2025屆江蘇省江陰市澄西片九年級數學第一學期期末調研模擬試題含解析_第1頁
2025屆江蘇省江陰市澄西片九年級數學第一學期期末調研模擬試題含解析_第2頁
2025屆江蘇省江陰市澄西片九年級數學第一學期期末調研模擬試題含解析_第3頁
2025屆江蘇省江陰市澄西片九年級數學第一學期期末調研模擬試題含解析_第4頁
2025屆江蘇省江陰市澄西片九年級數學第一學期期末調研模擬試題含解析_第5頁
已閱讀5頁,還剩20頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆江蘇省江陰市澄西片九年級數學第一學期期末調研模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.如圖,某物體由上下兩個圓錐組成,其軸截面中,,.若下部圓錐的側面積為1,則上部圓錐的側面積為()A. B. C. D.2.如圖,一次函數y=﹣x+3的圖象與反比例函數y=﹣的圖象交于A,B兩點,則不等式|﹣x+3|>﹣的解集為()A.﹣1<x<0或x>4 B.x<﹣1或0<x<4C.x<﹣1或x>0 D.x<﹣1或x>43.圓錐的底面半徑為1,母線長為2,則這個圓錐的側面積是()A. B. C. D.4.將拋物線y=x2+4x+3向左平移1個單位,再向下平移3個單位的所得拋物線的表達式是()A.y=(x+1)2-4 B.y=-(x+1)2-4 C.y=(x+3)2-4 D.y=-(x+3)2-45.已知關于x的分式方程=1的解是非負數,則m的取值范圍是()A.m1 B.m1C.m-1且m≠0 D.m-16.如圖,點P是矩形ABCD的邊上一動點,矩形兩邊長AB、BC長分別為15和20,那么P到矩形兩條對角線AC和BD的距離之和是()A.6 B.12 C.24 D.不能確定7.如圖所示的兩個三角形(B、F、C、E四點共線)是中心對稱圖形,則對稱中心是()A.點C B.點DC.線段BC的中點 D.線段FC的中點8.如圖,點A、點B是函數y=的圖象上關于坐標原點對稱的任意兩點,BC∥x軸,AC∥y軸,△ABC的面積是4,則k的值是()A.-2 B.±4 C.2 D.±29.如圖,已知△ABC中,∠C=90°,AC=BC=,將△ABC繞點A順時針方向旋轉60°得到△A′B′C′的位置,連接C′B,則C′B的長為()A.2- B. C. D.110.如圖,一個正六邊形轉盤被分成6個全等三角形,任意轉動這個轉盤1次,當轉盤停止時,指針指向陰影區(qū)域的概率是()A. B. C. D.二、填空題(每小題3分,共24分)11.二次函數的最小值是.12.一元二次方程的兩根為,,則的值為____________.13.點(5,﹣)關于原點對稱的點的坐標為__________.14.如圖,在平面直角坐標系中,點A是函數圖象上的點,AB⊥x軸,垂足為B,若△ABO的面積為3,則的值為__.15.反比例函數的圖像的兩支曲線分別位于第二、四象限內,則應滿足的條件是_________.16.已知一元二次方程的一個根為1,則__________.17.方程的解為________.18.如圖,△ABC中,已知∠C=90°,∠B=55°,點D在邊BC上,BD=2CD.把△ABC繞著點D逆時針旋轉m(0<m<180)度后,如果點B恰好落在初始Rt△ABC的邊上,那么m=_____三、解答題(共66分)19.(10分)先化簡,再求值的值,其中.20.(6分)如圖,在平面直角坐標系中,已知的三個項點的坐標分別是、、.(1)在軸左側畫,使其與關于點位似,點、、分別于、、對應,且相似比為;(2)的面積為_______.21.(6分)拋物線y=ax2+bx+1經過點A(﹣1,0),B(1,0),與y軸交于點C.點D(xD,yD)為拋物線上一個動點,其中1<xD<1.連接AC,BC,DB,DC.(1)求該拋物線的解析式;(2)當△BCD的面積等于△AOC的面積的2倍時,求點D的坐標;(1)在(2)的條件下,若點M是x軸上一動點,點N是拋物線上一動點,試判斷是否存在這樣的點M,使得以點B,D,M,N為頂點的四邊形是平行四邊形.若存在,求出點M的坐標;若不存在,請說明理由.22.(8分)如圖,P是平面直角坐標系中第四象限內一點,過點P作PA⊥x軸于點A,以AP為斜邊在右側作等腰Rt△APQ,已知直角頂點Q的縱坐標為﹣2,連結OQ交AP于B,BQ=2OB.(1)求點P的坐標;(2)連結OP,求△OPQ的面積與△OAQ的面積之比.23.(8分)如圖,在一筆直的海岸線上有A,B兩觀景臺,A在B的正東方向,BP=5(單位:km),有一艘小船停在點P處,從A測得小船在北偏西60°的方向,從B測得小船在北偏東45°的方向.(1)求A、B兩觀景臺之間的距離;(2)小船從點P處沿射線AP的方向進行沿途考察,求觀景臺B到射線AP的最短距離.(結果保留根號)24.(8分)計算:|1﹣|+.25.(10分)先化簡,再從中取一個恰當的整數代入求值.26.(10分)定義:點P在△ABC的邊上,且與△ABC的頂點不重合.若滿足△PAB、△PBC、△PAC至少有一個三角形與△ABC相似(但不全等),則稱點P為△ABC的自相似點.如圖①,已知點A、B、C的坐標分別為(1,0)、(3,0)、(0,1).(1)若點P的坐標為(2,0),求證點P是△ABC的自相似點;(2)求除點(2,0)外△ABC所有自相似點的坐標;(3)如圖②,過點B作DB⊥BC交直線AC于點D,在直線AC上是否存在點G,使△GBD與△GBC有公共的自相似點?若存在,請舉例說明;若不存在,請說明理由.

參考答案一、選擇題(每小題3分,共30分)1、C【分析】先證明△ABD為等邊三角形,得到AB=AD=BD,∠A=∠ABD=∠ADB=60°,由求出∠CBD=∠CDB=30°,從而求出BC和BD的比值,利用圓錐的側面積的計算方法得到上面圓錐的側面積與下面圓錐的側面積的比等于AB:CB,從而得到上部圓錐的側面積.【詳解】解:∵∠A=60°,AB=AD,

∴△ABD為等邊三角形,

∴AB=AD=BD,∠A=∠ABD=∠ADB=60°,∵∠ABC=90°,

∴∠CBD=30°,而CB=CD,

∴△CBD為底角為30°的等腰三角形,過點C作CE⊥BD于點E,易得BD=2BE,∵∠CBD=30°,∴BE:BC=:2,∴BD:BC=:2=:1,即AB:BC=:1,∵上面圓錐與下面圓錐的底面相同,

∴上面圓錐的側面積與下面圓錐的側面積的比等于AB:CB,

∴下面圓錐的側面積=.

故選:C.【點睛】本題考查了圓錐的計算:圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.也考查了等腰直角三角形和等邊三角形的性質.2、C【分析】先解方程組得A(﹣1,4),B(4,﹣1),然后利用函數圖象和絕對值的意義可判斷x<﹣1或x>1時,|﹣x+3|>﹣.【詳解】解方程組得或,則A(﹣1,4),B(4,﹣1),當x<﹣1或x>1時,|﹣x+3|>﹣,所以不等式|﹣x+3|>﹣的解集為x<﹣1或x>1.故選:C.【點睛】考核知識點:一次函數與反比例函數.解方程組求函數圖象交點是關鍵.3、B【分析】根據題意得出圓錐的底面半徑為1,母線長為2,直接利用圓錐側面積公式求出即可.【詳解】依題意知母線長為:2,底面半徑r=1,則由圓錐的側面積公式得S=πrl=π×1×2=2π.故選:B.【點睛】此題主要考查了圓錐側面面積的計算,對圓錐的側面面積公式運用不熟練,易造成錯誤.4、C【分析】先確定拋物線??=??2+4??+3的頂點坐標為(-2,-1),再根據點平移的規(guī)律得到點(-2,-1)平移后所得對應點的坐標為(-3,-4),然后根據頂點式寫出平移后的拋物線解析式.【詳解】解:∵y=x2+4x+3=x2+4x+4-4+3=(x+2)2-1∵將拋物線y=x2+4x+3向左平移1個單位,再向下平移3個單位∴平移后的函數解析式為:y=(x+2+1)2-1-3,即y=(x+3)2-4.故選:C【點睛】本題考查了二次函數與幾何變換:由于拋物線平移后的形狀不變,故a不變,所以求平移后的拋物線解析式通??衫脙煞N方法:一是求出原拋物線上任意兩點平移后的坐標,利用待定系數法求出解析式;二是只考慮平移后的頂點坐標,即可求出解析式.5、C【解析】分式方程去分母得:m=x-1,解得x=m+1,由方程的解為非負數,得到m+1≥0,且m+1≠1,解得:m-1且m≠0,故選C.6、B【分析】由矩形ABCD可得:S△AOD=S矩形ABCD,又由AB=15,BC=20,可求得AC的長,則可求得OA與OD的長,又由S△AOD=S△APO+S△DPO=OA?PE+OD?PF,代入數值即可求得結果.【詳解】連接OP,如圖所示:∵四邊形ABCD是矩形,∴AC=BD,OA=OC=AC,OB=OD=BD,∠ABC=90°,S△AOD=S矩形ABCD,∴OA=OD=AC,∵AB=15,BC=20,∴AC===25,S△AOD=S矩形ABCD=×15×20=75,∴OA=OD=,∴S△AOD=S△APO+S△DPO=OA?PE+OD?PF=OA?(PE+PF)=×(PE+PF)=75,∴PE+PF=1.∴點P到矩形的兩條對角線AC和BD的距離之和是1.故選B.【點睛】本題考查了矩形的性質、勾股定理、三角形面積.熟練掌握矩形的性質和勾股定理是解題的關鍵.7、D【分析】直接利用中心對稱圖形的性質得出答案.【詳解】解:兩個三角形(B、F、C、E四點共線)是中心對稱圖形,則對稱中心是:線段FC的中點.故選:D.【點睛】本題比較容易,考查識別圖形的中心對稱性.要注意正確區(qū)分軸對稱圖形和中心對稱圖形,中心對稱是要尋找對稱中心,旋轉180度后重合.8、C【詳解】解:∵反比例函數的圖象在一、三象限,∴k>0,∵BC∥x軸,AC∥y軸,∴S△AOD=S△BOE=k,∵反比例函數及正比例函數的圖象關于原點對稱,∴A、B兩點關于原點對稱,∴S矩形OECD=1△AOD=k,∴S△ABC=S△AOD+S△BOE+S矩形OECD=1k=4,解得k=1.故選C.【點睛】本題考查反比例函數的性質.9、C【分析】如圖,連接BB′,延長BC′交AB′于點D,證明△ABC′≌△B′BC′,得到∠DBB′=∠DBA=30°;求出BD、C′D的長,即可解決問題.【詳解】解:如圖,連接BB′,延長BC′交AB′于點D,

由題意得:∠BAB′=60°,BA=B′A,

∴△ABB′為等邊三角形,

∴∠ABB′=60°,AB=B′B;

在△ABC′與△B′BC′中,∴△ABC′≌△B′BC′(SSS),

∴∠DBB′=∠DBA=30°,

∴BD⊥AB′,且AD=B′D,∵AC=BC=,∴,∴,,,.故選:C.【點睛】本題考查旋轉的性質,全等三角形的性質和判定,等邊三角形的判定與性質,等腰直角三角形的性質,直角三角形斜邊上的中線.作輔助線構造出全等三角形并求出BC′在等邊三角形的高上是解題的關鍵,也是本題的難點.10、C【解析】試題分析:轉動轉盤被均勻分成6部分,陰影部分占2份,轉盤停止轉動時指針指向陰影部分的概率是=;故選C.考點:幾何概率.二、填空題(每小題3分,共24分)11、﹣1.【解析】試題分析:∵=,∵a=1>0,∴x=﹣2時,y有最小值=﹣1.故答案為﹣1.考點:二次函數的最值.12、2【解析】根據一元二次方程根的意義可得+2=0,根據一元二次方程根與系數的關系可得=2,把相關數值代入所求的代數式即可得.【詳解】由題意得:+2=0,=2,∴=-2,=4,∴=-2+4=2,故答案為2.【點睛】本題考查了一元二次方程根的意義,一元二次方程根與系數的關系等,熟練掌握相關內容是解題的關鍵.13、(-5,)【分析】讓兩點的橫縱坐標均互為相反數可得所求的坐標.【詳解】∵兩點關于原點對稱,∴橫坐標為-5,縱坐標為,故點P(5,?)關于原點對稱的點的坐標是:(-5,).故答案為:(-5,).【點睛】此題主要考查了關于原點對稱的坐標的特點:兩點的橫坐標互為相反數;縱坐標互為相反數.14、-6【解析】根據反比例函數k的幾何性質,矩形的性質即可解題.【詳解】解:由反比例函數k的幾何性質可知,k表示反比例圖像上的點與坐標軸圍成的矩形的面積,∵△ABO的面積為3,由矩形的性質可知,點A與坐標軸圍成的矩形的面積=6,∵圖像過第二象限,∴k=-6.【點睛】本題考查了反比例函數k的幾何性質,屬于簡單題,熟悉性質內容是解題關鍵.15、【分析】根據反比例函數圖象所在的象限求得,然后得到的取值范圍即可.【詳解】∵反比例函數的圖象位于第二、四象限內,

∴,

則.故答案是:.【點睛】本題考查了反比例函數的圖象的性質,重點是比例系數k的符號.16、-4【分析】將x=1代入方程求解即可.【詳解】將x=1代入方程得4+a=0,解得a=-4,故答案為:-4.【點睛】此題考查一元二次方程的解,使方程左右兩邊相等的未知數的值是方程的解,已知方程的解時將解代入方程求參數即可.17、【解析】這個式子先移項,變成x2=9,從而把問題轉化為求9的平方根.【詳解】解:移項得x2=9,

解得x=±1.

故答案為.【點睛】本題考查了解一元二次方程-直接開平方法,解這類問題要移項,把所含未知數的項移到等號的左邊,把常數項移項等號的右邊,化成x2=a(a≥0)的形式,利用數的開方直接求解.注意:

(1)用直接開方法求一元二次方程的解的類型有:x2=a(a≥0);ax2=b(a,b同號且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同號且a≠0).法則:要把方程化為“左平方,右常數,先把系數化為1,再開平方取正負,分開求得方程解”.

(2)用直接開方法求一元二次方程的解,要仔細觀察方程的特點.18、70°或120°【分析】①當點B落在AB邊上時,根據DB=DB1,即可解決問題,②當點B落在AC上時,在RT△DCB2中,根據∠C=90°,DB2=DB=2CD可以判定∠CB2D=30°,由此即可解決問題.【詳解】①當點B落在AB邊上時,∵,∴,∴,②當點B落在AC上時,在中,∵∠C=90°,,∴,∴,故答案為70°或120°.【點睛】本題考查的知識點是旋轉的性質,解題關鍵是考慮多種情況,進行分類討論.三、解答題(共66分)19、;【分析】先算括號里面的,再算除法,根據特殊角的三角函數值先得出x,再代入即可.【詳解】原式.當時,原式.【點睛】本題考查了分式的化簡求值以及特殊角的三角函數值,是基礎知識要熟練掌握.20、(1)見解析;(2)1.【分析】(1)根據位似的性質得到點、、的對應點D(-1,-1),E(-2,0),F(-2,2),連線即可得到位似圖形;(2)利用底乘高的面積公式計算即可.【詳解】(1)如圖,(2)由圖可知:E(-2,0),F(-2,2);∴EF=2,∴S△DEF,故答案為:1.【點睛】此題考查位似的性質,位似圖形的畫法,坐標系中三角形面積的求法,熟練掌握位似圖形的關系是解題的關鍵.21、(1)拋物線的解析式為y=﹣x2+2x+1;(2)點D坐標(2,1);(1)M坐標(1,0)或(,0)或(﹣,0)或(5,0)【分析】(1)利用待定系數法求函數解析式;(2)根據解析式先求出△AOC的面積,設點D(xD,yD),由直線BC的解析式表示點E的坐標,求出DE的長,再由△BCD的面積等于△AOC的面積的2倍,列出關于xD的方程得到點D的坐標;(1)設點M(m,0),點N(x,y),分兩種情況討論:當BD為邊時或BD為對角線時,列中點關系式解答.【詳解】解:(1)∵拋物線y=ax2+bx+1經過點A(﹣1,0),B(1,0),∴,解得:∴拋物線的解析式為y=﹣x2+2x+1;(2)如圖,過點D作DH⊥x軸,與直線BC交于點E,∵拋物線y=﹣x2+2x+1,與y軸交于點C,∴點C(0,1),∴OC=1,∴S△AOC=×1×1=,∵點B(1,0),點C(0,1)∴直線BC解析式為y=﹣x+1,∵點D(xD,yD),∴點E(xD,﹣xD+1),yD=﹣xD2+2xD+1,∴DE=﹣xD2+2xD+1﹣(﹣xD+1)=﹣xD2+1xD,∴S△BCD=1=×DE×1,∵△BCD的面積等于△AOC的面積的2倍∴2=﹣xD2+1xD,∴xD=1(舍去),xD=2,∴點D坐標(2,1);(1)設點M(m,0),點N(x,y)當BD為邊,四邊形BDNM是平行四邊形,∴BN與DM互相平分,∴,∴y=1,∴1=﹣x2+2x+1∴x=2(不合題意),x=0∴點N(0,1)∴,∴m=1,當BD為邊,四邊形BDMN是平行四邊形,∴BM與DN互相平分,∴,∴y=﹣1,∴﹣1=﹣x2+2x+1∴x=1±,∴,∴m=±,當BD為對角線,∴BD中點坐標(,),∴,,∴y=1,∴1=﹣x2+2x+1∴x=2(不合題意),x=0∴點N(0,1)∴m=5,綜上所述點M坐標(1,0)或(,0)或(﹣,0)或(5,0).【點睛】此題是二次函數的綜合題,考查待定系數法求函數解析式,動線、動圖形與拋物線的結合問題,在(1)使以點B,D,M,N為頂點的四邊形是平行四邊形時,要分情況討論:當BD為邊時或BD為對角線時,不要有遺漏,平行四邊形的性質:對角線互相平分,列中點坐標等式求得點M的坐標.22、(1)點P的坐標(1,﹣4);(2)△OPQ的面積與△OAQ的面積之比為1.【分析】(1)過Q作QC⊥x軸于C,先求得AC=QC=2、AQ=2、AP=4,然后再由AB∥CQ,運營平行線等分線段定理求得OA的長,最后結合AP=4即可解答;(2)先說明△OAB∽△OCQ,再根據相似三角形的性質求得AB和PB的長,然后再求出△OPQ和△OAQ的面積,最后作比即可.【詳解】解:(1)過Q作QC⊥x軸于C,∵△APQ是等腰直角三角形,∴∠PAQ=∠CAQ=41°,∴AC=QC=2,AQ=2,AP=4,∵AB∥CQ,∴,∴OA=AC=1,∴點P的坐標(1,﹣4);(2)∵AB∥CQ,∴△OAB∽△OCQ,∴,∴AB=CQ=,∴PB=,∴S△OAQ=OA?CQ=×1×2=1,S△OPQ=PB?OA+PB?AC=1,∴△OPQ的面積與△OAQ的面積之比=1.【點睛】本題考查了一次函數的圖像、相似三角形的判定與性質、平行線等分線段定理以及三角形的面積,掌握相似三角形的判定和性質是解答本題的關鍵.23、(1)A、B兩觀景臺之間的距離為=(5+5)km;(2)觀測站B到射線AP的最短距離為()km.【分析】(1)過點P作PD⊥AB于點D,先解Rt△PBD,得到BD和PD的長,再解Rt△PAD,得到AD和AP的長,然后根據BD+AD=AB,即可求解;

(2)過點B作BF⊥AC于點F,解直角三角形即可得到結論.【詳解】解:(1)如圖,過點P作PD⊥AB于點D.在Rt△PBD中,∠BDP=90°,∠PBD=90°﹣45°=45°,∴BD=PD=BP=5km.在Rt△PAD中,∠ADP=90°,∠PAD=90°﹣60°=30°,∴AD=PD=5km,PA=1.∴AB=BD+AD=(5+5)km;答:A、B兩觀景臺之間的距離為=(5+5)km;(2)如圖,過點B作BF⊥AC于點F,則∠BAP=30°,∵AB=(5+5),∴BF=AB=()km.答:觀測站B到射線AP的最短距離為()km.【點睛】本題考查了解直角三角形的應用-方向角問題,難度適中.通過作輔助線,構造直角三角形是解題的關鍵.24、1.【分析】根據根式、絕對值、指數的運算,以及特殊角的三角函數值,即可求得.【詳解】|1﹣|+(﹣cos60°)2﹣﹣(2+3)0=﹣1+4﹣+3﹣1=1【點睛】本題考查根式、絕對值、指數的運算,以及特殊角的三角函數值,屬基礎題.25、,0【分析】根據分式的混合運算法則進行計算化簡,再代入符合條件的x值進行計算.【詳解】解:原式====又∵且,,∴整數.∴原式=.【點睛】考核知識點:分式的化簡求值.掌握分式的基本運算法則是關鍵.26、(1)見解析;(2)△CPA∽△CAB,此時P(,);△BPA∽△BAC,此時P(,);(3)S(3,-2)是△GBD與△GBC公共的自相似點,見解析【分析】(1)利用:兩邊對應成比例且夾角相等,證明△APC∽△CAB即可;(2)分類討論:△CPA∽△CAB和△BPA∽△BAC,分別求得P點的坐標;(3)先求得點D的坐標,說明點G(5,)、S(3,-2)在直線AC:上,證得△ABC△SGB,再證得△GB

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論