版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知實數(shù)滿足則的最大值為()A.2 B. C.1 D.02.“哥德巴赫猜想”是近代三大數(shù)學(xué)難題之一,其內(nèi)容是:一個大于2的偶數(shù)都可以寫成兩個質(zhì)數(shù)(素數(shù))之和,也就是我們所謂的“1+1”問題.它是1742年由數(shù)學(xué)家哥德巴赫提出的,我國數(shù)學(xué)家潘承洞、王元、陳景潤等在哥德巴赫猜想的證明中做出相當(dāng)好的成績.若將6拆成兩個正整數(shù)的和,則拆成的和式中,加數(shù)全部為質(zhì)數(shù)的概率為()A. B. C. D.3.已知將函數(shù)(,)的圖象向右平移個單位長度后得到函數(shù)的圖象,若和的圖象都關(guān)于對稱,則下述四個結(jié)論:①②③④點為函數(shù)的一個對稱中心其中所有正確結(jié)論的編號是()A.①②③ B.①③④ C.①②④ D.②③④4.已知函數(shù)若關(guān)于的方程有六個不相等的實數(shù)根,則實數(shù)的取值范圍為()A. B. C. D.5.已知非零向量,滿足,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件解:6.已知向量滿足,且與的夾角為,則()A. B. C. D.7.已知全集,則集合的子集個數(shù)為()A. B. C. D.8.要排出高三某班一天中,語文、數(shù)學(xué)、英語各節(jié),自習(xí)課節(jié)的功課表,其中上午節(jié),下午節(jié),若要求節(jié)語文課必須相鄰且節(jié)數(shù)學(xué)課也必須相鄰(注意:上午第五節(jié)和下午第一節(jié)不算相鄰),則不同的排法種數(shù)是()A. B. C. D.9.已知數(shù)列滿足:)若正整數(shù)使得成立,則()A.16 B.17 C.18 D.1910.已知直線:()與拋物線:交于(坐標(biāo)原點),兩點,直線:與拋物線交于,兩點.若,則實數(shù)的值為()A. B. C. D.11.雙曲線的漸近線方程為()A. B.C. D.12.在我國傳統(tǒng)文化“五行”中,有“金、木、水、火、土”五個物質(zhì)類別,在五者之間,有一種“相生”的關(guān)系,具體是:金生水、水生木、木生火、火生土、土生金.從五行中任取兩個,這二者具有相生關(guān)系的概率是()A.0.2 B.0.5 C.0.4 D.0.8二、填空題:本題共4小題,每小題5分,共20分。13.已知,在方向上的投影為,則與的夾角為_________.14.若函數(shù)為奇函數(shù),則_______.15.某外商計劃在個候選城市中投資個不同的項目,且在同一個城市投資的項目不超過個,則該外商不同的投資方案有____種.16.在中,角的對邊分別為,且,若外接圓的半徑為,則面積的最大值是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知的圖象在處的切線方程為.(1)求常數(shù)的值;(2)若方程在區(qū)間上有兩個不同的實根,求實數(shù)的值.18.(12分)數(shù)列滿足,是與的等差中項.(1)證明:數(shù)列為等比數(shù)列,并求數(shù)列的通項公式;(2)求數(shù)列的前項和.19.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)若恒成立,求實數(shù)的取值范圍.20.(12分)設(shè)橢圓E:(a,b>0)過M(2,),N(,1)兩點,O為坐標(biāo)原點,(1)求橢圓E的方程;(2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且?若存在,寫出該圓的方程,若不存在說明理由.21.(12分)已知橢圓過點,設(shè)橢圓的上頂點為,右頂點和右焦點分別為,,且.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)直線交橢圓于,兩點,設(shè)直線與直線的斜率分別為,,若,試判斷直線是否過定點?若過定點,求出該定點的坐標(biāo);若不過定點,請說明理由.22.(10分)如圖,在四棱錐中,底面是直角梯形,,,,是正三角形,,是的中點.(1)證明:;(2)求直線與平面所成角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
作出可行域,平移目標(biāo)直線即可求解.【詳解】解:作出可行域:由得,由圖形知,經(jīng)過點時,其截距最大,此時最大得,當(dāng)時,故選:B【點睛】考查線性規(guī)劃,是基礎(chǔ)題.2、A【解析】
列出所有可以表示成和為6的正整數(shù)式子,找到加數(shù)全部為質(zhì)數(shù)的只有,利用古典概型求解即可.【詳解】6拆成兩個正整數(shù)的和含有的基本事件有:(1,5),(2,4),(3,3),(4,2),(5,1),而加數(shù)全為質(zhì)數(shù)的有(3,3),根據(jù)古典概型知,所求概率為.故選:A.【點睛】本題主要考查了古典概型,基本事件,屬于容易題.3、B【解析】
首先根據(jù)三角函數(shù)的平移規(guī)則表示出,再根據(jù)對稱性求出、,即可求出的解析式,從而驗證可得;【詳解】解:由題意可得,又∵和的圖象都關(guān)于對稱,∴,∴解得,即,又∵,∴,,∴,∴,,∴①③④正確,②錯誤.故選:B【點睛】本題考查三角函數(shù)的性質(zhì)的應(yīng)用,三角函數(shù)的變換規(guī)則,屬于基礎(chǔ)題.4、B【解析】
令,則,由圖象分析可知在上有兩個不同的根,再利用一元二次方程根的分布即可解決.【詳解】令,則,如圖與頂多只有3個不同交點,要使關(guān)于的方程有六個不相等的實數(shù)根,則有兩個不同的根,設(shè)由根的分布可知,,解得.故選:B.【點睛】本題考查復(fù)合方程根的個數(shù)問題,涉及到一元二次方程根的分布,考查學(xué)生轉(zhuǎn)化與化歸和數(shù)形結(jié)合的思想,是一道中檔題.5、C【解析】
根據(jù)向量的數(shù)量積運算,由向量的關(guān)系,可得選項.【詳解】,,∴等價于,故選:C.【點睛】本題考查向量的數(shù)量積運算和命題的充分、必要條件,屬于基礎(chǔ)題.6、A【解析】
根據(jù)向量的運算法則展開后利用數(shù)量積的性質(zhì)即可.【詳解】.故選:A.【點睛】本題主要考查數(shù)量積的運算,屬于基礎(chǔ)題.7、C【解析】
先求B.再求,求得則子集個數(shù)可求【詳解】由題=,則集合,故其子集個數(shù)為故選C【點睛】此題考查了交、并、補集的混合運算及子集個數(shù),熟練掌握各自的定義是解本題的關(guān)鍵,是基礎(chǔ)題8、C【解析】
根據(jù)題意,分兩種情況進行討論:①語文和數(shù)學(xué)都安排在上午;②語文和數(shù)學(xué)一個安排在上午,一個安排在下午.分別求出每一種情況的安排方法數(shù)目,由分類加法計數(shù)原理可得答案.【詳解】根據(jù)題意,分兩種情況進行討論:①語文和數(shù)學(xué)都安排在上午,要求節(jié)語文課必須相鄰且節(jié)數(shù)學(xué)課也必須相鄰,將節(jié)語文課和節(jié)數(shù)學(xué)課分別捆綁,然后在剩余節(jié)課中選節(jié)到上午,由于節(jié)英語課不加以區(qū)分,此時,排法種數(shù)為種;②語文和數(shù)學(xué)都一個安排在上午,一個安排在下午.語文和數(shù)學(xué)一個安排在上午,一個安排在下午,但節(jié)語文課不加以區(qū)分,節(jié)數(shù)學(xué)課不加以區(qū)分,節(jié)英語課也不加以區(qū)分,此時,排法種數(shù)為種.綜上所述,共有種不同的排法.故選:C.【點睛】本題考查排列、組合的應(yīng)用,涉及分類計數(shù)原理的應(yīng)用,屬于中等題.9、B【解析】
計算,故,解得答案.【詳解】當(dāng)時,,即,且.故,,故.故選:.【點睛】本題考查了數(shù)列的相關(guān)計算,意在考查學(xué)生的計算能力和對于數(shù)列公式方法的綜合應(yīng)用.10、D【解析】
設(shè),,聯(lián)立直線與拋物線方程,消去、列出韋達定理,再由直線與拋物線的交點求出點坐標(biāo),最后根據(jù),得到方程,即可求出參數(shù)的值;【詳解】解:設(shè),,由,得,∵,解得或,∴,.又由,得,∴或,∴,∵,∴,又∵,∴代入解得.故選:D【點睛】本題考查直線與拋物線的綜合應(yīng)用,弦長公式的應(yīng)用,屬于中檔題.11、A【解析】
將雙曲線方程化為標(biāo)準(zhǔn)方程為,其漸近線方程為,化簡整理即得漸近線方程.【詳解】雙曲線得,則其漸近線方程為,整理得.故選:A【點睛】本題主要考查了雙曲線的標(biāo)準(zhǔn)方程,雙曲線的簡單性質(zhì)的應(yīng)用.12、B【解析】
利用列舉法,結(jié)合古典概型概率計算公式,計算出所求概率.【詳解】從五行中任取兩個,所有可能的方法為:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土,共種,其中由相生關(guān)系的有金水、木水、木火、火土、金土,共種,所以所求的概率為.故選:B【點睛】本小題主要考查古典概型的計算,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由向量投影的定義可求得兩向量夾角的余弦值,從而得角的大小.【詳解】在方向上的投影為,即夾角為.故答案為:.【點睛】本題考查求向量的夾角,掌握向量投影的定義是解題關(guān)鍵.14、-2【解析】
由是定義在上的奇函數(shù),可知對任意的,都成立,代入函數(shù)式可求得的值.【詳解】由題意,的定義域為,,是奇函數(shù),則,即對任意的,都成立,故,整理得,解得.故答案為:.【點睛】本題考查奇函數(shù)性質(zhì)的應(yīng)用,考查學(xué)生的計算求解能力,屬于基礎(chǔ)題.15、60【解析】試題分析:每個城市投資1個項目有種,有一個城市投資2個有種,投資方案共種.考點:排列組合.16、【解析】
由正弦定理,三角函數(shù)恒等變換的應(yīng)用化簡已知等式,結(jié)合范圍可求的值,利用正弦定理可求的值,進而根據(jù)余弦定理,基本不等式可求的最大值,進而根據(jù)三角形的面積公式即可求解.【詳解】解:,由正弦定理可得:,,,又,,,即,可得:,外接圓的半徑為,,解得,由余弦定理,可得,又,(當(dāng)且僅當(dāng)時取等號),即最大值為4,面積的最大值為.故答案為:.【點睛】本題主要考查了正弦定理,三角函數(shù)恒等變換的應(yīng)用,余弦定理,基本不等式,三角形的面積公式在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)或.【解析】
(1)求出,由,建立方程求解,即可求出結(jié)論;(2)根據(jù)函數(shù)的單調(diào)區(qū)間,極值,做出函數(shù)在的圖象,即可求解.【詳解】(1),由題意知,解得(舍去)或.(2)當(dāng)時,故方程有根,根為或,+0-0+極大值極小值由表可見,當(dāng)時,有極小值0.由上表可知的減函數(shù)區(qū)間為,遞增區(qū)間為,.因為,.由數(shù)形結(jié)合可得或.【點睛】本題考查導(dǎo)數(shù)的幾何意義,應(yīng)用函數(shù)的圖象是解題的關(guān)鍵,意在考查直觀想象、邏輯推理和數(shù)學(xué)計算能力,屬于中檔題.18、(1)見解析,(2)【解析】
(1)根據(jù)等差中項的定義得,然后構(gòu)造新等比數(shù)列,寫出的通項即可求(2)根據(jù)(1)的結(jié)果,分組求和即可【詳解】解:(1)由已知可得,即,可化為,故數(shù)列是以為首項,2為公比的等比數(shù)列.即有,所以.(2)由(1)知,數(shù)列的通項為:,故.【點睛】考查等差中項的定義和分組求和的方法;中檔題.19、(1)當(dāng)時,在上單調(diào)遞增;當(dāng)時,在上單調(diào)遞減,在上單調(diào)遞增;當(dāng)時,在上單調(diào)遞減,在上單調(diào)遞增;(2).【解析】
(1)對a分三種情況討論求出函數(shù)的單調(diào)性;(2)對a分三種情況,先求出每一種情況下函數(shù)f(x)的最小值,再解不等式得解.【詳解】(1),當(dāng)時,,在上單調(diào)遞增;當(dāng)時,,,,,∴在上單調(diào)遞減,在上單調(diào)遞增;當(dāng)時,,,,,∴在上單調(diào)遞減,在上單調(diào)遞增.綜上:當(dāng)時,在上單調(diào)遞增;當(dāng)時,在上單調(diào)遞減,在上單調(diào)遞增;當(dāng)時,在上單調(diào)遞減,在上單調(diào)遞增.(2)由(1)可知:當(dāng)時,,∴成立.當(dāng)時,,,∴.當(dāng)時,,,∴,即.綜上.【點睛】本題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和不等式的恒成立問題,意在考查學(xué)生對這些知識的理解掌握水平和分析推理能力.20、(1)(2)【解析】試題分析:(1)因為橢圓E:(a,b>0)過M(2,),N(,1)兩點,所以解得所以橢圓E的方程為(2)假設(shè)存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且,設(shè)該圓的切線方程為解方程組得,即,則△=,即,要使,需使,即,所以,所以又,所以,所以,即或,因為直線為圓心在原點的圓的一條切線,所以圓的半徑為,,,所求的圓為,此時圓的切線都滿足或,而當(dāng)切線的斜率不存在時切線為與橢圓的兩個交點為或滿足,綜上,存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且.考點:本題主要考查橢圓的標(biāo)準(zhǔn)方程,直線與橢圓的位置關(guān)系,圓與橢圓的位置關(guān)系.點評:中檔題,涉及直線與圓錐曲線的位置關(guān)系問題,往往要利用韋達定理.存在性問題,往往從假設(shè)存在出發(fā),運用題中條件探尋得到存在的是否條件具備.(2)小題解答中,集合韋達定理,應(yīng)用平面向量知識證明了圓的存在性.21、(1)(2)直線過定點,該定點的坐標(biāo)為.【解析】
(1)因為橢圓過點,所以①,設(shè)為坐標(biāo)原點,因為,所以,又,所以②,將①②聯(lián)立解得(負值舍去),所以橢圓的標(biāo)準(zhǔn)方程為.(2)由(1)可知,設(shè),.將代入,消去可得,則,,,所以,所以,此時,所以,此時直線的方程為,即,令,可得,所以直線過定點,該定點的坐標(biāo)為.22、(1)見證明;(2)【解析】
(1)設(shè)是的中點,連接、,先證明是平行四邊形,再證明平面,即(2)以
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 遼陽職業(yè)技術(shù)學(xué)院《化工CAD制圖》2023-2024學(xué)年第一學(xué)期期末試卷
- 五年級數(shù)學(xué)下冊應(yīng)用題-分?jǐn)?shù)應(yīng)用題
- 廊坊燕京職業(yè)技術(shù)學(xué)院《信息系統(tǒng)審計》2023-2024學(xué)年第一學(xué)期期末試卷
- 江西師范高等??茖W(xué)校《新媒體網(wǎng)絡(luò)營銷劃寫作》2023-2024學(xué)年第一學(xué)期期末試卷
- 嘉應(yīng)學(xué)院《奧爾夫音樂教學(xué)法》2023-2024學(xué)年第一學(xué)期期末試卷
- 湖州學(xué)院《傳感器技術(shù)與應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷
- 湖南國防工業(yè)職業(yè)技術(shù)學(xué)院《電子學(xué)二》2023-2024學(xué)年第一學(xué)期期末試卷
- 紅河衛(wèi)生職業(yè)學(xué)院《傳播學(xué)原理與技能》2023-2024學(xué)年第一學(xué)期期末試卷
- 淄博師范高等??茖W(xué)?!冬F(xiàn)代數(shù)值仿真技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 周口理工職業(yè)學(xué)院《熱工材料基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷
- 中醫(yī)師承跟師筆記50篇
- QBT 2010-1994 振蕩拉軟機行業(yè)標(biāo)準(zhǔn)
- ISO28000:2022供應(yīng)鏈安全管理體系
- 化工有限公司3萬噸水合肼及配套項目環(huán)評可研資料環(huán)境影響
- 2023年公務(wù)員多省聯(lián)考《申論》題(廣西B卷)
- 生物醫(yī)藥大數(shù)據(jù)分析平臺建設(shè)
- 滬教版小學(xué)語文古詩(1-4)年級教材
- 外科醫(yī)生年終述職總結(jié)報告
- CT設(shè)備維保服務(wù)售后服務(wù)方案
- 重癥血液凈化血管通路的建立與應(yīng)用中國專家共識(2023版)
- 兒科課件:急性細菌性腦膜炎
評論
0/150
提交評論