版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
PAGE第十二章全等三角形單元測(cè)試(B)答題時(shí)間:120滿(mǎn)分:150分一、選擇題(每題3分,共30分。每題只有一個(gè)正確答案,請(qǐng)將正確答案的代號(hào)填在下面的表格中)題號(hào)12345678910答案1.在下列條件中,能判斷兩個(gè)直角三角形全等的是()A.一個(gè)銳角對(duì)應(yīng)相等B.兩銳角對(duì)應(yīng)相等C.一條邊對(duì)應(yīng)相等D.兩條邊對(duì)應(yīng)相等2.如圖1,小明把一塊三角形的玻璃打碎成了三塊,現(xiàn)在要到玻璃店去配一塊完全一樣的玻璃,那么最省事的辦法是()A.帶①去B.帶②去C.帶③去D.帶①和②去OOEABDC圖1圖1圖2圖2圖3圖33.如圖2,將兩根鋼條AA′、BB′的中點(diǎn)O連在一起,使AA′、BB′能繞著點(diǎn)O自由轉(zhuǎn)動(dòng),就做成了一個(gè)測(cè)量工具,則A′B′的長(zhǎng)等于內(nèi)槽寬AB,那么判定△OAB≌△OA′B′的理由是()A.SASB.ASAC.SSSD.HL4、如圖3,OA=OB,OC=OD,∠O=50°,∠D=35°,則∠AEC等于()A.60°B.50°C.45°D.30°__B_D_O_C_A圖4圖5圖55如圖4,在CD上求一點(diǎn)P,使它到OA,OB的距離相等,則P點(diǎn)是()A.線段CD的中點(diǎn)B.OA與OB的中垂線的交點(diǎn)C.OA與CD的中垂線的交點(diǎn)D.CD與∠AOB的平分線的交點(diǎn)6.已知,如圖5,△ABC中,AB=AC,AD是角平分線,BE=CF,則下列說(shuō)法正確的有幾個(gè)(
)(1)AD平分∠EDF;(2)△EBD≌△FCD;(3)BD=CD;(4)AD⊥BC.(A)1個(gè)
(B)2個(gè)
(C)3個(gè)
(D)4個(gè)7、已知:如圖6,是的角平分線,且AB:AC=3:2,則與的面積之比為()A.B.6:4 C.D.不能確定ABABCD圖7圖6圖68、直線L1、L2、L3表示三條相互交叉的公路,現(xiàn)要建立一個(gè)貨物中轉(zhuǎn)站,要求它到三條公路的距離相等,則可選擇的地址有()A一處B二處C三處D四處DCBAEHDCBAEH圖8A、SSSB、SASC、ASAD、AAS10、如圖8,已知中,,,是高和的交點(diǎn),則線段的長(zhǎng)度為()A.2 B.4 C.5 D.不能確定二、填空題(每題3分,共30)11.如圖9,若△ABC≌△DEF,則∠E=°12.杜師傅在做完門(mén)框后,為防止門(mén)框變形常常需釘兩根斜拉的木條,這樣做的數(shù)學(xué)原理是13.如圖10,如果△ABC≌△DEF,△DEF周長(zhǎng)是32cm,DE=9cm,ABCD圖11EF=13cm.∠E=ABCD圖11圖10圖10圖9圖9CC14.如圖11,AD⊥BC,D為BC的中點(diǎn),則△ABD≌_________.15.如圖12,若AB=DE,BE=CF,要證△ABF≌△DEC,需補(bǔ)充條件________或。圖14A圖14ADBEFC圖12圖13圖1316.如圖13,已知AD=BC,AE⊥BD、CF⊥BD于點(diǎn)E、F且AE=CF,∠ADB=,則∠DBC=°.17.如圖14,△ABC≌△AED,若,,則.18.如圖15,在△ABC中,,∠A+∠B=∠C,,∠A的平分線交BC于點(diǎn)D,若CD=8cm,則點(diǎn)D到AB的距離cm.BACBACDFE圖17圖16圖1519.如圖16,點(diǎn)P到∠AOB兩邊的距離相等,若∠POB=30°,則∠AOB=___度.20.如圖17,幼兒園的滑梯中有兩個(gè)長(zhǎng)度相等的梯子(BC=EF),左邊滑梯的高度AC等于右邊滑梯水平方向的長(zhǎng)度DF,則∠ABC+∠DFE=°.三、解答題(每小題9分,共36分)21.如圖,已知AB=AC,AD=AE,BE與CD相交于O,ΔABE與ΔACD全等嗎?說(shuō)明你的理由。22.如圖,四邊形ABCD的對(duì)角線AC與BD相交于O點(diǎn),∠1=∠2,∠3=∠4.求證:(1)△ABC≌△ADC;(2)BO=DO.DDCBAO123423、已知:如圖,AB∥DE,AC∥DF,BE=CF.求證:AB=DE.AABDFCE24、如圖,在同一直線上,,,且.求證:(1);(2).四、解答題(共30分)25、如圖,已知.求證:.26、我們知道,兩邊及其中一邊的對(duì)角分別對(duì)應(yīng)相等的兩個(gè)三角形不一定全等.那么在什么情況下,它們會(huì)全等?(1)閱讀與證明:對(duì)于這兩個(gè)三角形均為直角三角形,顯然它們?nèi)?;?duì)于這兩個(gè)三角形均為鈍角三角形,可證它們?nèi)龋ㄗC明略).對(duì)于這兩個(gè)三角形均為銳角三角形,它們也全等,可證明如下:已知:,均為銳角三角形,,,.求證:.(請(qǐng)你將下列證明過(guò)程補(bǔ)充完整.)證明:分別過(guò)點(diǎn)作于,于,則,,,,.(2)歸納與敘述:由(1)可得到一個(gè)正確結(jié)論,請(qǐng)你寫(xiě)出這個(gè)結(jié)論.27、兩個(gè)大小不同的等腰直角三角形三角板如圖1所示放置,圖2是由它抽象出的幾何圖形,在同一條直線上,連結(jié).(1)請(qǐng)找出圖2中的全等三角形,并給予證明(說(shuō)明:結(jié)論中不得含有未標(biāo)識(shí)的字母);圖圖1圖2DCEAB(2)證明:.五、解答題(每小題12分,共24分)28.如圖(1),A,E,F(xiàn),C在一條直線上,AE=CF,過(guò)E,F(xiàn)分別作DE⊥AC,BF⊥AC,若AB=CD,試證明BD平分EF。若將△DEC的邊EC沿AC方向移動(dòng)變?yōu)椋?)時(shí),其余條件不變,上述結(jié)論是否成立?請(qǐng)說(shuō)明理由.FFE29.如圖-1,的邊在直線上,,且;的邊也在直線上,邊與邊重合,且.(1)在圖-1中,請(qǐng)你通過(guò)觀察、測(cè)量,猜想并寫(xiě)出與關(guān)系;(2)將沿直線向左平移到圖-2的位置時(shí),交于點(diǎn),連結(jié),.猜想并寫(xiě)出與的關(guān)系,請(qǐng)證明你的猜想;(3)將沿直線向左平移到圖-3的位置時(shí),的延長(zhǎng)線交的延長(zhǎng)線于點(diǎn),連結(jié),.你認(rèn)為(2)中所猜想的與的關(guān)系還成立嗎?若成立,給出證明;若不成立,請(qǐng)說(shuō)明理由.AA(E)BC(F)PlllAABBQPEFFCQ圖-1圖-2圖-3EPC
參考答案一、選擇題1-5DCAAD6-10DADAB二選擇題11.10012.三角形的穩(wěn)定性13.1014.△ACD15.∠B=∠DECAF=DC16.3017.2718.8cm19.6020.90三21.全等理由AB=AC角BAE=角CAD(共角)AD=AE(角邊角)所以ΔABE與ΔACD全等22.因?yàn)椤?=∠2,∠3=∠4,又AC為公共邊所以ΔADC≌ΔABC所以AD=AB又因?yàn)樵讦OO和ΔABO中,AO為公共邊,所以ΔAOO≌ΔABO所以BO=DO23.證明:∵AB‖DE,AC‖DF∴∠ABC=∠DEF,∠ACB=∠DFE(同位角相等)∵BE=CF∴BC=BE+EC=CF+EC=EF∴ΔABC≌ΔDEF∴AB=DE(全等三角形對(duì)應(yīng)邊相等)24.證明:(1)∵AE∥BC,∴∠A=∠B.又AD=BF,∴AF=AD+DF=BF+FD=BD.又AE=BC,∴△AEF≌△BCD.∴EF=CD(2)∵△AEF≌△BCD,∴∠EFA=∠CDB.∴EF∥CD.四25證明:在∴△ABC和△DCB中∵AB=DCAC=DBBC=CB,∴△ABC≌△DCB.∴∠A=∠D.又∵∠AOB=∠DOC,∴∠1=∠2.26證明:分別過(guò)點(diǎn)B、B1作BD⊥CA于D,B1D1⊥C1A1于D1,則∠BDC=∠B1D1C1=90°∵BC=B1C1,∠C=∠C1∴△BCD≌△B1C1D1∴BD=B1D1.又∵AB=A1B1,∠BDC=∠B1D1C1=90°∴△ABD≌△A1B1D1∴∠A=∠A1又∵AB=A1B1,∠C=∠C1∴△ABC≌△A1B1C1(2)歸納與敘述:由(1)可得到一個(gè)正確結(jié)論,兩邊及其中一邊的對(duì)角分別對(duì)應(yīng)相等的兩個(gè)同類(lèi)三角形(同為銳角、直角、鈍角三角形)一定全等27(1)△BAE≌△CAD,理由如下:∵∠BAC=∠DAE=90°∴∠BAE=∠DAC又∵AB=AC∠B=∠ADC=45°∴△BAE≌△CAD(2)證明:∵△BAE≌△CAD∴∠BEA=∠ADC又∵∠ADE=45°∴∠BEA+∠CDE=45°又∵∠DEA=45°∴∠CDE+∠DEC=90°∴∠BCD=90°即DC⊥BE。五、28.已知AC=AE,AB=CD.因?yàn)锳E+EF=CF+EF所以AF=CE。又DE⊥AC,BF⊥AC。三角形ABF全等于三角形CDE。(HL){這步可以證明ED平行BF或者對(duì)角相等}所以DE=BF所以三角形EDG全等三角形BFG(ASA)所以EG=FG所以BD平分EF。第二問(wèn):同理第一問(wèn),證明三角形ABF全等三角形CDE。然后BF=ED三角形BFG全等三角形EDG.所以FG=EG所以BD平分EF29.(1)AB=APAB⊥AP(2)BQ=APBQ⊥AP(3)成立.解:(1)AB=AP;AB⊥AP;(2)BQ=AP;BQ⊥AP.證明:①由已知,得EF=FP,EF⊥FP,∴∠EPF=45°.又∵AC⊥BC,∴∠CQP=∠CPQ=45°.∴CQ=CP.在Rt△BCQ和Rt△ACP中,BC=AC,∠BCQ=∠ACP=90°,CQ=CP,∴Rt△BCQ≌Rt△ACP,∴BQ=AP.②如圖,延長(zhǎng)BQ交AP于點(diǎn)M.∵Rt△BCQ≌Rt△ACP,∴∠1=∠2.在Rt△BCQ中,∠1+∠3=90°,又∠3=∠4,∴∠2+∠4=∠1+∠3=90°.∴∠QMA=90°.∴BQ⊥AP;(3)成立.證明:①如圖,∵∠EPF=45°,∴∠CPQ=45°.又∵AC⊥BC,∴∠CQP=∠CPQ=45°.∴CQ=CP.在Rt△BCQ和Rt△ACP中,BC=AC,∠BCQ=∠ACP=90°,CQ=CP,∴Rt△BCQ≌Rt△ACP.∴BQ=AP.②如圖,延長(zhǎng)QB交AP于點(diǎn)N,則∠PBN=∠CBQ.∵Rt△BCQ≌Rt△ACP,∴∠BQC=∠APC.在Rt△BCQ中,∠BQC+∠CBQ=90°,∴∠APC+∠PBN=90°.∴∠PNB=90°.∴QB⊥AP.先制定階段性目標(biāo)—找到明確的努力方向每個(gè)人的一生,多半都是有目標(biāo)的,大的目標(biāo)應(yīng)該是一個(gè)十年、二十年甚至幾十年為之奮斗的結(jié)果,應(yīng)該定得比較遠(yuǎn)大些,這樣有利于發(fā)揮自己的潛能。但由于某些不確定因素的存在,人生目標(biāo)不一定非常具體詳細(xì),只要有一個(gè)明確的方向就可以。而對(duì)于中學(xué)生來(lái)說(shuō),你們的目標(biāo)應(yīng)該是進(jìn)入自己理想中的學(xué)校。因此,每個(gè)學(xué)生都會(huì)為自己制定一個(gè)學(xué)習(xí)目標(biāo),學(xué)習(xí)目標(biāo)可以分為兩方面內(nèi)容:一是階段性目標(biāo),如自己要知道學(xué)習(xí)到底是為了什么?為自己、為父母,或是為其他需要感激和感恩的人?為了將來(lái)的發(fā)展,為了上大學(xué),為了證明自己的價(jià)值?這都是很不錯(cuò)的理由。只要你認(rèn)為,它可以給你帶來(lái)源源的動(dòng)力,促使你向著自己希望的方向去發(fā)展,去努力,就可以當(dāng)作自己的目標(biāo)確定下來(lái)??梢哉f(shuō),這是人生中的階段性目標(biāo)。二是步驟性目標(biāo),由步驟性目標(biāo)最終才能實(shí)現(xiàn)自己學(xué)習(xí)的總目標(biāo)。比如,這一節(jié)課必須掌握哪些知識(shí),一天的復(fù)習(xí)要包括哪些內(nèi)容,一個(gè)月的學(xué)習(xí)要達(dá)到什么效果。小到一小時(shí),大到一月、一學(xué)期、一年,都要有目標(biāo),只有這樣,才可以不懈怠,不放松,一步一個(gè)腳印地朝著自己的最終目標(biāo)前進(jìn)。當(dāng)然,要進(jìn)入理想的學(xué)校,你還要制定一個(gè)年度目標(biāo)根據(jù)年度目標(biāo),可以具體量化學(xué)科分?jǐn)?shù)指標(biāo)和自己的心理成長(zhǎng)指標(biāo)。年度目標(biāo)的制定既要符合你當(dāng)前的學(xué)習(xí)水平,又要適當(dāng)?shù)馗哂谧约旱膶?shí)際水平,以便促進(jìn)一年中自身的發(fā)展和成長(zhǎng)同時(shí),為了目標(biāo)的清晰直觀,你可以在班級(jí)中大致估算對(duì)比一下,找到和自己目標(biāo)接近的同學(xué)。比如,某位同學(xué)目前的水平應(yīng)該可以考上你理想的學(xué)校,就把他作為實(shí)際中追趕的對(duì)象。經(jīng)驗(yàn)告訴我們,只要目標(biāo)明確、方法得當(dāng),初三一年成績(jī)?cè)诎嗉?jí)提升10至20名是常有的事情。有了年度目標(biāo),還要學(xué)會(huì)將目標(biāo)階段化,這也是中考狀元們?yōu)榇蠹曳窒淼慕?jīng)驗(yàn),因?yàn)橹挥羞@樣才能由目標(biāo)逐步落實(shí)到任務(wù)。首先,由年度目標(biāo)得出中期目標(biāo)。按照前松后緊的原則,中考狀元們建議大家在初三前半年落實(shí)任務(wù)的40%,比如全年要提高10名,那么期中要提高4名。這是因?yàn)槌跞鞍肽赀€有些新課程要學(xué),而且就像物理學(xué)習(xí)中所知道的那樣,啟動(dòng)時(shí)的靜摩擦力是最大的,我們需要在上半年付出一點(diǎn)時(shí)間和精力,調(diào)整自己的心態(tài),使之進(jìn)入良好的狀態(tài)??梢哉f(shuō),前半年能夠完成中期目標(biāo)的學(xué)生,年度目標(biāo)通常都能夠順利完成,因?yàn)樵降胶竺?我們所擅長(zhǎng)的心理因素和壓力調(diào)整就會(huì)發(fā)揮越大的作用。接下來(lái)就是每個(gè)月的短期目標(biāo)了。制定短期目標(biāo)應(yīng)注意以下幾個(gè)方面的問(wèn)題。第一,要對(duì)自己做一個(gè)全面的分析。制定目標(biāo)為自己的未來(lái)勾畫(huà)了一個(gè)藍(lán)圖,描繪了到達(dá)最終目的地的時(shí)間和要求,但究竟如何起步,還得從自身的現(xiàn)狀出發(fā)。因此,要充分分析自己的目前情況。比如,自己有哪些優(yōu)勢(shì)和不足,如何發(fā)揮優(yōu)勢(shì)、克服不足,自己的各科潛能如何,是否已經(jīng)充分發(fā)揮出來(lái)了,自己各科成績(jī)?nèi)绾?偏科情況如何,如何補(bǔ)救;自己的學(xué)習(xí)毅力和勤奮程度如何;自己的學(xué)習(xí)方法和學(xué)習(xí)效率怎樣,需做哪些改進(jìn),等等第二,可以把每個(gè)月定名,確定主題。例如一月為“力學(xué)月”。目標(biāo):熟練運(yùn)用受力分析,掌握物理題中與力學(xué)有關(guān)的各種聯(lián)系。任務(wù):找出各種和力學(xué)有
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 單位管理制度范例匯編員工管理篇十篇
- 單位管理制度呈現(xiàn)匯編【人事管理】
- 專(zhuān)題二 民主與法治(精講課件)中考道德與法治一輪復(fù)習(xí) 課件
- 【課件】寒假是用來(lái)超越的!課件 2024-2025學(xué)年高中上學(xué)期寒假學(xué)習(xí)和生活指導(dǎo)班會(huì)
- 第5單元 走向近代(高頻選擇題50題)(解析版)
- 中北大學(xué)課件電工技術(shù)
- 《皮膚性病學(xué)疥瘡》課件
- 《電子產(chǎn)品技術(shù)文件》課件
- 母親節(jié) 愛(ài)的呈現(xiàn)
- 汽車(chē)行業(yè)洞察與展望
- (高清版)TDT 1053-2017 農(nóng)用地質(zhì)量分等數(shù)據(jù)庫(kù)標(biāo)準(zhǔn)
- 小學(xué)道德與法治課程標(biāo)準(zhǔn)與教材研究 課件 第七章 法治教育
- 聯(lián)合辦公協(xié)議書(shū)范本
- 高中數(shù)學(xué)家長(zhǎng)會(huì)課件:夯實(shí)數(shù)學(xué)基礎(chǔ)培養(yǎng)數(shù)學(xué)思維
- 2024年中國(guó)遠(yuǎn)洋海運(yùn)集團(tuán)招聘筆試參考題庫(kù)附帶答案詳解
- 2024年貴州能源集團(tuán)電力投資有限公司招聘筆試參考題庫(kù)附帶答案詳解
- 生殖免疫學(xué)教案課件
- 沙糖桔互聯(lián)網(wǎng)創(chuàng)業(yè)計(jì)劃書(shū)
- 胃結(jié)石演示課件
- 書(shū)法知識(shí)之章法布局
- 2023乙型肝炎病毒標(biāo)志物臨床應(yīng)用專(zhuān)家共識(shí)(完整版)
評(píng)論
0/150
提交評(píng)論