無(wú)錫市南長(zhǎng)區(qū)2024屆中考數(shù)學(xué)五模試卷含解析_第1頁(yè)
無(wú)錫市南長(zhǎng)區(qū)2024屆中考數(shù)學(xué)五模試卷含解析_第2頁(yè)
無(wú)錫市南長(zhǎng)區(qū)2024屆中考數(shù)學(xué)五模試卷含解析_第3頁(yè)
無(wú)錫市南長(zhǎng)區(qū)2024屆中考數(shù)學(xué)五模試卷含解析_第4頁(yè)
無(wú)錫市南長(zhǎng)區(qū)2024屆中考數(shù)學(xué)五模試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

無(wú)錫市南長(zhǎng)區(qū)2024屆中考數(shù)學(xué)五模試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在正方形ABCD中,E為AB的中點(diǎn),G,F(xiàn)分別為AD、BC邊上的點(diǎn),若AG=1,BF=2,∠GEF=90°,則GF的長(zhǎng)為()A.2 B.3 C.4 D.52.甲、乙兩位同學(xué)做中國(guó)結(jié),已知甲每小時(shí)比乙少做6個(gè),甲做30個(gè)所用的時(shí)間與乙做45個(gè)所用的時(shí)間相等,求甲每小時(shí)做中國(guó)結(jié)的個(gè)數(shù).如果設(shè)甲每小時(shí)做x個(gè),那么可列方程為()A.= B.=C.= D.=3.在平面直角坐標(biāo)系xOy中,對(duì)于任意三點(diǎn)A,B,C的“矩面積”,給出如下定義:“水平底”a:任意兩點(diǎn)橫坐標(biāo)差的最大值,“鉛垂高”h:任意兩點(diǎn)縱坐標(biāo)差的最大值,則“矩面積”S=ah.例如:三點(diǎn)坐標(biāo)分別為A(1,2),B(﹣3,1),C(2,﹣2),則“水平底”a=5,“鉛垂高”h=4,“矩面積”S=ah=1.若D(1,2)、E(﹣2,1)、F(0,t)三點(diǎn)的“矩面積”為18,則t的值為()A.﹣3或7B.﹣4或6C.﹣4或7D.﹣3或64.如圖,直線、及木條在同一平面上,將木條繞點(diǎn)旋轉(zhuǎn)到與直線平行時(shí),其最小旋轉(zhuǎn)角為().A. B. C. D.5.下列判斷正確的是()A.任意擲一枚質(zhì)地均勻的硬幣10次,一定有5次正面向上B.天氣預(yù)報(bào)說(shuō)“明天的降水概率為40%”,表示明天有40%的時(shí)間都在降雨C.“籃球隊(duì)員在罰球線上投籃一次,投中”為隨機(jī)事件D.“a是實(shí)數(shù),|a|≥0”是不可能事件6.下列說(shuō)法中,正確的是()A.不可能事件發(fā)生的概率為0B.隨機(jī)事件發(fā)生的概率為C.概率很小的事件不可能發(fā)生D.投擲一枚質(zhì)地均勻的硬幣100次,正面朝上的次數(shù)一定為50次7.如圖,正六邊形ABCDEF中,P、Q兩點(diǎn)分別為△ACF、△CEF的內(nèi)心.若AF=2,則PQ的長(zhǎng)度為何?()A.1 B.2 C.2﹣2 D.4﹣28.如圖,四邊形ABCD是正方形,點(diǎn)P,Q分別在邊AB,BC的延長(zhǎng)線上且BP=CQ,連接AQ,DP交于點(diǎn)O,并分別與邊CD,BC交于點(diǎn)F,E,連接AE,下列結(jié)論:①AQ⊥DP;②△OAE∽△OPA;③當(dāng)正方形的邊長(zhǎng)為3,BP=1時(shí),cos∠DFO=,其中正確結(jié)論的個(gè)數(shù)是()A.0 B.1 C.2 D.39.如圖,排球運(yùn)動(dòng)員站在點(diǎn)O處練習(xí)發(fā)球,將球從O點(diǎn)正上方2m的A處發(fā)出,把球看成點(diǎn),其運(yùn)行的高度y(m)與運(yùn)行的水平距離x(m)滿足關(guān)系式y(tǒng)=a(x﹣k)2+h.已知球與D點(diǎn)的水平距離為6m時(shí),達(dá)到最高2.6m,球網(wǎng)與D點(diǎn)的水平距離為9m.高度為2.43m,球場(chǎng)的邊界距O點(diǎn)的水平距離為18m,則下列判斷正確的是()A.球不會(huì)過(guò)網(wǎng) B.球會(huì)過(guò)球網(wǎng)但不會(huì)出界C.球會(huì)過(guò)球網(wǎng)并會(huì)出界 D.無(wú)法確定10.一次函數(shù)y=ax+b與反比例函數(shù)y=在同一平面直角坐標(biāo)系中的圖象如左圖所示,則二次函數(shù)y=ax2+bx+c的圖象可能是()A. B. C. D.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.在平面直角坐標(biāo)系中,已知,A(2,0),C(0,﹣1),若P為線段OA上一動(dòng)點(diǎn),則CP+AP的最小值為_(kāi)____.12.如圖△ABC中,AB=AC=8,∠BAC=30°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°得到△ACD,延長(zhǎng)AD、BC交于點(diǎn)E,則DE的長(zhǎng)是_____.13.在一個(gè)不透明的空袋子里放入3個(gè)白球和2個(gè)紅球,每個(gè)球除顏色外完全相同,小樂(lè)從中任意摸出1個(gè)球,摸出的球是紅球,放回后充分搖勻,又從中任意摸出1個(gè)球,摸到紅球的概率是

____

.14.如圖,兩個(gè)三角形相似,AD=2,AE=3,EC=1,則BD=_____.15.小剛家、公交車站、學(xué)校在一條筆直的公路旁(小剛家、學(xué)校到這條公路的距離忽略不計(jì)).一天,小剛從家出發(fā)去上學(xué),沿這條公路步行到公交站恰好乘上一輛公交車,公交車沿這條公路勻速行駛,小剛下車時(shí)發(fā)現(xiàn)還有4分鐘上課,于是他沿著這條公路跑步趕到學(xué)校(上、下車時(shí)間忽略不計(jì)),小剛與學(xué)校的距離s(單位:米)與他所用的時(shí)間t(單位:分鐘)之間的函數(shù)關(guān)系如圖所示.已知小剛從家出發(fā)7分鐘時(shí)與家的距離是1200米,從上公交車到他到達(dá)學(xué)校共用10分鐘.下列說(shuō)法:①公交車的速度為400米/分鐘;②小剛從家出發(fā)5分鐘時(shí)乘上公交車;③小剛下公交車后跑向?qū)W校的速度是100米/分鐘;④小剛上課遲到了1分鐘.其中正確的序號(hào)是_____.16.已知且,則=__________.三、解答題(共8題,共72分)17.(8分)如圖是8×8的正方形網(wǎng)格,A、B兩點(diǎn)均在格點(diǎn)(即小正方形的頂點(diǎn))上,試在下面三個(gè)圖中,分別畫出一個(gè)以A,B,C,D為頂點(diǎn)的格點(diǎn)菱形(包括正方形),要求所畫的三個(gè)菱形互不全等.18.(8分)如圖,已知:,,,求證:.19.(8分)有A、B兩組卡片共1張,A組的三張分別寫有數(shù)字2,4,6,B組的兩張分別寫有3,1.它們除了數(shù)字外沒(méi)有任何區(qū)別,隨機(jī)從A組抽取一張,求抽到數(shù)字為2的概率;隨機(jī)地分別從A組、B組各抽取一張,請(qǐng)你用列表或畫樹狀圖的方法表示所有等可能的結(jié)果.現(xiàn)制定這樣一個(gè)游戲規(guī)則:若選出的兩數(shù)之積為3的倍數(shù),則甲獲勝;否則乙獲勝.請(qǐng)問(wèn)這樣的游戲規(guī)則對(duì)甲乙雙方公平嗎?為什么?20.(8分)如圖,一次函數(shù)y=ax﹣1的圖象與反比例函數(shù)的圖象交于A,B兩點(diǎn),與x軸交于點(diǎn)C,與y軸交于點(diǎn)D,已知OA=,tan∠AOC=(1)求a,k的值及點(diǎn)B的坐標(biāo);(2)觀察圖象,請(qǐng)直接寫出不等式ax﹣1≥的解集;(3)在y軸上存在一點(diǎn)P,使得△PDC與△ODC相似,請(qǐng)你求出P點(diǎn)的坐標(biāo).21.(8分)計(jì)算﹣14﹣22.(10分)如圖,已知AB是⊙O的直徑,BC⊥AB,連結(jié)OC,弦AD∥OC,直線CD交BA的延長(zhǎng)線于點(diǎn)E.(1)求證:直線CD是⊙O的切線;(2)若DE=2BC,AD=5,求OC的值.23.(12分)﹣(﹣1)2018+﹣()﹣124.已知關(guān)于的一元二次方程(為實(shí)數(shù)且).求證:此方程總有兩個(gè)實(shí)數(shù)根;如果此方程的兩個(gè)實(shí)數(shù)根都是整數(shù),求正整數(shù)的值.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】∵四邊形ABCD是正方形,∴∠A=∠B=90°,∴∠AGE+∠AEG=90°,∠BFE+∠FEB=90°,∵∠GEF=90°,∴∠GEA+∠FEB=90°,∴∠AGE=∠FEB,∠AEG=∠EFB,∴△AEG∽△BFE,∴,又∵AE=BE,∴AE2=AG?BF=2,∴AE=(舍負(fù)),∴GF2=GE2+EF2=AG2+AE2+BE2+BF2=1+2+2+4=9,∴GF的長(zhǎng)為3,故選B.【點(diǎn)睛】本題考查了相似三角形的性質(zhì)的應(yīng)用,利用勾股定理即可得解,解題的關(guān)鍵是證明△AEG∽△BFE.2、A【解析】

設(shè)甲每小時(shí)做x個(gè),乙每小時(shí)做(x+6)個(gè),根據(jù)甲做30個(gè)所用時(shí)間與乙做45個(gè)所用時(shí)間相等即可列方程.【詳解】設(shè)甲每小時(shí)做x個(gè),乙每小時(shí)做(x+6)個(gè),根據(jù)甲做30個(gè)所用時(shí)間與乙做45個(gè)所用時(shí)間相等可得=.故選A.【點(diǎn)睛】本題考查了分式方程的應(yīng)用,找到關(guān)鍵描述語(yǔ),正確找出等量關(guān)系是解決問(wèn)題的關(guān)鍵.3、C【解析】

由題可知“水平底”a的長(zhǎng)度為3,則由“矩面積”為18可知“鉛垂高”h=6,再分>2或t<1兩種情況進(jìn)行求解即可.【詳解】解:由題可知a=3,則h=18÷3=6,則可知t>2或t<1.當(dāng)t>2時(shí),t-1=6,解得t=7;當(dāng)t<1時(shí),2-t=6,解得t=-4.綜上,t=-4或7.故選擇C.【點(diǎn)睛】本題考查了平面直角坐標(biāo)系的內(nèi)容,理解題意是解題關(guān)鍵.4、B【解析】

如圖所示,過(guò)O點(diǎn)作a的平行線d,根據(jù)平行線的性質(zhì)得到∠2=∠3,進(jìn)而求出將木條c繞點(diǎn)O旋轉(zhuǎn)到與直線a平行時(shí)的最小旋轉(zhuǎn)角.【詳解】如圖所示,過(guò)O點(diǎn)作a的平行線d,∵a∥d,由兩直線平行同位角相等得到∠2=∠3=50°,木條c繞O點(diǎn)與直線d重合時(shí),與直線a平行,旋轉(zhuǎn)角∠1+∠2=90°.故選B【點(diǎn)睛】本題主要考查圖形的旋轉(zhuǎn)與平行線,解題的關(guān)鍵是熟練掌握平行線的性質(zhì).5、C【解析】

直接利用概率的意義以及隨機(jī)事件的定義分別分析得出答案.【詳解】A、任意擲一枚質(zhì)地均勻的硬幣10次,一定有5次正面向上,錯(cuò)誤;B、天氣預(yù)報(bào)說(shuō)“明天的降水概率為40%”,表示明天有40%的時(shí)間都在降雨,錯(cuò)誤;C、“籃球隊(duì)員在罰球線上投籃一次,投中”為隨機(jī)事件,正確;D、“a是實(shí)數(shù),|a|≥0”是必然事件,故此選項(xiàng)錯(cuò)誤.故選C.【點(diǎn)睛】此題主要考查了概率的意義以及隨機(jī)事件的定義,正確把握相關(guān)定義是解題關(guān)鍵.6、A【解析】試題分析:不可能事件發(fā)生的概率為0,故A正確;隨機(jī)事件發(fā)生的概率為在0到1之間,故B錯(cuò)誤;概率很小的事件也可能發(fā)生,故C錯(cuò)誤;投擲一枚質(zhì)地均勻的硬幣100次,正面向上的次數(shù)為50次是隨機(jī)事件,D錯(cuò)誤;故選A.考點(diǎn):隨機(jī)事件.7、C【解析】

先判斷出PQ⊥CF,再求出AC=2,AF=2,CF=2AF=4,利用△ACF的面積的兩種算法即可求出PG,然后計(jì)算出PQ即可.【詳解】解:如圖,連接PF,QF,PC,QC∵P、Q兩點(diǎn)分別為△ACF、△CEF的內(nèi)心,∴PF是∠AFC的角平分線,F(xiàn)Q是∠CFE的角平分線,∴∠PFC=∠AFC=30°,∠QFC=∠CFE=30°,∴∠PFC=∠QFC=30°,同理,∠PCF=∠QCF∴PQ⊥CF,∴△PQF是等邊三角形,∴PQ=2PG;易得△ACF≌△ECF,且內(nèi)角是30o,60o,90o的三角形,∴AC=2,AF=2,CF=2AF=4,∴S△ACF=AF×AC=×2×2=2,過(guò)點(diǎn)P作PM⊥AF,PN⊥AC,PQ交CF于G,∵點(diǎn)P是△ACF的內(nèi)心,∴PM=PN=PG,∴S△ACF=S△PAF+S△PAC+S△PCF=AF×PM+AC×PN+CF×PG=×2×PG+×2×PG+×4×PG=(1++2)PG=(3+)PG=2,∴PG==,∴PQ=2PG=2()=2-2.故選C.【點(diǎn)睛】本題是三角形的內(nèi)切圓與內(nèi)心,主要考查了三角形的內(nèi)心的特點(diǎn),三角形的全等,解本題的關(guān)鍵是知道三角形的內(nèi)心的意義.8、C【解析】

由四邊形ABCD是正方形,得到AD=BC,根據(jù)全等三角形的性質(zhì)得到∠P=∠Q,根據(jù)余角的性質(zhì)得到AQ⊥DP;故①正確;根據(jù)勾股定理求出直接用余弦可求出.【詳解】詳解:∵四邊形ABCD是正方形,∴AD=BC,∵BP=CQ,∴AP=BQ,在△DAP與△ABQ中,∴△DAP≌△ABQ,∴∠P=∠Q,∵∴∴∴AQ⊥DP;故①正確;②無(wú)法證明,故錯(cuò)誤.∵BP=1,AB=3,∴∴故③正確,故選C.【點(diǎn)睛】考查正方形的性質(zhì),三角形全等的判定與性質(zhì),勾股定理,銳角三角函數(shù)等,綜合性比較強(qiáng),對(duì)學(xué)生要求較高.9、C【解析】分析:(1)將點(diǎn)A(0,2)代入求出a的值;分別求出x=9和x=18時(shí)的函數(shù)值,再分別與2.43、0比較大小可得.詳解:根據(jù)題意,將點(diǎn)A(0,2)代入得:36a+2.6=2,解得:∴y與x的關(guān)系式為當(dāng)x=9時(shí),∴球能過(guò)球網(wǎng),當(dāng)x=18時(shí),∴球會(huì)出界.故選C.點(diǎn)睛:考查二次函數(shù)的應(yīng)用題,求范圍的問(wèn)題,可以利用臨界點(diǎn)法求出自變量的值,根據(jù)題意確定范圍.10、B【解析】

根據(jù)題中給出的函數(shù)圖像結(jié)合一次函數(shù)性質(zhì)得出a<0,b>0,再由反比例函數(shù)圖像性質(zhì)得出c<0,從而可判斷二次函數(shù)圖像開(kāi)口向下,對(duì)稱軸:>0,即在y軸的右邊,與y軸負(fù)半軸相交,從而可得答案.【詳解】解:∵一次函數(shù)y=ax+b圖像過(guò)一、二、四,∴a<0,b>0,又∵反比例函數(shù)y=圖像經(jīng)過(guò)二、四象限,∴c<0,∴二次函數(shù)對(duì)稱軸:>0,∴二次函數(shù)y=ax2+bx+c圖像開(kāi)口向下,對(duì)稱軸在y軸的右邊,與y軸負(fù)半軸相交,故答案為B.【點(diǎn)睛】本題考查了二次函數(shù)的圖形,一次函數(shù)的圖象,反比例函數(shù)的圖象,熟練掌握二次函數(shù)的有關(guān)性質(zhì):開(kāi)口方向、對(duì)稱軸、與y軸的交點(diǎn)坐標(biāo)等確定出a、b、c的情況是解題的關(guān)鍵.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、【解析】

可以取一點(diǎn)D(0,1),連接AD,作CN⊥AD于點(diǎn)N,PM⊥AD于點(diǎn)M,根據(jù)勾股定理可得AD=3,證明△APM∽△ADO得,PM=AP.當(dāng)CP⊥AD時(shí),CP+AP=CP+PM的值最小,最小值為CN的長(zhǎng).【詳解】如圖,取一點(diǎn)D(0,1),連接AD,作CN⊥AD于點(diǎn)N,PM⊥AD于點(diǎn)M,在Rt△AOD中,∵OA=2,OD=1,∴AD==3,∵∠PAM=∠DAO,∠AMP=∠AOD=90°,∴△APM∽△ADO,∴,即,∴PM=AP,∴PC+AP=PC+PM,∴當(dāng)CP⊥AD時(shí),CP+AP=CP+PM的值最小,最小值為CN的長(zhǎng).∵△CND∽△AOD,∴,即∴CN=.所以CP+AP的最小值為.故答案為:.【點(diǎn)睛】此題考查勾股定理,三角形相似的判定及性質(zhì),最短路徑問(wèn)題,如何找到AP的等量線段與線段CP相加是解題的關(guān)鍵,由此利用勾股定理、相似三角形做輔助線得到垂線段PM,使問(wèn)題得解.12、【解析】

過(guò)點(diǎn)作于,根據(jù)三角形的性質(zhì)及三角形內(nèi)角和定理可計(jì)算再由旋轉(zhuǎn)可得,,根據(jù)三角形外角和性質(zhì)計(jì)算,根據(jù)含角的直角三角形的三邊關(guān)系得和的長(zhǎng)度,進(jìn)而得到的長(zhǎng)度,然后利用得到與的長(zhǎng)度,于是可得.【詳解】如圖,過(guò)點(diǎn)作于,∵,∴.∵將繞點(diǎn)逆時(shí)針旋轉(zhuǎn),使點(diǎn)落在點(diǎn)處,此時(shí)點(diǎn)落在點(diǎn)處,∴∵∴在中,∵∴∴,在中,∵,∴,∴.故答案為.【點(diǎn)睛】本題考查三角形性質(zhì)的綜合應(yīng)用,要熟練掌握等腰三角形的性質(zhì),含角的直角三角形的三邊關(guān)系,旋轉(zhuǎn)圖形的性質(zhì).13、【解析】【分析】袋子中一共有5個(gè)球,其中有2個(gè)紅球,用2除以5即可得從中摸出一個(gè)球是紅球的概率.【詳解】袋子中有3個(gè)白球和2個(gè)紅球,一共5個(gè)球,所以從中任意摸出一個(gè)球是紅球的概率為:,故答案為.【點(diǎn)睛】本題考查了概率的計(jì)算,用到的知識(shí)點(diǎn)為:可能性等于所求情況數(shù)與總情況數(shù)之比.14、1【解析】

根據(jù)相似三角形的對(duì)應(yīng)邊的比相等列出比例式,計(jì)算即可.【詳解】∵△ADE∽△ACB,∴=,即=,解得:BD=1.故答案為1.【點(diǎn)睛】本題考查的是相似三角形的性質(zhì),掌握相似三角形的對(duì)應(yīng)邊的比相等是解題的關(guān)鍵.15、①②③【解析】

由公交車在7至12分鐘時(shí)間內(nèi)行駛的路程可求解其行駛速度,再由求解的速度可知公交車行駛的時(shí)間,進(jìn)而可知小剛上公交車的時(shí)間;由上公交車到他到達(dá)學(xué)校共用10分鐘以及公交車行駛時(shí)間可知小剛跑步時(shí)間,進(jìn)而判斷其是否遲到,再由圖可知其跑步距離,可求解小剛下公交車后跑向?qū)W校的速度.【詳解】解:公交車7至12分鐘時(shí)間內(nèi)行駛的路程為3500-1200-300=2000m,則其速度為2000÷5=400米/分鐘,故①正確;由圖可知,7分鐘時(shí),公交車行駛的距離為1200-400=800m,則公交車行駛的時(shí)間為800÷400=2min,則小剛從家出發(fā)7-2=5分鐘時(shí)乘上公交車,故②正確;公交車一共行駛了2800÷400=7分鐘,則小剛從下公交車到學(xué)校一共花了10-7=3分鐘<4分鐘,故④錯(cuò)誤,再由圖可知小明跑步時(shí)間為300÷3=100米/分鐘,故③正確.故正確的序號(hào)是:①②③.【點(diǎn)睛】本題考查了一次函數(shù)的應(yīng)用.16、【解析】分析:根據(jù)相似三角形的面積比等于相似比的平方求解即可.詳解:∵△ABC∽△A′B′C′,∴S△ABC:S△A′B′C′=AB2:A′B′2=1:2,∴AB:A′B′=1:.點(diǎn)睛:本題的關(guān)鍵是理解相似三角形的面積比等于相似比的平方.三、解答題(共8題,共72分)17、見(jiàn)解析【解析】

根據(jù)菱形的四條邊都相等,兩條對(duì)角線互相垂直平分,可以根據(jù)正方形的四邊垂直,將小正方形的邊作為對(duì)角線畫菱形;也可以畫出以AB為邊長(zhǎng)的正方形,據(jù)此相信你可以畫出圖形了,注意:本題答案不唯一.【詳解】如圖為畫出的菱形:【點(diǎn)睛】本題考查了作圖-復(fù)雜作圖:復(fù)雜作圖是在五種基本作圖的基礎(chǔ)上進(jìn)行作圖,一般是結(jié)合了幾何圖形的性質(zhì)和基本作圖方法;解決此類題目的關(guān)鍵是熟悉基本幾何圖形的性質(zhì),結(jié)合幾何圖形的基本性質(zhì)把復(fù)雜作圖拆解成基本作圖,逐步操作.本題掌握菱形的定義與性質(zhì)是解題的關(guān)鍵.18、證明見(jiàn)解析;【解析】

根據(jù)HL定理證明Rt△ABC≌Rt△DEF,根據(jù)全等三角形的性質(zhì)證明即可.【詳解】,BE為公共線段,∴CE+BE=BF+BE,即又,在與中,≌∴AC=DF.【點(diǎn)睛】本題考查的是全等三角形的判定和性質(zhì),掌握全等三角形的判定定理和性質(zhì)定理是解題的關(guān)鍵.19、(1)P(抽到數(shù)字為2)=;(2)不公平,理由見(jiàn)解析.【解析】試題分析:(1)根據(jù)概率的定義列式即可;(2)畫出樹狀圖,然后根據(jù)概率的意義分別求出甲、乙獲勝的概率,從而得解.試題解析:(1)P=;(2)由題意畫出樹狀圖如下:一共有6種情況,甲獲勝的情況有4種,P=,乙獲勝的情況有2種,P=,所以,這樣的游戲規(guī)則對(duì)甲乙雙方不公平.考點(diǎn):游戲公平性;列表法與樹狀圖法.20、(1)a=,k=3,B(-,-2)(2)﹣≤x<0或x≥3;(3)(0,)或(0,0)【解析】

1)過(guò)A作AE⊥x軸,交x軸于點(diǎn)E,在Rt△AOE中,根據(jù)tan∠AOC的值,設(shè)AE=x,得到OE=3x,再由OA的長(zhǎng),利用勾股定理列出關(guān)于x的方程,求出方程的解得到x的值,確定出A坐標(biāo),將A坐標(biāo)代入一次函數(shù)解析式求出a的值,代入反比例解析式求出k的值,聯(lián)立一次函數(shù)與反比例函數(shù)解析式求出B的坐標(biāo);(2)由A與B交點(diǎn)橫坐標(biāo),根據(jù)函數(shù)圖象確定出所求不等式的解集即可;(3)顯然P與O重合時(shí),滿足△PDC與△ODC相似;當(dāng)PC⊥CD,即∠PCD=時(shí),滿足三角形PDC與三角形CDO相等,利用同角的余角相等得到一對(duì)角相等,再由一對(duì)直角相等得到三角形PCO與三角形CDO相似,由相似得比例,根據(jù)OD,OC的長(zhǎng)求出OP的長(zhǎng),即可確定出P的坐標(biāo).【詳解】解:(1)過(guò)A作AE⊥x軸,交x軸于點(diǎn)E,在Rt△AOE中,OA=,tan∠AOC=,設(shè)AE=x,則OE=3x,根據(jù)勾股定理得:OA2=OE2+AE2,即10=9x2+x2,解得:x=1或x=﹣1(舍去),∴OE=3,AE=1,即A(3,1),將A坐標(biāo)代入一次函數(shù)y=ax﹣1中,得:1=3a﹣1,即a=,將A坐標(biāo)代入反比例解析式得:1=,即k=3,聯(lián)立一次函數(shù)與反比例解析式得:,消去y得:x﹣1=,解得:x=﹣或x=3,將x=﹣代入得:y=﹣1﹣1=﹣2,即B(﹣,﹣2);(2)由A(3,1),B(﹣,﹣2),根據(jù)圖象得:不等式x﹣1≥的解集為﹣≤x<0或x≥3;(3)顯然P與O重合時(shí),△PDC∽△ODC;當(dāng)PC⊥CD,即∠PCD=90°時(shí),∠PCO+∠DCO=90°,∵∠PCD=∠COD=90°,∠PCD=∠CDO,∴△PDC∽△CDO,∵∠PCO+∠CPO=90°,∴∠DCO=∠CPO,∵∠POC=∠COD=90°,∴△PCO∽△CDO,∴=,對(duì)于一次函數(shù)解析式y(tǒng)=x﹣1,令x=0,得到y(tǒng)=﹣1;令y=0,得到x=,∴C(,0),D(0,﹣1),即OC=,OD=1,∴=,即OP=,此時(shí)P坐標(biāo)為(0,),綜上,滿足題意P的坐標(biāo)為(0,)或(0,0).【點(diǎn)睛】此題屬于反比例函數(shù)綜合題,涉及的知識(shí)有:待定系數(shù)法確定函數(shù)解析式,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論