廣東省韶關(guān)市樂昌縣2025屆數(shù)學(xué)九上期末經(jīng)典試題含解析_第1頁
廣東省韶關(guān)市樂昌縣2025屆數(shù)學(xué)九上期末經(jīng)典試題含解析_第2頁
廣東省韶關(guān)市樂昌縣2025屆數(shù)學(xué)九上期末經(jīng)典試題含解析_第3頁
廣東省韶關(guān)市樂昌縣2025屆數(shù)學(xué)九上期末經(jīng)典試題含解析_第4頁
廣東省韶關(guān)市樂昌縣2025屆數(shù)學(xué)九上期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

廣東省韶關(guān)市樂昌縣2025屆數(shù)學(xué)九上期末經(jīng)典試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每題4分,共48分)1.如圖,在Rt△ABC中,AC=6,AB=10,則sinA的值()A. B. C. D.2.二次函數(shù)y=x2-2x+4A.y=(x-1)2C.y=(x-2)23.如圖,將繞點順時針旋轉(zhuǎn),得到,且點在上,下列說法錯誤的是()A.平分 B. C. D.4.將化成的形式為()A. B.C. D.5.的值為()A. B. C. D.6.如圖,小穎為測量學(xué)校旗桿AB的高度,她在E處放置一塊鏡子,然后退到C處站立,剛好從鏡子中看到旗桿的頂部B.已知小穎的眼睛D離地面的高度CD=1.5m,她離鏡子的水平距離CE=0.5m,鏡子E離旗桿的底部A處的距離AE=2m,且A、C、E三點在同一水平直線上,則旗桿AB的高度為()A.4.5m B.4.8m C.5.5m D.6m7.如圖,AB為⊙O的直徑,PD切⊙O于點C,交AB的延長線于D,且CO=CD,則∠PCA=()A.30° B.45° C.60° D.67.5°8.經(jīng)過兩年時間,我市的污水利用率提高了.設(shè)這兩年污水利用率的平均增長率是,則列出的關(guān)于的一元二次方程為()A. B.C. D.9.從﹣1,0,1,2,3這五個數(shù)中,任意選一個數(shù)記為m,能使關(guān)于x的不等式組有解,并且使一元二次方程(m﹣1)x2+2mx+m+2=0有實數(shù)根的數(shù)m的個數(shù)為()A.1個 B.2個 C.3個 D.4個10.已知2x=5y(y≠0),則下列比例式成立的是()A. B. C. D.11.下列函數(shù)中,一定是二次函數(shù)的是()A. B. C. D.12.如圖,是的直徑,是的弦,若,則().A. B. C. D.二、填空題(每題4分,共24分)13.若,那么△ABC的形狀是___.14.當(dāng)a≤x≤a+1時,函數(shù)y=x2﹣2x+1的最小值為1,則a的值為_____.15.若m2﹣2m﹣1=0,則代數(shù)式2m2﹣4m+3的值為.16.分解因式:a2b﹣b3=.17.如圖,⊙O是△ABC的外接圓,∠A=30°,BC=4,則⊙O的直徑為___.18.中國古代數(shù)學(xué)著作《九章算術(shù)》中記載:“今有戶高多于廣六尺八寸,兩隅相去適一丈.問戶高、廣各幾何?”譯文為:已知長方形門的高比寬多6.8尺,門的對角線長為10尺,那么門的高和寬各是多少尺?設(shè)長方形門的寬為尺,則可列方程為___________.三、解答題(共78分)19.(8分)商場某種商品平均每天可銷售30件,每件盈利50元,為了盡快減少庫存,商場決定采取適當(dāng)?shù)慕祪r措施.經(jīng)調(diào)查發(fā)現(xiàn),每件商品每降價1元,商場平均每天可多售出2件.(1)若某天該商品每件降價3元,當(dāng)天可獲利多少元?(2)設(shè)每件商品降價x元,則商場日銷售量增加____件,每件商品,盈利______元(用含x的代數(shù)式表示);(3)在上述銷售正常情況下,每件商品降價多少元時,商場日盈利可達(dá)到2000元?20.(8分)如圖,某農(nóng)戶計劃用長12m的籬笆圍成一個“日”字形的生物園飼養(yǎng)兩種不同的家禽,生物園的一面靠墻,且墻的可利用長度最長為7m.(1)若生物園的面積為9m2,則這個生物園垂直于墻的一邊長為多少?(2)若要使生物園的面積最大,該怎樣圍?21.(8分)某網(wǎng)絡(luò)經(jīng)銷商銷售一款夏季時裝,進(jìn)價每件60元,售價每件130元,每天銷售30件,每銷售一件需繳納網(wǎng)絡(luò)平臺管理費4元.未來30天,這款時裝將開展“每天降價1元”的促銷活動,即從第一天起每天的單價均比前一天降1元,通過市場調(diào)查發(fā)現(xiàn),該時裝單價每降1元,每天銷售量增加5件,設(shè)第x天(1≤x≤30且x為整數(shù))的銷量為y件.(1)直接寫出y與x的函數(shù)關(guān)系式;(2)在這30天內(nèi),哪一天的利潤是6300元?(3)設(shè)第x天的利潤為W元,試求出W與x之間的函數(shù)關(guān)系式,并求出哪一天的利潤最大,最大利潤是多少?22.(10分)盒中有若干枚黑棋和白棋,這些棋除顏色外無其他差別,現(xiàn)讓學(xué)生進(jìn)行摸棋試驗:每次摸出一枚棋,記錄顏色后放回?fù)u勻.重復(fù)進(jìn)行這樣的試驗得到以下數(shù)據(jù):摸棋的次數(shù)n1002003005008001000摸到黑棋的次數(shù)m245176124201250摸到黑棋的頻率(精確到0.001)0.2400.2550.2530.2480.2510.250(1)根據(jù)表中數(shù)據(jù)估計從盒中摸出一枚棋是黑棋的概率是;(精確到0.01)(2)若盒中黑棋與白棋共有4枚,某同學(xué)一次摸出兩枚棋,請計算這兩枚棋顏色不同的概率,并說明理由23.(10分)一個不透明的布袋里有材質(zhì)、形狀、大小完全相同的4個小球,它們的表面分別印有1、2、3、4四個數(shù)字(每個小球只印有一個數(shù)字),小華從布袋里隨機摸出一個小球,把該小球上的數(shù)字記為,小剛從剩下的3個小球中隨機摸出一個小球,把該小球上的數(shù)字記為.(1)若小華摸出的小球上的數(shù)字是2,求小剛摸出的小球上的數(shù)字是3的概率;(2)利用畫樹狀圖或列表格的方法,求點在函數(shù)的圖象上的概率.24.(10分)元旦期間,小黃自駕游去了離家156千米的黃石礦博園,右圖是小黃離家的距離y(千米)與汽車行駛時間x(小時)之間的函數(shù)圖象.(1)求小黃出發(fā)0.5小時時,離家的距離;(2)求出AB段的圖象的函數(shù)解析式;(3)小黃出發(fā)1.5小時時,離目的地還有多少千米?25.(12分)如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)的圖象相交于第一、三象限內(nèi)的兩點,與軸交于點.⑴求該反比例函數(shù)和一次函數(shù)的解析式;⑵在軸上找一點使最大,求的最大值及點的坐標(biāo);⑶直接寫出當(dāng)時,的取值范圍.26.已知關(guān)于x的一元二次方程x2+2x+m=1.(1)當(dāng)m=3時,判斷方程的根的情況;(2)當(dāng)m=﹣3時,求方程的根.

參考答案一、選擇題(每題4分,共48分)1、A【分析】根據(jù)勾股定理得出BC的長,再根據(jù)sinA=代值計算即可.【詳解】解:∵在Rt△ABC中,AC=6,AB=10,∴BC==8,∴sinA===;故選:A.【點睛】本題考查勾股定理及正弦的定義,熟練掌握正弦的表示是解題的關(guān)鍵.2、B【解析】試題分析:設(shè)原正方形的邊長為xm,依題意有:(x﹣1)(x﹣2)=18,故選C.考點:由實際問題抽象出一元二次方程.3、C【分析】由題意根據(jù)旋轉(zhuǎn)變換的性質(zhì),進(jìn)行依次分析即可判斷.【詳解】解:解:∵△ABC繞點A順時針旋轉(zhuǎn),旋轉(zhuǎn)角是∠BAC,∴AB的對應(yīng)邊為AD,BC的對應(yīng)邊為DE,∠BAC對應(yīng)角為∠DAE,∴AB=AD,DE=BC,∠BAC=∠DAE即平分,∴A,B,D選項正確,C選項不正確.故選:C.【點睛】本題考查旋轉(zhuǎn)的性質(zhì),旋轉(zhuǎn)前后的兩個圖形全等,對應(yīng)點與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角,對應(yīng)點到旋轉(zhuǎn)中心的距離相等.4、C【分析】本小題先將二次項的系數(shù)提出后再將括號里運用配方法配成完全平方式即可.【詳解】由得:故選C【點睛】本題考查的知識點是配方法,掌握配方的方法及防止漏乘是關(guān)鍵.5、C【分析】根據(jù)特殊角的三角函數(shù)值解答即可.【詳解】tan60°=,故選C.【點睛】本題考查了特殊角三角函數(shù)值,熟記特殊角的三角函數(shù)值是解題關(guān)鍵.6、D【分析】根據(jù)題意得出△ABE∽△CDE,進(jìn)而利用相似三角形的性質(zhì)得出答案.【詳解】解:由題意可得:AE=2m,CE=0.5m,DC=1.5m,∵△ABC∽△EDC,∴,即,解得:AB=6,故選D.【點睛】本題考查的是相似三角形在實際生活中的應(yīng)用,根據(jù)題意得出△ABE∽△CDE是解答此題的關(guān)鍵.7、D【分析】利用圓的切線的性質(zhì)定理、等腰三角形的性質(zhì)即可得出.【詳解】解:∵PD切⊙O于點C,∴OC⊥CD,在Rt△OCD中,又CD=OC,∴∠COD=45°.∵OC=OA,∴∠OCA=×45°=22.5°.∴∠PCA=90°-22.5°=67.5°.故選:D.【點睛】本題考查切線的性質(zhì)定理,熟練掌握圓的切線的性質(zhì)定理、等腰三角形的性質(zhì)是解題的關(guān)鍵.8、A【分析】設(shè)這兩年污水利用率的平均增長率是,原有污水利用率為1,利用原有污水利用率(1+平均每年污水利用率的增長率=污水利用率,列方程即可.【詳解】解:設(shè)這兩年污水利用率的平均增長率是,由題意得出:故答案為:A.【點睛】本題考查的知識點是用一元二次方程解決實際問題,解題的關(guān)鍵是根據(jù)題目找出等量關(guān)系式,再列方程.9、B【分析】根據(jù)一元一次不等式組可求出m的范圍,根據(jù)判別式即可求出答案.【詳解】解:∵∴2﹣2m≤x≤2+m,由題意可知:2﹣2m≤2+m,∴m≥0,∵由于一元二次方程(m﹣1)x2+2mx+m+2=0有實數(shù)根,∴△=4m2﹣4(m﹣1)(m+2)=8﹣4m≥0,∴m≤2,∵m﹣1≠0,∴m≠1,∴m的取值范圍為:0≤m≤2且m≠1,∴m=0或2故選:B.【點睛】本題考查不等式組的解法以及一元二次方程,解題的關(guān)鍵是熟練運用根的判別式.10、B【解析】試題解析:∵2x=5y,∴.故選B.11、A【分析】根據(jù)二次函數(shù)的定義逐個判斷即可.【詳解】A、是二次函數(shù),故本選項符合題意;

B、當(dāng)a=0時,函數(shù)不是二次函數(shù),故本選項不符合題意;

C、不是二次函數(shù),故本選項不符合題意;

D、不是二次函數(shù),故本選項不符合題意;

故選:A.【點睛】此題考查二次函數(shù)的定義,能熟記二次函數(shù)的定義的內(nèi)容是解題的關(guān)鍵.12、B【分析】根據(jù)AB是⊙O的直徑得出∠ADB=90°,再求出∠A的度數(shù),由圓周角定理即可推出∠BCD的度數(shù).【詳解】∵AB是⊙O的直徑,∴∠ADB=90°,∴在Rt△ABD中,∠A=90°﹣∠ABD=34°,∵弧BD=弧BD,∴∠BCD=∠A=34°,故選B.【點睛】本題考查圓周角定理及其推論,熟練掌握圓周角定理是解題的關(guān)鍵.二、填空題(每題4分,共24分)13、等邊三角形【分析】由非負(fù)性和特殊角的三角函數(shù)值,求出∠A和∠B的度數(shù),然后進(jìn)行判斷,即可得到答案.【詳解】解:,∴,,∴∠A=60°,∠B=60°,∴∠C=60°,∴△ABC是等邊三角形;故答案為:等邊三角形.【點睛】本題考查了特殊角的三角函數(shù)值,非負(fù)性的應(yīng)用,解題的關(guān)鍵是熟練掌握非負(fù)數(shù)的性質(zhì),正確得到∠A和∠B的度數(shù).14、2或﹣2【解析】利用二次函數(shù)圖象上點的坐標(biāo)特征找出當(dāng)y=2時x的值,結(jié)合當(dāng)a≤x≤a+2時函數(shù)有最小值2,即可得出關(guān)于a的一元一次方程,解之即可得出結(jié)論.【詳解】當(dāng)y=2時,有x2﹣2x+2=2,解得:x2=0,x2=2.∵當(dāng)a≤x≤a+2時,函數(shù)有最小值2,∴a=2或a+2=0,∴a=2或a=﹣2,故答案為:2或﹣2.【點睛】本題考查了二次函數(shù)圖象上點的坐標(biāo)特征以及二次函數(shù)的最值,利用二次函數(shù)圖象上點的坐標(biāo)特征找出當(dāng)y=2時x的值是解題的關(guān)鍵.15、1【解析】試題分析:先求出m2﹣2m的值,然后把所求代數(shù)式整理出已知條件的形式并代入進(jìn)行計算即可得解.解:由m2﹣2m﹣1=0得m2﹣2m=1,所以,2m2﹣4m+3=2(m2﹣2m)+3=2×1+3=1.故答案為1.考點:代數(shù)式求值.16、b(a+b)(a﹣b)【分析】先提取公因式,再利用平方差公式進(jìn)行二次因式分解.平方差公式:a2﹣b2=(a+b)(a﹣b).【詳解】解:a2b﹣b3,=b(a2﹣b2)=b(a+b)(a﹣b).故答案為b(a+b)(a﹣b).17、1【分析】連接OB,OC,依據(jù)△BOC是等邊三角形,即可得到BO=CO=BC=BC=4,進(jìn)而得出⊙O的直徑為1.【詳解】解:如圖,連接OB,OC,∵∠A=30°,∴∠BOC=60°,∴△BOC是等邊三角形,又∵BC=4,∴BO=CO=BC=BC=4,∴⊙O的直徑為1,故答案為:1.【點睛】本題主要考查了三角形的外接圓以及圓周角定理的運用,三角形外接圓的圓心是三角形三條邊垂直平分線的交點,叫做三角形的外心.18、【分析】先用表示出長方形門的高,然后根據(jù)勾股定理列方程即可.【詳解】解:∵長方形門的寬為尺,∴長方形門的高為尺,根據(jù)勾股定理可得:故答案為:.【點睛】此題考查的是一元二次方程的應(yīng)用和勾股定理,根據(jù)勾股定理列出方程是解決此題的關(guān)鍵.三、解答題(共78分)19、(1)若某天該商品每件降價3元,當(dāng)天可獲利1692元;(2)2x;50﹣x.(3)每件商品降價1元時,商場日盈利可達(dá)到2000元.【分析】(1)根據(jù)“盈利=單件利潤×銷售數(shù)量”即可得出結(jié)論;

(2)根據(jù)“每件商品每降價1元,商場平均每天可多售出2件”結(jié)合每件商品降價x元,即可找出日銷售量增加的件數(shù),再根據(jù)原來沒見盈利50元,即可得出降價后的每件盈利額;

(3)根據(jù)“盈利=單件利潤×銷售數(shù)量”即可列出關(guān)于x的一元二次方程,解之即可得出x的值,再根據(jù)盡快減少庫存即可確定x的值.【詳解】(1)當(dāng)天盈利:(50-3)×(30+2×3)=1692(元).

答:若某天該商品每件降價3元,當(dāng)天可獲利1692元.

(2)∵每件商品每降價1元,商場平均每天可多售出2件,

∴設(shè)每件商品降價x元,則商場日銷售量增加2x件,每件商品,盈利(50-x)元.

故答案為2x;50-x.

(3)根據(jù)題意,得:(50-x)×(30+2x)=2000,

整理,得:x2-35x+10=0,

解得:x1=10,x2=1,

∵商城要盡快減少庫存,

∴x=1.

答:每件商品降價1元時,商場日盈利可達(dá)到2000元.【點睛】考查了一元二次方程的應(yīng)用,解題的關(guān)鍵是根據(jù)題意找出數(shù)量關(guān)系列出一元二次方程(或算式).20、(1)3m;(1)生物園垂直于墻的一邊長為1m.平行于墻的一邊長為6m時,圍成生物園的面積最大,且為11m1【分析】(1)設(shè)垂直于墻的一邊長為x米,則平行于墻的一邊長為(11-3x)米,根據(jù)長方形的面積公式結(jié)合生物園的面積為9平方米,列出方程,解方程即可;(1)設(shè)圍成生物園的面積為y,由題意可得:y=x(11﹣3x)且≤<4,從而求出y的最大值即可.【詳解】設(shè)這個生物園垂直于墻的一邊長為xm,(1)由題意,得x(11﹣3x)=9,解得,x1=1(不符合題意,舍去),x1=3,答:這個生物園垂直于墻的一邊長為3m;(1)設(shè)圍成生物園的面積為ym1.由題意,得,∵∴≤<4∴當(dāng)x=1時,y最大值=11,11﹣3x=6,答:生物園垂直于墻的一邊長為1m.平行于墻的一邊長為6m時,圍成生物園的面積最大,且為11m1.【點睛】本題主要考查一元二次方程的應(yīng)用和二次函數(shù)的應(yīng)用,解題的關(guān)鍵是正確解讀題意,根據(jù)題目給出的條件,準(zhǔn)確列出方程和二次函數(shù)解析式.21、(1)y=5x+30;(2)第24天;(3)W=﹣5(x﹣30)2+6480,第30天的利潤最大,最大利潤是6480元.【解析】試題分析:(1)原來每天銷售30件,根據(jù)每降1元,每天銷售量增加5件,則可得第x天(1≤x≤30且x為整數(shù))的銷量y件與x的關(guān)系式;(2)根據(jù)每件利潤×銷量=6300,列方程進(jìn)行求解即可得;(3)根據(jù)利潤=每件利潤×銷量,列出函數(shù)關(guān)系式,利用函數(shù)的性質(zhì)即可求得.試題解析:(1)由題意可知y=5x+30;(2)根據(jù)題意可得(130﹣x﹣60﹣4)(5x+30)=6300,解得:x=24或x=36(舍),答:在這30天內(nèi),第24天的利潤是6300元;(3)根據(jù)題意可得:w=(130﹣x﹣60﹣4)(5x+30)=﹣5x2+300x+1980=﹣5(x﹣30)2+6480,∵a=﹣5<0,∴函數(shù)有最大值,∴當(dāng)x=30時,w有最大值為6480元,答:第30天的利潤最大,最大利潤是6480元.22、(1)0.25;(2).【分析】大量重復(fù)試驗下摸球的頻率可以估計摸球的概率;畫樹狀圖列出所有等可能結(jié)果,再找到符合條件的結(jié)果數(shù),根據(jù)概率公式求解.【詳解】(1)根據(jù)表中數(shù)據(jù)估計從盒中摸出一枚棋是黑棋的概率是0.25,故答案為0.25;(2)由(1)可知,黑棋的個數(shù)為4×0.25=1,則白棋子的個數(shù)為3,畫樹狀圖如下:由表可知,所有等可能結(jié)果共有12種情況,其中這兩枚棋顏色不同的有6種結(jié)果,所以這兩枚棋顏色不同的概率為.【點睛】本題考查了利用頻率估計概率的知識,解題的關(guān)鍵是了解大量重復(fù)試驗中某個事件發(fā)生的頻率能估計概率.23、(1);(2)【分析】(1)根據(jù)小剛從印有數(shù)字1,3,4的三個小球中摸出印有數(shù)字3的小球進(jìn)行求解概率;(2)根據(jù)題意畫出樹狀圖,進(jìn)而求解.【詳解】解:(1)由題意知,小剛摸出的小球上的數(shù)字是3的概率為;(2)畫樹狀圖如下:一共有12種等可能情況,有三種情況滿足條件,分別為:,,,∴點在函數(shù)的圖象上的概率為.【點睛】本題考查等可能條件下的概率計算公式,畫樹狀圖或列表求解概率,熟知畫樹狀圖或列表法是解題的關(guān)鍵.24、(1)2千米;(2)y=90x﹣24(0.8≤x≤2);(3)3千米【分析】(1)先運用待定系數(shù)法求出OA的解析式,再將x=0.5代入,求出y的值即可;(2)設(shè)AB段圖象的函數(shù)表達(dá)式為y=k′x+b,將A、B兩點的坐標(biāo)代入,運用待定系數(shù)法即可求解;(3)先將x=1.5代入AB段圖象的函數(shù)表達(dá)式,求出對應(yīng)的y值,再用156減去y即可求解.【詳解】解:(1)設(shè)OA段圖象的函數(shù)表達(dá)式為y=kx.∵當(dāng)x=0.8時,y=48,∴0.8k=48,∴k=1.∴y=1x(0≤x≤0.8),∴當(dāng)x=0.5時,y=1×0.5=2.故小黃出發(fā)0.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論