福建省三明市縣2025屆九年級數(shù)學第一學期期末質(zhì)量檢測模擬試題含解析_第1頁
福建省三明市縣2025屆九年級數(shù)學第一學期期末質(zhì)量檢測模擬試題含解析_第2頁
福建省三明市縣2025屆九年級數(shù)學第一學期期末質(zhì)量檢測模擬試題含解析_第3頁
福建省三明市縣2025屆九年級數(shù)學第一學期期末質(zhì)量檢測模擬試題含解析_第4頁
福建省三明市縣2025屆九年級數(shù)學第一學期期末質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

福建省三明市縣2025屆九年級數(shù)學第一學期期末質(zhì)量檢測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每題4分,共48分)1.下列汽車標志圖片中,既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.2.已知函數(shù)的圖象過點,則該函數(shù)的圖象必在()A.第二、三象限 B.第二、四象限C.第一、三象限 D.第三、四象限3.下列根式中,是最簡二次根式的是()A. B. C. D.4.在下列交通標志中,既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.5.如圖,已知為的直徑,點,在上,若,則()A. B. C. D.6.如圖,在四邊形中,,點分別是邊上的點,與交于點,,則與的面積之比為()A. B. C.2 D.47.如圖,正方形ABCD和正方形CGFE的頂點C,D,E在同一條直線上,頂點B,C,G在同一條直線上.O是EG的中點,∠EGC的平分線GH過點D,交BE于點H,連接FH交EG于點M,連接OH.以下四個結(jié)論:①GH⊥BE;②△EHM∽△GHF;③﹣1;④=2﹣,其中正確的結(jié)論是()A.①②③ B.①②④ C.①③④ D.②③④8.下列運算正確的是()A. B.C. D.9.如圖,AB為⊙O的直徑,C、D是⊙O上的兩點,,弧AD=弧CD.則∠DAC等于()A. B. C. D.10.如圖是某零件的模型,則它的左視圖為()A. B. C. D.11.在△ABC中,若cosA=,tanB=,則這個三角形一定是()A.銳角三角形 B.直角三角形 C.鈍角三角形 D.等腰三角形12.二次函數(shù)的圖象是一條拋物線,下列說法中正確的是()A.拋物線開口向下 B.拋物線經(jīng)過點C.拋物線的對稱軸是直線 D.拋物線與軸有兩個交點二、填空題(每題4分,共24分)13.如圖,已知A(,y1),B(2,y2)為反比例函數(shù)y=圖象上的兩點,動點P(x,0)在x軸正半軸上運動,當線段AP與線段BP之差達到最大時,點P的坐標是_____.14.將一副三角尺按如圖所示的方式疊放在一起,邊AC與BD相交于點E,則的值等于_________.15.已知關于x的一元二次方程x2+px-3=0的一個根為-3,則它的另一根為________.16.如圖,AB是⊙O的弦,AB長為8,P是⊙O上一個動點(不與A、B重合),過點O作OC⊥AP于點C,OD⊥PB于點D,則CD的長為▲.17.某班從三名男生(含小強)和五名女生中,選四名學生參加學校舉行的“中華古詩文朗誦大賽”,規(guī)定女生選n名,若男生小強參加是必然事件,則n=__________.18.如圖,將一個含30°角的三角尺ABC放在直角坐標系中,使直角頂點C與原點O重合,頂點A,B分別在反比例函數(shù)y=﹣和y=的圖象上,則k的值為___.三、解答題(共78分)19.(8分)如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,D、E分別是邊BC、AC上的兩個動點,且DE=4,P是DE的中點,連接PA,PB,則PA+PB的最小值為_____.20.(8分)如圖,已知一次函數(shù)與反比例函數(shù)的圖像相交于點,與軸相交于點.(1)求的值和的值以及點的坐標;(2)觀察反比例函數(shù)的圖像,當時,請直接寫出自變量的取值范圍;(3)以為邊作菱形,使點在軸正半軸上,點在第一象限,求點的坐標;(4)在y軸上是否存在點,使的值最???若存在,請求出點的坐標;若不存在,請說明理由.21.(8分)佩佩賓館重新裝修后,有間房可供游客居住,經(jīng)市場調(diào)查發(fā)現(xiàn),每間房每天的定價為元,房間會全部住滿,當每間房每天的定價每增加元時,就會有一間房空閑,如果游客居住房間,賓館需對每間房每天支出元的各項費用.設每間房每天的定價增加元,賓館獲利為元.(1)求與的函數(shù)關系式(不用寫出自變量的取值范圍);(2)物價部門規(guī)定,春節(jié)期間客房定價不能高于平時定價的倍,此時每間房價為多少元時賓館可獲利元?22.(10分)如圖,AB和DE是直立在地面上的兩根立柱.AB=6m,某一時刻AB在陽光下的投影BC=4m(1)請你在圖中畫出此時DE在陽光下的投影.(2)在測量AB的投影時,同時測量出DE在陽光下的投影長為9m,請你計算DE的長.23.(10分)一元二次方程的一個根為,求的值及方程另一根.24.(10分)若二次函數(shù)的圖象的頂點在的圖象上,則稱為的伴隨函數(shù),如是的伴隨函數(shù).(1)若函數(shù)是的伴隨函數(shù),求的值;(2)已知函數(shù)是的伴隨函數(shù).①當點(2,-2)在二次函數(shù)的圖象上時,求二次函數(shù)的解析式;②已知矩形,為原點,點在軸正半軸上,點在軸正半軸上,點(6,2),當二次函數(shù)的圖象與矩形有三個交點時,求此二次函數(shù)的頂點坐標.25.(12分)有兩個不透明的袋子,甲袋子里裝有標有兩個數(shù)字的張卡片,乙袋子里裝有標有三個數(shù)字的張卡片,兩個袋子里的卡片除標有的數(shù)字不同外,其大小質(zhì)地完全相同.(1)從乙袋里任意抽出一張卡片,抽到標有數(shù)字的概率為.(2)求從甲、乙兩個袋子里各抽一張卡片,抽到標有兩個數(shù)字的卡片的概率.26.如圖,A,B,C是⊙O上的點,,半徑為5,求BC的長.

參考答案一、選擇題(每題4分,共48分)1、C【解析】根據(jù)軸對稱圖形和中心對稱圖形的性質(zhì)進行判斷即可.【詳解】A.既不是軸對稱圖形,也不是中心對稱圖形,錯誤;B.是軸對稱圖形,不是中心對稱圖形,錯誤;C.既是軸對稱圖形,也是中心對稱圖形,正確;D.是軸對稱圖形,不是中心對稱圖形,錯誤;故答案為:C.【點睛】本題考查了軸對稱圖形和中心對稱圖形的問題,掌握軸對稱圖形和中心對稱圖形的性質(zhì)是解題的關鍵.2、B【解析】試題分析:對于反比例函數(shù)y=,當k>0時,函數(shù)圖像在一、三象限;當k<0時,函數(shù)圖像在二、四象限.根據(jù)題意可得:k=-2.考點:反比例函數(shù)的性質(zhì)3、D【分析】根據(jù)最簡二次根式的定義(被開方數(shù)不含有能開的盡方的因式或因數(shù),被開方數(shù)不含有分數(shù)),逐一判斷即可得答案.【詳解】A.=,故該選項不是最簡二次根式,不符合題意,B.=,故該選項不是最簡二次根式,不符合題意,C.=,故該選項不是最簡二次根式,不符合題意,D.是最簡二次根式,符合題意,故選:D.【點睛】本題考查了對最簡二次根式的理解,被開方數(shù)不含有能開的盡方的因式或因數(shù),被開方數(shù)不含有分數(shù)的二次根式叫做最簡二次根式;能熟練地運用定義進行判斷是解此題的關鍵.4、C【分析】根據(jù)軸對稱圖形和中心對稱圖形的定義進行分析即可.【詳解】A、不是軸對稱圖形,也不是中心對稱圖形.故此選項錯誤;B、不是軸對稱圖形,也不是中心對稱圖形.故此選項錯誤;C、是軸對稱圖形,也是中心對稱圖形.故此選項正確;D、是軸對稱圖形,但不是中心對稱圖形.故此選項錯誤.故選C.【點睛】考點:1、中心對稱圖形;2、軸對稱圖形5、C【分析】連接AD,根據(jù)同弧所對的圓周角相等,求∠BAD的度數(shù),再根據(jù)直徑所對的圓周角是90°,利用內(nèi)角和求解.【詳解】解:連接AD,則∠BAD=∠BCD=28°,∵AB是直徑,∴∠ADB=90°,∴∠ABD=90°-∠BAD=90°-28°=62°.故選:C.【點睛】本題考查圓周角定理,運用圓周角定理是解決圓中角問題的重要途徑,直徑所對的圓周角是90°是圓中構(gòu)造90°角的重要手段.6、D【分析】由AD∥BC,可得出△AOE∽△FOB,再利用相似三角形的性質(zhì)即可得出△AOE與△BOF的面積之比.【詳解】:∵AD∥BC,

∴∠OAE=∠OFB,∠OEA=∠OBF,

∴,∴所以相似比為,∴.故選:D.【點睛】本題考查了相似三角形的判定與性質(zhì),牢記相似三角形的面積比等于相似比的平方是解題的關鍵.7、A【分析】由四邊形ABCD和四邊形CGFE是正方形,得出△BCE≌△DCG,推出∠BEC+∠HDE=90°,從而得GH⊥BE;由GH是∠EGC的平分線,得出△BGH≌△EGH,再由O是EG的中點,利用中位線定理,得HO∥BG且HO=BG;由△EHG是直角三角形,因為O為EG的中點,所以OH=OG=OE,得出點H在正方形CGFE的外接圓上,根據(jù)圓周角定理得出∠FHG=∠EHF=∠EGF=45°,∠HEG=∠HFG,從而證得△EHM∽△GHF;設HN=a,則BC=2a,設正方形ECGF的邊長是2b,則NC=b,CD=2a,由HO∥BG,得出△DHN∽△DGC,即可得出,得到,即a2+2ab-b2=0,從而求得,設正方形ECGF的邊長是2b,則EG=2b,得到HO=b,通過證得△MHO∽△MFE,得到,進而得到,進一步得到.【詳解】解:如圖,∵四邊形ABCD和四邊形CGFE是正方形,∴BC=CD,CE=CG,∠BCE=∠DCG,在△BCE和△DCG中,∴△BCE≌△DCG(SAS),∴∠BEC=∠BGH,∵∠BGH+∠CDG=90°,∠CDG=∠HDE,∴∠BEC+∠HDE=90°,∴GH⊥BE.故①正確;∵△EHG是直角三角形,O為EG的中點,∴OH=OG=OE,∴點H在正方形CGFE的外接圓上,∵EF=FG,∴∠FHG=∠EHF=∠EGF=45°,∠HEG=∠HFG,∴△EHM∽△GHF,故②正確;∵△BGH≌△EGH,∴BH=EH,又∵O是EG的中點,∴HO∥BG,∴△DHN∽△DGC,設EC和OH相交于點N.設HN=a,則BC=2a,設正方形ECGF的邊長是2b,則NC=b,CD=2a,即a2+2ab﹣b2=0,解得:a=b=(﹣1+)b,或a=(﹣1﹣)b(舍去),故③正確;∵△BGH≌△EGH,∴EG=BG,∵HO是△EBG的中位線,∴HO=BG,∴HO=EG,設正方形ECGF的邊長是2b,∴EG=2b,∴HO=b,∵OH∥BG,CG∥EF,∴OH∥EF,∴△MHO△MFE,∴,∴EM=OM,∴,∴∵EO=GO,∴S△HOE=S△HOG,∴故④錯誤,故選A.【點睛】本題考查了正方形的性質(zhì),以及全等三角形的判定與性質(zhì),相似三角形的判定與性質(zhì),正確求得兩個三角形的邊長的比是解決本題的關鍵.8、B【分析】根據(jù)完全平方公式、同底數(shù)冪乘法、同底數(shù)冪除法、合并同類項法則逐一進行分析判斷即可.【詳解】因為,所以選項A錯誤;,所以B選項正確;,故選項C錯誤;因為與不是同類項,不能合并,故選項D錯誤,故選B.【點睛】本題考查了整式的運算,涉及了完全平方公式、同底數(shù)冪乘除法等,熟練掌握各運算的運算法則是解題的關鍵.9、C【分析】利用圓周角定理得到,則,再根據(jù)圓內(nèi)接四邊形的對角互補得到,又根據(jù)弧AD=弧CD得到,然后根據(jù)等腰三角形的性質(zhì)和三角形的內(nèi)角和定理可得出的度數(shù).【詳解】∵AB為⊙O的直徑∵弧AD=弧CD故選:C.【點睛】本題考查了圓周角定理、圓內(nèi)接四邊形的性質(zhì)、等腰三角形的性質(zhì)等知識點,利用圓內(nèi)接四邊形的性質(zhì)求出的度數(shù)是解題關鍵.10、D【分析】找到從左面看所得到的圖形即可,注意所有的看到的棱都應表現(xiàn)在視圖中.【詳解】從左面看去,是兩個有公共邊的矩形,如圖所示:故選:D.【點睛】本題考查了三視圖的知識,左視圖是從物體的左面看得到的視圖.視圖中每一個閉合的線框都表示物體上的一個平面,而相連的兩個閉合線框常不在一個平面上.11、A【解析】試題解析:∵cosA=,tanB=,∴∠A=45°,∠B=60°.∴∠C=180°-45°-60°=75°.∴△ABC為銳角三角形.故選A.12、D【分析】根據(jù)二次函數(shù)的性質(zhì)對A、C進行判斷;根據(jù)二次函數(shù)圖象上點的坐標特征對B進行判斷;利用方程2x2-1=0解的情況對D進行判斷.【詳解】A.

a=2,則拋物線y=2x2?1的開口向上,所以A選項錯誤;B.當x=1時,y=2×1?1=1,則拋物線不經(jīng)過點(1,-1),所以B選項錯誤;C.拋物線的對稱軸為直線x=0,所以C選項錯誤;D.當y=0時,2x2?1=0,此方程有兩個不相等的實數(shù)解,所以D選項正確.故選D.【點睛】本題考查了拋物線與x軸的交點,二次函數(shù)的性質(zhì),二次函數(shù)圖象上點的坐標特征,結(jié)合圖像是解題的關鍵.二、填空題(每題4分,共24分)13、【解析】試題解析:∵把A(,y1),B(2,y2)代入反比例函數(shù)y=得:y1=2,y2=,∴A(,2),B(2,).在△ABP中,由三角形的三邊關系定理得:|AP-BP|<AB,∴延長AB交x軸于P′,當P在P′點時,PA-PB=AB,即此時線段AP與線段BP之差達到最大,設直線AB的解析式是y=ax+b(a≠0)把A、B的坐標代入得:,解得:,∴直線AB的解析式是y=-x+,當y=0時,x=,即P(,0);故答案為(,0).14、【分析】如圖(見解析),先根據(jù)等腰直角三角形的判定與性質(zhì)可得,設,從而可得,再在中,利用直角三角形的性質(zhì)、勾股定理可得,由此即可得出答案.【詳解】如圖,過點E作于點F,由題意得:,,是等腰直角三角形,,設,則,在中,,,,解得,則,故答案為:.【點睛】本題考查了等腰直角三角形的判定與性質(zhì)、直角三角形的性質(zhì)、勾股定理等知識點,通過作輔助線,構(gòu)造兩個直角三角形是解題關鍵.15、1【分析】根據(jù)根與系數(shù)的關系得出?3x=?6,求出即可.【詳解】設方程的另一個根為x,則根據(jù)根與系數(shù)的關系得:?3x=?3,解得:x=1,故答案為:1.【點睛】本題考查了根與系數(shù)的關系和一元二次方程的解,能熟記根與系數(shù)的關系的內(nèi)容是解此題的關鍵.16、1.【分析】利用垂徑定理和中位線的性質(zhì)即可求解.【詳解】∵OC⊥AP,OD⊥PB,∴由垂徑定理得:AC=PC,PD=BD,∴CD是△APB的中位線,∴CD=AB=×8=1.故答案為117、1;【解析】根據(jù)必然事件的定義可知三名男生都必須被選中,可得答案.【詳解】解:∵男生小強參加是必然事件,∴三名男生都必須被選中,∴只選1名女生,故答案為1.【點睛】本題考查的是事件的概念.必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.18、1.【分析】過A作AE⊥y軸于E過B作BF⊥y軸于F,通過△AOE∽△BOF,得到,設,于是得到AE=-m,,從而得到,,于是求得結(jié)果.【詳解】解:過作軸于過作軸于,,,,,,,,設,,,,,,.故答案為1.【點睛】此題考查相似三角形的判定與性質(zhì),反比例函數(shù)圖象上點的坐標特征,解題關鍵在于作輔助線和利用三角函數(shù)進行解答.三、解答題(共78分)19、【分析】連接PC,則PC=DE=2,在CB上截取CM=0.25,得出△CPM∽△CBP,即可得出結(jié)果.【詳解】解:連接PC,則PC=DE=2,∴P在以C為圓心,2為半徑的圓弧上運動,在CB上截取CM=0.25,連接MP,∴,∴,∵∠MCP=∠PCB,∴△CPM∽△CBP,∴PM=PB,∴PA+PB=PA+PM,∴當P、M、A共線時,PA+PB最小,即.【點睛】本題考查了最短路徑問題,相似三角形的判定與性質(zhì),正確做出輔助線是解題的關鍵.20、(1)n=3,k=1,點B的坐標為(2,3);(2)x≤﹣2或x>3;(3)點D的坐標為(2+,3);(2)存在,P(3,1).【分析】(1)把點A(2,n)代入一次函數(shù)中可求得n的值,從而求出一次函數(shù)的解析式,于是可得B的坐標;再把點A的坐標代入反比例函數(shù)中,可得到k的值;

(2)觀察反比例函數(shù)圖象即可得到當y≥-3時,自變量x的取值范圍.(3)先求出菱形的邊長,然后利用平移的性質(zhì)可得點D的坐標;

(2)作點B關于y軸的對稱點Q,連接AQ交y軸于點P,此時的值最小,據(jù)此可解.【詳解】解:(1)把點A(2,n)代入一次函數(shù)y=x﹣3,可得n=×2﹣3=3;把點A(2,3)代入反比例函數(shù),可得3=,解得:k=1.∵一次函數(shù)y=x﹣3與x軸相交于點B,∴x﹣3=3,解得:x=2,∴點B的坐標為(2,3),(2)當y=﹣3時,,解得:x=﹣2.故當y≥﹣3時,自變量x的取值范圍是x≤﹣2或x>3.(3)如圖1,過點A作AE⊥x軸,垂足為E,∵A(2,3),B(2,3),∴OE=2,AE=3,OB=2,∴BE=OE﹣OB=2﹣2=2,在Rt△ABE中,AB==.∵四邊形ABCD是菱形,∴AD=AB=,AD∥BC,∴點A(2,3)向右平移個單位到點D,∴點D的坐標為(2+,3).(2)存在.如圖2,作點B關于y軸的對稱點Q,連接AQ交y軸于點P,此時的值最小.設直線AQ的解析式為y=kx+b,∵點B(2,3)關于y軸的對稱點Q的坐標為(-2,3),∴,∴,∴直線AQ的關系式為,∴直線AQ與y軸的交點為P(3,1).∴在y軸上存在點P(3,1),使的值最小.【點睛】本題屬于反比例函數(shù)綜合題,考查了待定系數(shù)法求函數(shù)解析式,菱形的性質(zhì)、反比例函數(shù)的性質(zhì)等知識,熟練掌握相關性質(zhì)及數(shù)形結(jié)合思想是解題關鍵.21、(1);(2)每間房價為元時,賓館可獲利元【分析】(1)根據(jù)題意表示出每間房間的利潤和房間數(shù),進而求得答案;(2)代入(1)求出的函數(shù)式,解方程即可,注意要符合條件的.【詳解】解:由題意得答:與的函數(shù)關系式為:由可得:令,即解得解得此時每間房價為:(元)答:每間房價為元時,賓館可獲利元?!军c睛】本題考查的是盈利問題的二次函數(shù)式及二次函數(shù)的最值問題,通常做法是先列出二次函數(shù)式,然后利用y最值或化成頂點式進行求解.用代數(shù)表示每間房間的利潤和房間數(shù)是關鍵.22、(1)見解析;(2)13.5m.【分析】(1)直接利用平行投影的性質(zhì)得出答案;(2)利用同一時刻實際物體的影子與物體的高度比值相同進而得出答案.【詳解】解:(1)如圖所示:EF即為所求;(2)∵AB=6m,某一時刻AB在陽光下的投影BC=4m,DE在陽光下的投影長為9m,∴=,解得:DE=13.5m,答:DE的長為13.5m.【點睛】此題主要考查相似三角形的判定與性質(zhì),解題法的關鍵是熟知平行線的性質(zhì).23、,【分析】把x=1代入已知方程,列出關于m的新方程,通過解新方程來求m的值;由根與系數(shù)的關系來求方程的另一根.【詳解】解:由題意得:,解得,當時,方程為,解得:,,∴方程的另一根.【點睛】本題考查了一元二次方程的解,根與系數(shù)的關系.一元二次方程的根就是一元二次方程的解,就是能夠使方程左右兩邊相等的未知數(shù)的值.即用這個數(shù)代替未知數(shù)所得式子仍然成立.24、(1);(2)①或;②頂點坐標是(1,3)或(4,6).【分析】(1)將函數(shù)的圖象的頂點坐標是(1,1),代入即可求出t的值;(2)①設二次函數(shù)為,根據(jù)伴隨函數(shù)定義,得出代入二次函數(shù)得到:,把(2,-2),即可得出答案;②由①可知二次函數(shù)為,把(0,2)代入,得出h的值,進行取舍即可,把(6,2)代入得出h的值,進行取舍即可.【詳解】解:(1)函數(shù)的圖象的頂點坐標是(1,1),把,代入,得,解得:.(2)①設二次函數(shù)為.二次函數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論