2025屆福建省廈門市六校數學九上期末聯(lián)考試題含解析_第1頁
2025屆福建省廈門市六校數學九上期末聯(lián)考試題含解析_第2頁
2025屆福建省廈門市六校數學九上期末聯(lián)考試題含解析_第3頁
2025屆福建省廈門市六校數學九上期末聯(lián)考試題含解析_第4頁
2025屆福建省廈門市六校數學九上期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩23頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆福建省廈門市六校數學九上期末聯(lián)考試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每題4分,共48分)1.在反比例函數y=圖象的每一條曲線上,y都隨x的增大而增大,則k的取值范圍是()A.k>2 B.k>0 C.k≥2 D.k<22.如圖是半徑為2的⊙O的內接正六邊形ABCDEF,則圓心O到邊AB的距離是()A.2 B.1 C. D.3.如圖所示是濱河公園中的兩個物體一天中四個不同時刻在太陽光的照射下落在地面上的影子,按照時間的先后順序排列正確的是()A.(3)(4)(1)(2) B.(4)(3)(1)(2)C.(4)(3)(2)(1) D.(2)(4)(3)(1)4.小明同學對數據26,36,46,5■,52進行統(tǒng)計分析,發(fā)現(xiàn)其中一個兩位數的個位數字被墨水涂污看不到了,則分析結果與被涂污數字無關的是()A.平均數 B.方差 C.中位數 D.眾數5.如圖,在正方形ABCD中,E、F分別為BC、CD的中點,連接AE,BF交于點G,將△BCF沿BF對折,得到△BPF,延長FP交BA延長線于點Q,下列結論正確的個數是()①AE=BF;②AE⊥BF;③sin∠BQP=;④S四邊形ECFG=2S△BGE.A.4 B.3 C.2 D.16.如圖,正方形中,為的中點,的垂直平分線分別交,及的延長線于點,,,連接,,,連接并延長交于點,則下列結論中:①;②;③;④;⑤;⑥;⑦.正確的結論的個數為()A.3 B.4 C.5 D.67.如圖,AB∥CD,點E在CA的延長線上.若∠BAE=40°,則∠ACD的大小為()A.150° B.140° C.130° D.120°8.下列四幅圖案,在設計中用到了中心對稱的圖形是()A. B. C. D.9.已知點(﹣3,a),(3,b),(5,c)均在反比例函數y=的圖象上,則有()A.a>b>c B.c>b>a C.c>a>b D.b>c>a10.若關于的一元二次方程有一個根為0,則的值()A.0 B.1或2 C.1 D.211.某廠今年3月的產值為50萬元,5月份上升到72萬元,這兩個月平均每月增長的百分率是多少?若設平均每月增長的百分率為x,則列出的方程正確的是()A.50(1+x)=72 B.50(1+x)+50(1+x)2=72C.50(1+x)×2=72 D.50(1+x)2=7212.已知分式的值為0,則的值是().A. B. C. D.二、填空題(每題4分,共24分)13.當a=____時,關于x的方程式為一元二次方程14.若點P(3,1)與點Q關于原點對稱,則點Q的坐標是___________.15.如圖,O為Rt△ABC斜邊中點,AB=10,BC=6,M、N在AC邊上,若△OMN∽△BOC,點M的對應點是O,則CM=______.16.中國“一帶一路”給沿線國家和地區(qū)帶來很大的經濟效益,沿線某地區(qū)居民2016年人均年收入20000元,到2018年人均年收入達到39200元.則該地區(qū)居民年人均收入平均增長率為_____.(用百分數表示)17.歸納“T”字形,用棋子擺成的“T”字形如圖所示,按照圖①,圖②,圖③的規(guī)律擺下去,擺成第n個“T”字形需要的棋子個數為_______.18.如下圖,圓柱形排水管水平放置,已知截面中有水部分最深為,排水管的截面半徑為,則水面寬是__________.

三、解答題(共78分)19.(8分)某公司開發(fā)一種新的節(jié)能產品,工作人員對銷售情況進行了調查,圖中折線表示月銷售量(件)與銷售時間(天)之間的函數關系,已知線段表示函數關系中,時間每增加天,月銷售量減少件,求與間的函數表達式.20.(8分)小彬做了探究物體投影規(guī)律的實驗,并提出了一些數學問題請你解答:(1)如圖1,白天在陽光下,小彬將木桿水平放置,此時木桿在水平地面上的影子為線段.①若木桿的長為,則其影子的長為;②在同一時刻同一地點,將另一根木桿直立于地面,請畫出表示此時木桿在地面上影子的線段;(2)如圖2,夜晚在路燈下,小彬將木桿水平放置,此時木桿在水平地面上的影子為線段.①請在圖中畫出表示路燈燈泡位置的點;②若木桿的長為,經測量木桿距離地面,其影子的長為,則路燈距離地面的高度為.21.(8分)在平面直角坐標系中,將一塊等腰直角三角板(△ABC)按如圖所示放置,若AO=2,OC=1,∠ACB=90°.(1)直接寫出點B的坐標是;(2)如果拋物線l:y=ax2﹣ax﹣2經過點B,試求拋物線l的解析式;(3)把△ABC繞著點C逆時針旋轉90°后,頂點A的對應點A1是否在拋物線l上?為什么?(4)在x軸上方,拋物線l上是否存在一點P,使由點A,C,B,P構成的四邊形為中心對稱圖形?若存在,求出點P的坐標;若不存在,請說明理由.22.(10分)如圖,在由12個小正方形構造成的網格圖(每個小正方形的邊長均為1)中,點A,B,C.(1)畫出△ABC繞點B順時針旋轉90°后得到的△A1B1C1;(2)若點D,E也是網格中的格點,畫出△BDE,使得△BDE與△ABC相似(不包括全等),并求相似比.23.(10分)某校九年級學生某科目學期總評成績是由完成作業(yè)、單元檢測、期末考試三項成績構成的,如果學期總評成績80分以上(含80分),則評定為“優(yōu)秀”,下表是小張和小王兩位同學的成績記錄:完成作業(yè)單元測試期末考試小張709080小王6075_______若按完成作業(yè)、單元檢測、期末考試三項成績按1:2:7的權重來確定學期總評成績.(1)請計算小張的學期總評成績?yōu)槎嗌俜郑浚?)小王在期末(期末成績?yōu)檎麛担撟钌倏级嗌俜植拍苓_到優(yōu)秀?24.(10分)如圖,在Rt△ABC中,∠ACB=90°,AC=BC=4cm,點P從點A出發(fā)以lcm/s的速度沿折線AC﹣CB運動,過點P作PQ⊥AB于點Q,當點P不與點A、B重合時,以線段PQ為邊向右作正方形PQRS,設正方形PQRS與△ABC的重疊部分面積為S,點P的運動時間為t(s).(1)用含t的代數式表示CP的長度;(2)當點S落在BC邊上時,求t的值;(3)當正方形PQRS與△ABC的重疊部分不是五邊形時,求S與t之間的函數關系式;(4)連結CS,當直線CS分△ABC兩部分的面積比為1:2時,直接寫出t的值.25.(12分)已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分線EF分別交AD、BC于點E、F,垂足為O.(1)如圖(1),連接AF、CE.①四邊形AFCE是什么特殊四邊形?說明理由;②求AF的長;(2)如圖(2),動點P、Q分別從A、C兩點同時出發(fā),沿△AFB和△CDE各邊勻速運動一周.即點P自A→F→B→A停止,點Q自C→D→E→C停止.在運動過程中,已知點P的速度為每秒5cm,點Q的速度為每秒4cm,運動時間為t秒,當A、C、P、Q四點為頂點的四邊形是平行四邊形時,求t的值.26.如圖,直線y=﹣x+2與反比例函數(k≠0)的圖象交于A(a,3),B(3,b)兩點,過點A作AC⊥x軸于點C,過點B作BD⊥x軸于點D.(1)求a,b的值及反比例函數的解析式;(2)若點P在直線y=﹣x+2上,且S△ACP=S△BDP,請求出此時點P的坐標;(3)在x軸正半軸上是否存在點M,使得△MAB為等腰三角形?若存在,請直接寫出M點的坐標;若不存在,說明理由.

參考答案一、選擇題(每題4分,共48分)1、D【分析】根據反比例函數的性質,可求k的取值范圍.【詳解】∵反比例函數y=圖象的每一條曲線上,y都隨x的增大而增大,∴k﹣2<0,∴k<2故選:D.【點睛】考核知識點:反比例函數.理解反比例函數性質是關鍵.2、C【分析】過O作OH⊥AB于H,根據正六邊形ABCDEF的性質得到∠AOB==60°,根據等腰三角形的性質得到∠AOH=30°,AH=AB=1,于是得到結論.【詳解】解:過O作OH⊥AB于H,在正六邊形ABCDEF中,∠AOB==60°,∵OA=OB,∴∠AOH=30°,AH=AB=1,∴OH=AH=,故選:C.【點睛】本題主要考查了正多邊形和圓,等腰三角形的性質,解直角三角形,正確的作出輔助線是解題的關鍵.3、C【解析】試題分析:根據平行投影的特點和規(guī)律可知,(3),(4)是上午,(1),(2)是下午,根據影子的長度可知先后為(4)(3)(2)(1).故選C.考點:平行投影.4、C【分析】利用平均數、中位數、方差和標準差的定義對各選項進行判斷.【詳解】解:這組數據的平均數、方差和標準差都與被涂污數字有關,而這組數據的中位數為46,與被涂污數字無關.故選:C.【點睛】本題考查了方差:它也描述了數據對平均數的離散程度.也考查了中位數、平均數和眾數的概念.掌握以上知識是解題的關鍵.5、B【解析】解:∵E,F(xiàn)分別是正方形ABCD邊BC,CD的中點,∴CF=BE,在△ABE和△BCF中,∵AB=BC,∠ABE=∠BCF,BE=CF,∴Rt△ABE≌Rt△BCF(SAS),∴∠BAE=∠CBF,AE=BF,故①正確;又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF,故②正確;根據題意得,F(xiàn)P=FC,∠PFB=∠BFC,∠FPB=90°.∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,令PF=k(k>0),則PB=2k在Rt△BPQ中,設QB=x,∴x2=(x﹣k)2+4k2,∴x=,∴sin=∠BQP==,故③正確;∵∠BGE=∠BCF,∠GBE=∠CBF,∴△BGE∽△BCF,∵BE=BC,BF=BC,∴BE:BF=1:,∴△BGE的面積:△BCF的面積=1:5,∴S四邊形ECFG=4S△BGE,故④錯誤.故選B.點睛:本題主要考查了四邊形的綜合題,涉及正方形的性質、全等三角形的判定和性質、相似三角形的判定和性質以及折疊的性質的知識點,解決的關鍵是明確三角形翻轉后邊的大小不變,找準對應邊,角的關系求解.6、B【分析】①作輔助線,構建三角形全等,證明△ADE≌△GKF,則FG=AE,可得FG=2AO;②設正方形ABCD的邊長為2x,則AD=AB=2x,DE=EC=x,證明△ADE∽△HOA,得,于是可求BH及HE的值,可作出判斷;③分別表示出OD、OC,根據勾股定理逆定理可以判斷;④證明∠HEA=∠AED=∠ODE,OE≠DE,則∠DOE≠∠HEA,OD與HE不平行;

⑤由②可得,根據AR∥CD,得,則;⑥證明△HAE∽△ODE,可得,等量代換可得OE2=AH?DE;⑦分別計算HC、OG、BH的長,可得結論.【詳解】解:①如圖,過G作GK⊥AD于K,

∴∠GKF=90°,

∵四邊形ABCD是正方形,

∴∠ADE=90°,AD=AB=GK,

∴∠ADE=∠GKF,

∵AE⊥FH,

∴∠AOF=∠OAF+∠AFO=90°,

∵∠OAF+∠AED=90°,

∴∠AFO=∠AED,

∴△ADE≌△GKF,

∴FG=AE,

∵FH是AE的中垂線,

∴AE=2AO,

∴FG=2AO,

故①正確;②設正方形ABCD的邊長為2x,則AD=AB=2x,DE=EC=x,,易得△ADE∽△HOA,,,Rt△AHO中,由勾股定理得:AH=,∴BH=AH-AB=,∵HE=AH=,∴HE=5BH;

故②正確;③,,∴,∴OC與OD不垂直,故③錯誤;

④∵FH是AE的中垂線,

∴AH=EH,

∴∠HAE=∠HEA,

∵AB∥CD,

∴∠HAE=∠AED,

Rt△ADE中,∵O是AE的中點,

∴OD=AE=OE,

∴∠ODE=∠AED,

∴∠HEA=∠AED=∠ODE,

當∠DOE=∠HEA時,OD∥HE,

但AE>AD,即AE>CD,

∴OE>DE,即∠DOE≠∠HEA,

∴OD與HE不平行,

故④不正確;

⑤由②知BH=,,延長CM、BA交于R,

∵RA∥CE,

∴∠ARO=∠ECO,

∵AO=EO,∠ROA=∠COE,

∴△ARO≌△ECO,

∴AR=CE,

∵AR∥CD,,故⑤正確;

⑥由①知:∠HAE=∠AEH=∠OED=∠ODE,

∴△HAE∽△ODE,∵AE=2OE,OD=OE,

∴OE?2OE=AH?DE,

∴2OE2=AH?DE,

故⑥正確;

⑦由②知:HC=,∵AE=2AO=OH=,tan∠EAD=,,,∵FG=AE,,∴OG+BH=,∴OG+BH≠HC,

故⑦不正確;

綜上所述,本題正確的有;①②⑤⑥,共4個,

故選:B.【點睛】本題是相似三角形的判定與性質以及勾股定理、線段垂直平分線的性質、正方形的性質的綜合應用,正確作輔助線是關鍵,解答時證明三角形相似是難點.7、B【解析】試題分析:如圖,延長DC到F,則∵AB∥CD,∠BAE=40°,∴∠ECF=∠BAE=40°.∴∠ACD=180°-∠ECF=140°.故選B.考點:1.平行線的性質;2.平角性質.8、D【解析】由題意根據中心對稱圖形的性質即圖形旋轉180°與原圖形能夠完全重合的圖形是中心對稱圖形,依次對選項進行判斷即可.【詳解】解:A.旋轉180°,不能與原圖形能夠完全重合不是中心對稱圖形;故此選項錯誤;B.旋轉180°,不能與原圖形能夠完全重合不是中心對稱圖形;故此選項錯誤;C.旋轉180°,不能與原圖形能夠完全重合不是中心對稱圖形;故此選項錯誤;D.旋轉180°,能與原圖形能夠完全重合是中心對稱圖形;故此選項正確;故選:D.【點睛】本題主要考查中心對稱圖形的性質,根據中心對稱圖形的定義判斷圖形是解決問題的關鍵.9、D【分析】根據反比例函數系數k2+1大于0,得出函數的圖象位于第一、三象限內,在各個象限內y隨x的增大而減小,據此進行解答.【詳解】解:∵反比例函數系數k2+1大于0,∴函數的圖象位于第一、三象限內,在各個象限內y隨x的增大而減小,∵﹣3<0,0<3<5,∴點(﹣3,a)位于第三象限內,點(3,b),(5,c)位于第一象限內,∴b>c>a.故選:D.【點睛】本題主要考查反比例函數的圖象和性質,解答本題的關鍵是確定反比例函數的系數大于0,并熟練掌握反比例函數的性質,此題難度一般.10、D【分析】把x=1代入已知方程得到關于m的一元二次方程,通過解方程求得m的值;注意二次項系數不為零,即m-1≠1.【詳解】解:根據題意,將x=1代入方程,得:m2-3m+2=1,

解得:m=1或m=2,

又m-1≠1,即m≠1,

∴m=2,

故選:D.【點睛】本題考查了一元二次方程的解定義和一元二次方程的定義.注意:本題中所求得的m的值必須滿足:m-1≠1這一條件.11、D【分析】可先表示出4月份的產量,那么4月份的產量×(1+增長率)=5月份的產量,把相應數值代入即可求解.【詳解】4月份產值為:50(1+x)5月份產值為:50(1+x)(1+x)=50(1+x)2=72故選D.點睛:考查求平均變化率的方法.若設變化前的量為a,變化后的量為b,平均變化率為x,則經過兩次變化后的數量關系為a(1±x)2=b.12、D【分析】分析已知和所求,根據分式值為0的條件為:分子為0而分母不為0,不難得到=0且≠0;根據ab=0,a=0或b=0,即可解出x的值,再根據≠0,即可得到x的取值范圍,由此即得答案.【詳解】∵的值為0∴=0且≠0.解得:x=3.故選:D.【點睛】考核知識點:分式值為0.理解分式值為0的條件是關鍵.二、填空題(每題4分,共24分)13、≠±1【分析】方程是一元二次方程的條件是二次項次數不等于0,據此即可求得a的范圍.【詳解】根據題意得:a1-4≠0,解得:a≠±1.故答案是:≠±1.【點睛】本題考查了一元二次方程的概念,判斷一個方程是否是一元二次方程,首先要看是否是整式方程,然后看化簡后是否是只含有一個未知數且未知數的最高次數是1.14、(–3,–1)【分析】根據關于原點對稱的點的規(guī)律:縱橫坐標均互為相反數解答即可.【詳解】根據關于原點對稱的點的坐標的特點,可得:點P(3,1)關于原點過對稱的點Q的坐標是(–3,–1).故答案為:(–3,–1).【點睛】本題主要考查了關于原點對稱的點的坐標特點,解題時根據兩個點關于原點對稱時,它們的同名坐標互為相反數可直接得到答案,本題屬于基礎題,難度不大,注意平面直角坐標系中任意一點P(x,y),關于原點的對稱點是(–x,–y),即關于原點的對稱點,橫縱坐標都變成相反數.15、【分析】根據直角三角形斜邊中線的性質可得OC=OA=OB=AB,根據等腰三角形的性質可得∠A=∠OCA,∠OCB=∠B,由相似三角形的性質可得∠ONC=∠OCB,,可得OM=MN,利用等量代換可得∠ONC=∠B,即可證明△CNO∽△ABC,利用外角性質可得∠ACO=∠MOC,可得OM=CM,即可證明CM=CN,利用勾股定理可求出AC的長,根據相似三角形的性質即可求出CN的長,即可求出CM的長.【詳解】∵O為Rt△ABC斜邊中點,AB=10,BC=6,∴OC=OA=OB=AB=5,AC==8,∴∠A=∠OCA,∠OCB=∠B,∵△OMN∽△BOC,∴∠ONC=∠OCB,,∠COB=∠OMN,∴MN=OM,∠ONC=∠B,∴△CNO∽△ABC,∴,即,解得:CN=,∵∠OMN=∠OCM+∠MOC,∠COB=∠A+∠OCA,∴∠OCM=∠MOC,∴OM=CM,∴CM=MN=CN=.故答案為:【點睛】本題考查直角三角形斜邊中線的性質、等腰三角形的性質及相似三角形的判定與性質,直角三角形斜邊中線等于斜邊的一半;熟練掌握相似三角形的判定定理是解題關鍵.16、40%【解析】設該地區(qū)居民年人均收入平均增長率為,根據到2018年人均年收入達到39200元列方程求解即可.【詳解】設該地區(qū)居民年人均收入平均增長率為,,解得,,(舍去),∴該地區(qū)居民年人均收入平均增長率為,故答案為:.【點睛】本題考查了一元二次方程的應用---增長率問題;本題的關鍵是掌握增長率問題中的一般公式為a(1+x)n

=b,其中n為共增長了幾年,a為第一年的原始數據,b是增長后的數據,x是增長率.17、3n+1.【分析】根據題意和圖形,可以發(fā)現(xiàn)圖形中棋子的變化規(guī)律,從而可以求得第n個“T”字形需要的棋子個數.【詳解】解:由圖可得,

圖①中棋子的個數為:3+1=5,

圖②中棋子的個數為:5+3=8,

圖③中棋子的個數為:7+4=11,

……

則第n個“T”字形需要的棋子個數為:(1n+1)+(n+1)=3n+1,

故答案為3n+1.【點睛】本題考查圖形的變化類,解答本題的關鍵是明確題意,發(fā)現(xiàn)題目中棋子的變化規(guī)律,利用數形結合的思想解答.18、【分析】利用垂徑定理構建直角三角形,然后利用勾股定理即可得解.【詳解】設排水管最低點為C,連接OC交AB于D,連接OB,如圖所示:

∵OC=OB=10,CD=5∴OD=5∵OC⊥AB∴∴故答案為:.【點睛】此題主要考查垂徑定理的實際應用,熟練掌握,即可解題.三、解答題(共78分)19、.【分析】由時間每增加1天日銷售量減少5件結合第18天的日銷售量為360件,即可求出第19天的日銷售量,再根據點的坐標,利用待定系數法可求出直線OD、DE的函數關系式,即可找出y與x之間的函數關系式;【詳解】當時,設直線OD的解析式為將代入得,∴,∴直線OD的解析式為:,當時,根據題意“時間每增加天,月銷售量減少件”,則第19天的日銷售量為:360-5=355,設直線DE的解析式為,將,代入得,解得:,∴直線DE的解析式為,∴與間的函數表達式為:【點睛】本題考查了一次函數的應用,解題的關鍵是:根據數量間的關系列式計算;根據點的坐標,利用待定系數法求出函數關系式.20、(1)①;②見解析;(2)①見解析;②【分析】(1)①根據題意證得四邊形為平行四邊形,從而求得結論;②根據平行投影的特點作圖:過木桿的頂點作太陽光線的平行線;(2)①分別過影子的端點及其線段的相應的端點作射線,兩條射線的交點即為光源的位置;②根據∥,可證得,利用相似三角形對應高的比等于相似比即可求得結論.【詳解】(1)①根據題意:∥,∥,∴四邊形為平行四邊形,∴;②如圖所示,線段即為所求;(2)①如圖所示,點即為所求;②過點作分別交、于點、∵∥∴,,解得:,路燈距離地面的高度為米.【點睛】本題考查平行投影問題以及相似三角形的判定和性質,平行光線得到的影子是平行光線經過物體的頂端得到的影子,利用相似三角形對應高的比等于相似比是解決本題的關鍵.21、(1)點B的坐標為(3,1);(2)y=x2﹣x﹣2;(3)點A1在拋物線上;理由見解析;(4)存在,點P(﹣2,1).【分析】(1)首先過點B作BD⊥x軸,垂足為D,通過證明△BDC≌△COA即可得BD=OC=1,CD=OA=2,從而得知B坐標;(2)利用待定系數法,將B坐標代入即可求得;(3)畫出旋轉后的圖形,過點作x軸的垂線,構造全等三角形,求出的坐標代入拋物線解析式即可進行判斷;(4)由拋物線的解析式先設出P的坐標,再根據中心對稱的性質與線段中點的公式列出方程求解即可.【詳解】(1)如圖1,過點B作BD⊥x軸,垂足為D,∵∠BCD+∠ACO=90°,∠AC0+∠OAC=90°,∴∠BCD=∠CAO,又∵∠BDC=∠COA=90°,CB=AC,在△BDC和△COA中:∵∠BDC=∠COA,∠BCD=∠CAO,CB=AC,∴△BDC≌△COA(AAS),∴BD=OC=1,CD=OA=2,∴點B的坐標為(3,1);(2)∵拋物線y=ax2﹣ax﹣2過點B(3,1),∴1=9a﹣3a﹣2,解得:a=,∴拋物線的解析式為y=x2﹣x﹣2;(3)旋轉后如圖1所示,過點A1作A1M⊥x軸,∵把△ABC繞著點C逆時針旋轉90°,∴∠ABC=∠A1BC=90°,∴A1,B,C共線,在三角形BDC和三角形A1CM中:∵∠BDC=∠A1MC=90°,∠BCD=∠A1CM,A1C=BC,∴△BDC≌△A1CM∴CM=CD=3﹣1=2,A1M=BD=1,∴OM=1,∴點A1(﹣1,﹣1),把點x=﹣1代入y=x2﹣x﹣2,y=﹣1,∴點A1在拋物線上.(4)設點P(t,t2﹣t﹣2),點A(0,2),點C(1,0),點B(3,1),若點P和點C對應,由中心對稱的性質和線段中點公式可得:,,無解,若點P和點A對應,由中心對稱的性質和線段中點公式可得:,,無解,若點P和點B對應,由中心對稱的性質和線段中點公式可得:,,解得:t=﹣2,t2﹣t﹣2=1所以:存在,點P(﹣2,1).【點睛】本題主要考查了拋物線與幾何圖形的綜合運用,熟練掌握相關概念是解題關鍵.22、(1)如圖1所示:△A1B1C1,即為所求;見解析;(1)如圖1所示:△BDE,即為所求,見解析;相似比為::1.【分析】(1)直接利用旋轉的性質得出對應點位置進而得出答案;(1)直接利用相似圖形的性質得出符合題意的答案.【詳解】(1)如圖1所示:△A1B1C1,即為所求;(1)如圖1所示:△BDE,即為所求,相似比為::1.【點睛】本題主要考查了相似變換以及旋轉變換,正確得出對應點位置是解題關鍵.23、(1)小張的期末評價成績?yōu)?1分.(2)最少考85分才能達到優(yōu)秀【分析】(1)直接利用加權平均數的定義求解可得;(2)設小王期末考試成績?yōu)閤分,根據加權平均數的定義列出不等式求出最小整數解即可.【詳解】解:(1)小張的期末評價成績?yōu)椋?1(分);答:小張的期末評價成績?yōu)?1分.(2)設小王期末考試成績?yōu)閤分,根據題意,得:,解得x≥84,∴小王在期末(期末成績?yōu)檎麛担撟钌倏?5分才能達到優(yōu)秀.【點睛】本題主要考查加權平均數,解題的關鍵是掌握加權平均數的定義.24、(1)當0<t<4時,CP=4﹣t,當4≤t<8時,CP=t﹣4;(1);(3)S=;(4)或【分析】(1)分兩種情形分別求解即可.(1)根據PA+PC=4,構建方程即可解決問題.(3)分兩種情形:如圖1中,當0<t≤時,重疊部分是正方形PQRS,當4<t<8時,重疊部分是△PQB,分別求解即可.(4)設直線CS交AB于E.分兩種情形:如圖4﹣1中,當AE=AB=時,滿足條件.如圖4﹣1中,當AE=AB時,滿足條件.分別求解即可解決問題.【詳解】解:(1)當0<t<4時,∵AC=4,AP=t,∴PC=AC﹣AP=4﹣t;當4≤t<8時,CP=t﹣4;(1)如圖1中,點S落在BC邊上,∵PA=t,AQ=QP,∠AQP=90°,∴AQ=PQ=PS=t,∵CP=CS,∠C=90°,∴PC=CS=t,∵AP+PC=BC=4,∴t+t=4,解得t=.(3)如圖1中,當0<t≤時,重疊部分是正方形PQRS,S=(t)1=t1.當4<t<8時,重疊部分是△PQB,S=(8﹣t)1.綜上所述,S=.(4)設直線CS交AB于E.如圖4﹣1中,當AE=AB=時,滿足條件,∵PS∥AE,∴,∴,解得t=.如圖4﹣1中,當AE=AB時,滿足條件.同法可得:,解得t=,綜上所述,滿足條件的t的值為或.【點睛】此題屬于相似形綜合題,涉及的知識有:相似三角形的判定與性質,以及正方形的性質,熟練掌握相似三角形的判定與性質是解本題的關鍵.25、(1)①菱形,理由見解析;②AF=1;(2)秒.【分析】(1)①先證明四邊形ABCD為平行四邊形,再根據對角線互相垂直平分的平行四邊形是菱形作出判定;②根據勾股定理即可求AF的長;(2)分情況討論可知,P點在BF上;Q點在ED上時;才能構成平行四邊形,根據平行四邊形的性質列出方程求解即可.【詳解】(1)①∵四邊形ABCD是矩形,∴AD∥BC,∴∠CAD=∠ACB,∠AEF=∠CFE.∵EF垂直平分AC,∴OA=OC.在△AOE和△COF中,∴△AOE≌△COF(AAS),∴OE=OF(AAS).∵EF⊥AC,∴四邊形AFCE為菱形.②設菱形的邊長AF=CF=xcm,則BF=(8﹣x)cm

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論