【分析】
先去括號、化除法為乘法進(jìn)行化筒,然后根據(jù)分式有意義的條件取x的值,代入求值即
可.
【詳解】
4-x-x1+xX—1
解:原式=
X—1%—2
_(2-x)(2+x)x-1
x—1x—2
--2-x.
xW2,
.?.在0Wx<2的范圍內(nèi)的整數(shù)選x=0.
當(dāng)x=0時,原式=-2-0=-2.
【點(diǎn)睛】
此題考查分式的化簡求值及一元一次不等式組的計(jì)算,關(guān)鍵在于熟練掌握根底的計(jì)算方
法.
20.隨著“新冠肺炎〃疫情防控形勢日漸好轉(zhuǎn),各地開始復(fù)工復(fù)學(xué),某校復(fù)學(xué)后成立“防
疫志愿者效勞隊(duì)",設(shè)立四個“效勞監(jiān)督崗":①洗手監(jiān)督崗,②戴口罩監(jiān)督崗,③就
餐監(jiān)督崗,④操場活動監(jiān)督崗.李老師和王老師報名參加了志愿者效勞工作,學(xué)校將報
名的志愿者隨機(jī)分配到四個監(jiān)督崗.
(1)李老師被分配到“洗手監(jiān)督崗”的概率為;
(2)用列表法或面樹狀圖法,求李老師和王老師被分配到同一個監(jiān)督崗的概率.
【答案】(1)(2)圖表見解析,y
44
【解析】
【分析】
(1)直接利用概率公式計(jì)算;
(2)畫樹狀圖展示所有16種等可能的結(jié)果,找出李老師和王老師被分配到同一個監(jiān)督
崗的結(jié)果數(shù),然后根據(jù)概率公式計(jì)算.
【詳解】
解:(1)因?yàn)樵O(shè)立了四個“效勞監(jiān)督崗”,而“洗手監(jiān)督崗"是其中之一,
所以,李老師被分配到“洗手監(jiān)督崗”的概率=’;
4
故答案為:—!
4
(2)畫樹狀圖為:
共有16種等可能的結(jié)果,其中李老師和王老師被分配到同一個監(jiān)督崗的結(jié)果數(shù)為4,
41
所以李老師和王老師被分配到同一個監(jiān)督崗的概率=—=一.
164
【點(diǎn)睛】
此題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從
中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計(jì)算事件A或事件B的概率.
21.“生活垃圾分類"逐漸成為社會生活新風(fēng)氣,某學(xué)校為了了解學(xué)生對“生活垃圾分
類〃的看法,隨機(jī)調(diào)查了200名學(xué)生(每名學(xué)生必須選擇且只能選擇一類看法),調(diào)查
結(jié)果分為“4.很有必要""B.有必要”"C.無所謂““D.沒有必要"四類.并根
據(jù)調(diào)查結(jié)果繪制了圖1和圖2兩幅統(tǒng)計(jì)圖(均不完整),請根據(jù)圖中提供的信息,解答
以下問題:
(1)補(bǔ)全條形統(tǒng)計(jì)圖;
(2)扇形統(tǒng)計(jì)圖中“O.沒有必要"所在扇形的圓心角度數(shù)為;
(3)該校共有2500名學(xué)生,根據(jù)調(diào)查結(jié)果估計(jì)該校對“生活垃圾分類"認(rèn)為"A.很
有必要〃的學(xué)生人數(shù).
【答案】(1)見解析;(2)18°;(3)750人
【解析】
【分析】
(1)根據(jù)扇形統(tǒng)計(jì)圖中的數(shù)據(jù),可以計(jì)算出A組的人數(shù),然后再根據(jù)條形統(tǒng)計(jì)圖中的
數(shù)據(jù),即可得到C組的人數(shù),然后即可將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)根據(jù)條形統(tǒng)計(jì)圖中。組的人數(shù),可以計(jì)算出扇形統(tǒng)計(jì)圖中“D沒有必要"所在
扇形的圓心角度數(shù):
(3)根據(jù)扇形統(tǒng)計(jì)圖中A組所占的百分比,即可計(jì)算出該校對“生活垃圾分類"認(rèn)為
“A.很有必要”的學(xué)生人數(shù).
【詳解】
解:(1)A組學(xué)生有:200x30%=60(人),
C組學(xué)生有:200-60-80-10=50(人),
補(bǔ)全的條形統(tǒng)計(jì)圖,如下圖;
(2)扇形統(tǒng)計(jì)圖中“D.沒有必要"所在扇形的圓心角度數(shù)為:3608工=18。,
200
故答案為:18。;
(3)2500x30%=7501人),
答:該校對“生活垃圾分類”認(rèn)為"A.很有必要”的學(xué)生有750人.
【點(diǎn)睛】
此題考查條形統(tǒng)計(jì)圖、扇形統(tǒng)計(jì)圖、用樣本估計(jì)總體,解答此題的關(guān)鍵是明確題意,利
用數(shù)形結(jié)合的思想解答.
22.如圖,海中有一個小島4,它周圍10海里內(nèi)有暗礁,漁船跟蹤魚群由東向西航行,
在8點(diǎn)測得小島4在北偏西60°方向上,航行12海里到達(dá)C點(diǎn),這時測得小島A在
北偏西30°方向上,如果漁船不改變方向繼續(xù)向西航行,有沒有觸礁的危險?并說明
理由參考數(shù)據(jù):73^1.73)
【答案】沒有危險,理由見解析
【解析】
【分析】
作高AN,由題意可得/ABE=60°,NAC£>=30°,進(jìn)而得出/ABC=/8AC=30°,
于是AC=8C=12,在在Rt^ANC中,利用直角三角形的邊角關(guān)系,求出AN與10海
里比擬即可.
【詳解】
解:沒有觸礁的危險;
理由:如圖,過點(diǎn)A作ANLBC交8c的延長線于點(diǎn)N,
由題意得,NABE=60°,ZACD=30°,
AZACN=60°,NABN=30°,
AZABC=ZBAC=30°,
:.BC=AC=12f
在RtZ\ANC中,AN=4C?cos60°=12X2C±=6J3,
2
,;AN=66=*10.38>10,
沒有危險.
【點(diǎn)睛】
考查直角三角形的邊角關(guān)系及其應(yīng)用,構(gòu)造直角三角形是常用的方法,掌握直角三角形
的邊角關(guān)系是正確計(jì)算的前提.
23.如圖,△A8C中,ZACB=90°,8。為△ABC的角平分線,以點(diǎn)。為圓心,0C
為半徑作。。與線段AC交于點(diǎn)D.
(1)求證:A8為。。的切線;
3
(2)假設(shè)tanA=-,AD=2,求50的長.
4
【答案】(1)見解析;(2)375
【解析】
【分析】
(1)過。作0//LAB于”,根據(jù)角平分線的性質(zhì)得到0"=0C,根據(jù)切線的判定定理
即可得到結(jié)論;
(2)設(shè)。。的半徑為3x,那么OH=OO=OC=3x,再解直角三角形即可得到結(jié)論.
【詳解】
(1)證明:過。作04J_AB于",
VZACB=90°,
OC1BC,
:8。為△ABC的角平分線,
0H=0C,
即0H為。。的半徑,
\'0H±AB,
.?.AB為。。的切線;
(2)解:設(shè)。。的半徑為3x,那么0,=0O=0C=3x,
*3
在RtZ\4中,"?tanA=-,
4
OH3
???—_f
AH4
3x3
???---—_―,
AH4
.\AH=4xf
???A0=yjoH2^AH2=J(3xy+(4x)2=5X,
VAD=2,
.\AO=OD+AD=3x+2,
/?3x+2=5x,
.?.OA=3x+2=5,OH=OD=OC=3x=3,
???AC=O4+OC=5+3=8,
在RtZVLBC中,?.?tanA=+,
AC
3
BC=AC?tanA=8X—=6,
4
?<-0B=yloC2+BC2=732+62=36.
【點(diǎn)睛】
此題考查切線的判定、解直角三角形等內(nèi)容,熟練運(yùn)用圓中的性質(zhì)定理是解題的關(guān)鍵.
24.某超市銷售一款“免洗洗手液",這款“免洗洗手液”的本錢價為每瓶16元,當(dāng)
銷售單價定為20元時,每天可售出80瓶.根據(jù)市場行情,現(xiàn)決定降價銷售.市場調(diào)查
反映:銷售單價每降低0.5元,那么每天可多售出20瓶(銷售單價不低于本錢價),假
設(shè)設(shè)這款“免洗洗手液”的銷售單價為x(元),每天的銷售量為y(瓶).
(1)求每天的銷售量y(瓶)與銷售單價x(元)之間的函數(shù)關(guān)系式;
(2)當(dāng)銷售單價為多少元時,銷售這款“免洗洗手液〃每天的銷售利潤最大,最大利
潤為多少元?
【答案】(1)y=-40X+880;[2)當(dāng)銷售單價為19元時,銷售這款“免洗洗手液"每
天的銷售利潤最大,最大利潤為880元
【解析】
【分析】
(1)銷售單價為x(元),銷售單價每降低0.5元,那么每天可多售出20瓶(銷售單價
不低于本錢價),那么不一為降低了多少個0.5元,再乘以20即為多售出的瓶數(shù),然
后加上80即可得出每天的銷售量y;
(2)設(shè)每天的銷售利潤為w元,根據(jù)利潤等于每天的銷售量乘以每瓶的利潤,列出w
關(guān)于x的函數(shù)關(guān)系式,將其寫成頂點(diǎn)式,按照二次函數(shù)的性質(zhì)可得答案.
【詳解】
解:(1)由題意得:y=80+20X—一,
;.),=-40x+880;
(2)設(shè)每天的銷售利潤為w元,那么有:
w—(-40x+880)(x-16)
=-40(x-19)2+360,
':a=-40<0,
二二次函數(shù)圖象開口向下,
?,.當(dāng)x=19時,w有最大值,最大值為360元.
答:當(dāng)銷售單價為19元時,銷售這款“免洗洗手液”每天的銷售利潤最大,最大利潤
為880元.
【點(diǎn)睛】
此題考查二次函數(shù)的應(yīng)用,關(guān)鍵在于理解題意找出等量關(guān)系.
25.如圖,在矩形ABCD中,々>0),點(diǎn)E是線段C3延長線上的一個動點(diǎn),
連接AE,過點(diǎn)A作交射線DC于點(diǎn)凡
(1)如圖1,假設(shè)左=1,那么4尸與AE之間的數(shù)量關(guān)系是;
(2)如圖2,假設(shè)AWL試判斷A尸與AE之間的數(shù)量關(guān)系,寫出結(jié)論并證明;(用含
A的式子表示)
⑶假設(shè)4。=248=4,連接8。交A尸于點(diǎn)G,連接EG,當(dāng)C/=l時,求EG的長.
【答案】⑴AF=4E;⑵AF=kAE,證明見解析;⑶EG的長為士叵或叵
62
【解析】
【分析】
(1)證明△EABgAFAD(AAS),由全等三角形的性質(zhì)得出AF=AE;
ABAE
(2)證明AABEs^ADF,由相似三角形的性質(zhì)得出——=——,那么可得出結(jié)論;
ADAF
GFDF1
(3)①如圖1,當(dāng)點(diǎn)F在DA上時,證得△GDFS^GBA,得出——=——=一,求
GABA2
出AG=22叵.由△ABES/IADF可得出空=絲=,,求出AE=H.那么可
3AFAD22
得出答案;
②如圖2,當(dāng)點(diǎn)F在DC的延長線上時,同理可求出EG的長.
【詳解】
解:(1)AE=AF.
???AD=AB,四邊形ABCD矩形,
???四邊形ABCD是正方形,
AZBAD=90°,
VAF±AE,
,NEAF=90。,
AZEAB=ZFAD,
AAEAB^AFAD(AAS),
???AF=AE;
故答案為:AF=AE.
(2)AF=kAE.
證明:???四邊形ABCD是矩形,
???ZBAD=ZABC=ZADF=90°,
???NFAD+NFAB=90。,
VAF±AE,
AZEAF=90°,
???NEAB+NFAB=90。,
AZEAB=ZFAD,
VZABE+ZABC=180°,
AZABE=180O-ZABC=180°-90°=90°,
AZABE=ZADF.
AAABE^AADF,
,ABAE
??i一--------------,
ADAF
:AD=kAB,
.AB1
??一,
ADk
?一后J
??一,
AFk
???AF=kAE.
(3)解:①如圖1,當(dāng)點(diǎn)F在DA上時,
???四邊形ABCD是矩形,
,AB=CD,AB〃CD,
???AD=2AB=4,
AAB=2,
???CD=2,
VCF=1,
???DF=CD-CF=2-1=1.
在RtAADF中,NADF=90。,
???AF=y/AD2+DF2=A/42+12=>/17,
VDF/7AB,
AZGDF=ZGBA,ZGFD=ZGAB,
.,.△GDF^AGBA,
?GFDF
GA-BA
VAF=GF+AG,
.AC-22717
??Aljr——/\r=---------
33
VAABE^AADF,
.AE_AB_2
"AT-AD-4-2'
AE=—AF=—xVu=
222
在RsEAG中,ZEAG=90°,
;?EG=y]AE2+AG2=J(乎,
②如圖2,當(dāng)點(diǎn)F在DC的延長線上時,DF=CD+CF=2+1=3,
在RSADF中,ZADF=90°,
???AF=dAD?+DF?=A/42+32=5-
;DF〃AB,
;NGAB=NGFD,NGBA=NGDF,
.,.△AGB^AFGD,
.AGAB2
"'~FG~~FD~3'
;GF+AG=AF=5,
,AG=2,
VAABE^AADF,
.AEAB_2
"AF-AB-4-2)
AE=-AF=-x5=-,
222
在RtaEAG中,ZEAG=90°,
EG=7AE2+AG2=^(|)2+22=乎.
綜上所述,EG的長為2叵或畫.
62
【點(diǎn)睛】
此題是相似形綜合題,考查了全等三角形的判定與性質(zhì),正方形的性質(zhì),矩形的性質(zhì),
相似三角形的判定與性質(zhì),勾股定理等知識,熟練掌握相似三角形的判定與性質(zhì)是解題
的關(guān)鍵.
26.在平面直角坐標(biāo)系中,拋物線》=3+必-3過點(diǎn)A(-3,0),B(1,0),與y軸
交于點(diǎn)C,頂點(diǎn)為點(diǎn)。.
(1)求拋物線的解析式;
(2)點(diǎn)尸為直線C。上的一個動點(diǎn),連接BC;
①如圖1,是否存在點(diǎn)P,使NP8C=N8C0?假設(shè)存在,求出所有滿足條件的點(diǎn)尸的
坐標(biāo);假設(shè)不存在,請說明理由;
②如圖2,點(diǎn)尸在x軸上方,連接出交拋物線于點(diǎn)N,NPAB=NBCO,點(diǎn)M在第三
象限拋物線上,連接MN,當(dāng)NANM=45°時,請直接寫出點(diǎn)M的坐標(biāo).
【答案】⑴y=N+2x-3;⑵①存在,點(diǎn)尸的坐標(biāo)為(1,-2)或(-5,-8);②
上,435、
點(diǎn)M(——,——)
39
【解析】
【分析】
(1)y=ax2+bx-3=a5+3](x-1),即可求解;
(2)①分
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年水電工程招投標(biāo)代理服務(wù)合同
- 2025年帶燈座項(xiàng)目投資可行性研究分析報告
- 制作度服務(wù)合同范例
- 2025年度綠色建筑項(xiàng)目施工資料審核承包合同范本
- 車輛出質(zhì)抵押合同范本
- 個人股東合作合同范本
- 2025年三相中頻電源行業(yè)深度研究分析報告
- 臨建混凝土勞務(wù)合同范本
- 2025年度工程合同風(fēng)險預(yù)警與防控策略
- 加工彈簧合同范本
- 《工作場所安全使用化學(xué)品規(guī)定》
- 2022年菏澤醫(yī)學(xué)??茖W(xué)校單招綜合素質(zhì)考試筆試試題及答案解析
- 市政工程設(shè)施養(yǎng)護(hù)維修估算指標(biāo)
- 課堂嵌入式評價及其應(yīng)用
- 《管理學(xué)基礎(chǔ)》完整版課件全套ppt教程(最新)
- 短視頻:策劃+拍攝+制作+運(yùn)營課件(完整版)
- 基金會財(cái)務(wù)報表審計(jì)指引
- 藍(lán)色卡通風(fēng)好書推薦教育PPT模板
- 2022年江蘇省泰州市中考數(shù)學(xué)試題及答案解析
- 石家莊鐵道大學(xué)四方學(xué)院畢業(yè)設(shè)計(jì)46
- 智能化系統(tǒng)培訓(xùn)
評論
0/150
提交評論