版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.方程5x2﹣2=﹣3x的二次項系數(shù)、一次項系數(shù)、常數(shù)項分別是()A.5、3、﹣2 B.5、﹣3、﹣2 C.5、3、2 D.5、﹣3、22.如圖,水平地面上有一面積為30cm2的灰色扇形OAB,其中OA=6cm,且OA垂直于地面.將這個扇形向右滾動(無滑動)至點B剛好接觸地面為止,則在這個滾動過程中,點O移動的距離是()A.cm B.cm C.cm D.30cm3.﹣3﹣(﹣2)的值是()A.﹣1 B.1 C.5 D.﹣54.若一元二次方程ax2+bx+c=0的一個根為﹣1,則()A.a(chǎn)+b+c=0B.a(chǎn)﹣b+c=0C.﹣a﹣b+c=0D.﹣a+b+c=05.如圖,在△ABC中,AB=18,BC=15,cosB=,DE∥AB,EF⊥AB,若=,則BE長為()A.7.5 B.9 C.10 D.56.將分別標有“走”“向”“偉”“大”“復”“興”漢字的小球裝在一個不透明的口袋中,這些球除漢字外完全相同,每次摸球前先攪勻,隨機摸出一球,不放回,再隨機摸出一球,兩次摸出的球上的漢字組成“復興”的概率是()A. B. C. D.7.若點是直線上一點,已知,則的最小值是()A.4 B. C. D.28.如圖,拋物線與直線交于,兩點,與直線交于點,將拋物線沿著射線方向平移個單位.在整個平移過程中,點經(jīng)過的路程為()A. B. C. D.9.以下事件為必然事件的是()A.擲一枚質(zhì)地均勻的骰子,向上一面的點數(shù)小于6B.多邊形的內(nèi)角和是C.二次函數(shù)的圖象不過原點D.半徑為2的圓的周長是4π10.如圖,在平面直角坐標系中,與軸相切于點,為的直徑,點在函數(shù)的圖象上,若的面積為,則的值為()
A.5 B. C.10 D.1511.一次函數(shù)與二次函數(shù)在同一平面直角坐標系中的圖像可能是()A. B. C. D.12.已知一扇形的圓心角為,半徑為,則以此扇形為側面的圓錐的底面圓的周長為()A. B. C. D.二、填空題(每題4分,共24分)13.代數(shù)式有意義時,x應滿足的條件是______.14.已知⊙半徑為,點在⊙上,,則線段的最大值為_____.15.如圖,直線與雙曲線(k≠0)相交于A(﹣1,)、B兩點,在y軸上找一點P,當PA+PB的值最小時,點P的坐標為_________.16.拋物線的頂點坐標是______.17.在直徑為4cm的⊙O中,長度為的弦BC所對的圓周角的度數(shù)為____________.18.從這三個數(shù)中任取兩個不同的數(shù)作為點的坐標,則點剛好落在第四象限的概率是_.三、解答題(共78分)19.(8分)如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,,AC為直徑,DE⊥BC,垂足為E.(1)求證:CD平分∠ACE;(2)若AC=9,CE=3,求CD的長.20.(8分)已知關于的一元二次方程
有實根.(1)求的取值范圍;(2)求該方程的根.21.(8分)已知如圖,拋物線y=ax2+bx+3與x軸交于點A(3,0),B(﹣1,0),與y軸交于點C,連接AC,點P是直線AC上方的拋物線上一動點(異于點A,C),過點P作PE⊥x軸,垂足為E,PE與AC相交于點D,連接AP.(1)求點C的坐標;(2)求拋物線的解析式;(3)①求直線AC的解析式;②是否存在點P,使得△PAD的面積等于△DAE的面積,若存在,求出點P的坐標,若不存在,請說明理由.22.(10分)如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點D,過點D作⊙O的切線.交BC于點E.(1)求證:BE=EC(2)填空:①若∠B=30°,AC=2,則DE=______;②當∠B=______度時,以O,D,E,C為頂點的四邊形是正方形.23.(10分)如圖,在四邊形ABCD中,BD為一條對角線,AD∥BC,AD=2BC,∠ABD=90°,E為AD的中點,連接BE.(1)求證:四邊形BCDE為菱形;(2)連接AC,若AC平分∠BAD,BC=1,求AC的長.24.(10分)如圖,在中,,以為直徑作交于點.過點作,垂足為,且交的延長線于點.(1)求證:是的切線;(2)若,,求的長.25.(12分)在平面直角坐標系xoy中,點A(-4,-2),將點A向右平移6個單位長度,得到點B.(1)若拋物線y=-x2+bx+c經(jīng)過點A,B,求此時拋物線的表達式;(2)在(1)的條件下的拋物線頂點為C,點D是直線BC上一動點(不與B,C重合),是否存在點D,使△ABC和以點A,B,D構成的三角形相似?若存在,請求出此時D的坐標;若不存在,請說明理由;(3)若拋物線y=-x2+bx+c的頂點在直線y=x+2上移動,當拋物線與線段有且只有一個公共點時,求拋物線頂點橫坐標t的取值范圍.26.已知二次函數(shù)y=ax2+bx﹣3a經(jīng)過點A(﹣1,0)、C(0,3),與x軸交于另一點B,拋物線的頂點為D,(1)求此二次函數(shù)解析式;(2)連接DC、BC、DB,求證:△BCD是直角三角形;(3)在對稱軸右側的拋物線上是否存在點P,使得△PDC為等腰三角形?若存在,求出符合條件的點P的坐標;若不存在,請說明理由.
參考答案一、選擇題(每題4分,共48分)1、A【分析】直接利用一元二次方程中各部分的名稱分析得出答案.【詳解】解:5x1﹣1=﹣3x整理得:5x1+3x﹣1=0,則二次項系數(shù)、一次項系數(shù)、常數(shù)項分別是:5、3、﹣1.故選:A.【點睛】此題主要考查了一元二次方程的一般形式,正確認識各部分是解題關鍵.2、A【解析】如下圖,在灰色扇形OAB向右無滑動滾動過程中,點O移動的距離等于線段A1B1的長度,而A1B1的長度等于灰色扇形OAB中弧的長度,∵S扇形=,OA=6,∴(cm),即點O移動的距離等于:cm.故選A.點睛:在扇形沿直線無滑動滾動的過程中,由于圓心到圓上各點的距離都等于半徑,所以此時圓心作的是平移運動,其平移的距離就等于扇形沿直線滾動的路程.3、A【解析】利用有理數(shù)的減法的運算法則進行計算即可得出答案.【詳解】﹣3﹣(﹣2)=﹣3+2=﹣1,故選A.【點睛】本題主要考查了有理數(shù)的減法運算,正確掌握運算法則是解題關鍵.4、B【解析】直接把x=?1代入方程就可以確定a,b,c的關系.【詳解】∵x=?1是方程的解,∴把x=?1代入方程有:a?b+c=1.故選:B.【點睛】本題考查的是一元二次方程的解,把方程的解代入方程,就可以確定a,b,c的值.5、C【分析】先設DE=x,然后根據(jù)已知條件分別用x表示AF、BF、BE的長,由DE∥AB可知,進而可求出x的值和BE的長.【詳解】解:設DE=x,則AF=2x,BF=18﹣2x,∵EF⊥AB,∴∠EFB=90°,∵cosB==,∴BE=(18﹣2x),∵DE∥AB,∴,∴∴x=6,∴BE=(18﹣12)=10,故選:C.【點睛】本題主要考查了三角形的綜合應用,根據(jù)平行線得到相關線段比例是解題關鍵.6、B【分析】根據(jù)題意列表得出所有等情況數(shù)和兩次摸出的球上的漢字是“復”“興”的情況數(shù),再根據(jù)概率公式即可得出答案.【詳解】解:根據(jù)題意畫圖如下:共有30種等情況數(shù),其中兩次摸出的球上的漢字是“復”“興”的有2種,則隨機摸出一球,兩次摸出的球上的漢字組成“復興”的概率是;故選:.【點睛】此題考查了樹狀圖法或列表法求概率.樹狀圖法適合兩步或兩步以上完成的事件;列表法適合兩步完成的事件,解題時要注意此題是放回實驗還是不放回實驗.用到的知識點為:概率所求情況數(shù)與總情況數(shù)之比.7、B【分析】根據(jù)題意先確定點B在哪個位置時的最小值,先作點A關于直線CD的對稱點E,點B、E、O三點在一條直線上,再根據(jù)題意,連結OE與CD的交點就是點B,求出OE的長即為所求.【詳解】解:在y=-x+2中,當x=0時,y=2,當y=0時,0=-x+2,解得x=2,
∴直線y=-x+2與x的交點為C(2.0),與y軸的交點為D(0,2),如圖,∴OC=OD=2,∵OC⊥OD,:OC⊥OD,∴△OCD是等腰直角三角形,
∴∠OCD=45°,∴A(0,-2),∴OA=OC=2
連接AC,如圖,
∵OA⊥OC,
∴△OCA是等腰直角三角形,
∴∠OCA=45°,
∴∠ACD=∠OCA+∠OCD=90°,
∴.AC⊥CD,
延長AC到點E,使CE=AC,連接BE,作EF⊥軸于點F,
則點E與點A關于直線y=-x+2對稱,∠EFO=∠AOC=90,
點O、點B、點E三點共線時,OB+AB取最小值,最小值為OE的長,
在△CEF和△CAO中,
∴△CEF≌OCAO(AAS),
∴EF=OA=2,CF=OC=2
∴OF=OC+CF=4,
即OB+AB的最小值為.故選:B【點睛】本題考查的是最短路線問題,找最短路線是解題關鍵.找一點的對稱點連接另一點和對稱點與對稱軸的交點就是B點.8、B【分析】根據(jù)題意拋物線沿著射線方向平移個單位,點A向右平移4個單位,向上平移2個單位,可得平移后的頂點坐標.設向右平移a個單位,則向上平移a個單位,拋物線的解析式為y=(x+1-a)2-1+a,令x=2,y=(a-)2+,由0≤a≤4,推出y的最大值和最小值,根據(jù)點D的縱坐標的變化情形,即可解決問題.【詳解】解:由題意,拋物線沿著射線方向平移個單位,點A向右平移4個單位,向上平移2個單位,∵拋物線=(x+1)2-1的頂點坐標為(-1,-1),設拋物線向右平移a個單位,則向上平移a個單位,拋物線的解析式為y=(x+1-a)2-1+a令x=2,y=(3-a)2-1+a,∴y=(a-)2+,∵0≤a≤4∴y的最大值為8,最小值為,∵a=4時,y=2,∴8-2+2(2-)=故選:B【點睛】本題考查的是拋物線上的點在拋物線平移時經(jīng)過的路程問題,解決問題的關鍵是在平移過程中點D的移動規(guī)律.9、D【分析】必然事件是指一定會發(fā)生的事件,概率為1,根據(jù)該性質(zhì)判斷即可.【詳解】擲一枚質(zhì)地均勻的骰子,每一面朝上的概率為,而小于6的情況有5種,因此概率為,不是必然事件,所以A選項錯誤;多邊形內(nèi)角和公式為,不是一個定值,而是隨著多邊形的邊數(shù)n的變化而變化,所以B選項錯誤;二次函數(shù)解析式的一般形式為,而當c=1時,二次函數(shù)圖象經(jīng)過原點,因此不是必然事件,所以C選項錯誤;圓周長公式為,當r=2時,圓的周長為4π,所以D選項正確.故選D.【點睛】本題考查了必然事件的概念,關鍵是根據(jù)不同選項所包含的知識點的概念進行判斷對錯;必然事件發(fā)生的概率為1,隨機事件發(fā)生的概率為1<P<1,不可能事件發(fā)生的概率為1.10、C【分析】首先設點C坐標為,根據(jù)反比例函數(shù)的性質(zhì)得出,然后利用圓的切線性質(zhì)和三角形OAB面積構建等式,即可得解.【詳解】設點C坐標為,則∵與軸相切于點,∴CB⊥OB∵的面積為∴,即∵為的直徑∴BC=2AB∴故選:C.【點睛】此題主要考查圓的切線性質(zhì)以及反比例函數(shù)的性質(zhì),熟練掌握,即可解題.11、D【分析】本題可先由一次函數(shù)y=ax+c圖象得到字母系數(shù)的正負,再與二次函數(shù)y=ax2+bx+c的圖象相比較看是否一致.【詳解】A、一次函數(shù)y=ax+c與y軸交點應為(0,c),二次函數(shù)y=ax2+bx+c與y軸交點也應為(0,c),圖象不符合,故本選項錯誤;B、由拋物線可知,a>0,由直線可知,a<0,a的取值矛盾,故本選項錯誤;C、由拋物線可知,a<0,由直線可知,a>0,a的取值矛盾,故本選項錯誤;D、由拋物線可知,a<0,由直線可知,a<0,且拋物線與直線與y軸的交點相同,故本選項正確.故選D.【點睛】本題考查拋物線和直線的性質(zhì),用假設法來搞定這種數(shù)形結合題是一種很好的方法.12、A【分析】利用弧長公式計算出扇形的弧長,以此扇形為側面的圓錐的底面圓的周長即是扇形的弧長.【詳解】解:扇形的弧長=,以此扇形為側面的圓錐的底面圓的周長為.故選:A.【點睛】本題考查了弧長的計算:.二、填空題(每題4分,共24分)13、.【解析】直接利用二次根式的定義和分數(shù)有意義求出x的取值范圍.【詳解】解:代數(shù)式有意義,可得:,所以,故答案為:.【點睛】本題考查了二次根式有意義的條件,熟練掌握是解題的關鍵.14、【分析】過點A作AE⊥AO,并使∠AEO=∠ABC,先證明,由三角函數(shù)可得出,進而求得,再通過證明,可得出,根據(jù)三角形三邊關系可得:,由勾股定理可得,求出BE的最大值,則答案即可求出.【詳解】解:過點A作AE⊥AO,并使∠AEO=∠ABC,∵,∴,∴,∵,∴,∴,∴,又∵,∴,∵,∴,又∵,∴,∴,∴,在△OEB中,根據(jù)三角形三邊關系可得:,∵,∴,∴BE的最大值為:,∴OC的最大值為:.【點睛】本題主要考查了三角形相似的判定和性質(zhì)、三角函數(shù)、勾股定理及三角形三邊關系,解題的關鍵是構造直角三角形.15、(0,).【解析】試題分析:把點A坐標代入y=x+4得a=3,即A(﹣1,3),把點A坐標代入雙曲線的解析式得3=﹣k,即k=﹣3,聯(lián)立兩函數(shù)解析式得:,解得:,,即點B坐標為:(﹣3,1),作出點A關于y軸的對稱點C,連接BC,與y軸的交點即為點P,使得PA+PB的值最小,則點C坐標為:(1,3),設直線BC的解析式為:y=ax+b,把B、C的坐標代入得:,解得:,所以函數(shù)解析式為:y=x+,則與y軸的交點為:(0,).考點:反比例函數(shù)與一次函數(shù)的交點問題;軸對稱-最短路線問題.16、(1,3)【分析】根據(jù)頂點式:的頂點坐標為(h,k)即可求出頂點坐標.【詳解】解:由頂點式可知:的頂點坐標為:(1,3).故答案為(1,3).【點睛】此題考查的是求頂點坐標,掌握頂點式:的頂點坐標為(h,k)是解決此題的關鍵.17、60°或120°【分析】如下圖所示,分兩種情況考慮:D點在優(yōu)弧CDB上或E點在劣弧BC上時,根據(jù)三角函數(shù)可求出∠OCF的大小,進而求出∠BOC的大小,再由圓周角定理可求出∠D、∠E大小,進而得到弦BC所對的圓周角.【詳解】解:分兩種情況考慮:D在優(yōu)弧CDB上或E在劣弧BC上時,可得弦BC所對的圓周角為∠D或∠E,如下圖所示,作OF⊥BC,由垂徑定理可知,F(xiàn)為BC的中點,∴CF=BF=BC=,又直徑為4cm,∴OC=2cm,在Rt△AOC中,cos∠OCF=,∴∠OCF=30°,∵OC=OB,∴∠OCF=∠OBF=30°,∴∠COB=120°,∴∠D=∠COB=60°,又圓內(nèi)接四邊形的對角互補,∴∠E=120°,則弦BC所對的圓周角為60°或120°.故答案為:60°或120°.【點睛】此題考查了圓周角定理,圓內(nèi)接四邊形的性質(zhì),銳角三角函數(shù)定義,以及特殊角的三角函數(shù)值,熟練掌握圓周角定理是解本題的關鍵.18、【分析】首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與P點剛好落在第四象限的情況即可求出問題答案.【詳解】解:畫樹狀圖得:
∵共有6種等可能的結果,其中(1,?2),(3,?2)點落在第四象限,
∴P點剛好落在第四象限的概率為,
故答案為:.【點睛】本題考查的是用列表法或畫樹狀圖法求概率,熟記各象限內(nèi)點的符號特點是解題關鍵.三、解答題(共78分)19、(1)證明見解析;(2)【解析】分析:(1)根據(jù)圓內(nèi)接四邊形的性質(zhì)得到∠DCE=∠BAD,根據(jù)圓周角定理得到∠DCE=∠BAD,證明即可;(2)證明△DCE∽△ACD,根據(jù)相似三角形的性質(zhì)列出比例式,計算即可.詳解:(1)證明:∵四邊形ABCD是⊙O內(nèi)接四邊形,∴∠BAD+∠BCD=180°,∵∠BCD+∠DCE=180°,∴∠DCE=∠BAD,∵=,∴∠BAD=∠ACD,∴∠DCE=∠ACD,∴CD平分∠ACE;(2)解:∵AC為直徑,∴∠ADC=90°,∵DE⊥BC,∴∠DEC=90°,∴∠DEC=∠ADC,∵∠DCE=∠ACD,∴△DCE∽△ACD,∴=,即=,∴CD=3.點睛:本題考查的是圓內(nèi)接四邊形的性質(zhì)、圓周角定理,掌握圓內(nèi)接四邊形的任意一個外角等于它的內(nèi)對角是解題的關鍵.20、(1);(2)【分析】(1)根據(jù)根的判別式,列不等式求出k的取值范圍即可.(2)用公式法解方程即可.【詳解】(1)由一元二次方程有實數(shù)根,可以得出≥1,即(-2)2-4(k+1)≥1,解得:k≤1.(2),x==.【點睛】本題主要考查根的判別式以及公式法解一元二次方程的方法,熟記根的判別式以及一元二次方程解得公式是解題關鍵.21、(1)(0,3);(2)y=﹣x2+2x+3;(3)①;②當點P的坐標為(1,4)時,△PAD的面積等于△DAE的面積.【分析】(1)將代入二次函數(shù)解析式即可得點C的坐標;(2)把A(3,0),B(﹣1,0)代入y=ax2+bx+3即可得出拋物線的解析式;(3)①設直線直線AC的解析式為,把A(3,0),C代入即可得直線AC的解析式;②存在點P,使得△PAD的面積等于△DAE的面積;設點P(x,﹣x2+2x+3)則點D(x,﹣x+3),可得PD=﹣x2+2x+3﹣(﹣x+3)=﹣x2+3x,DE=﹣x+3,根據(jù)S△PAD=S△DAE時,即可得PD=DE,即可得出結論.【詳解】解:(1)由y=ax2+bx+3,令∴點C的坐標為(0,3);(2)把A(3,0),B(﹣1,0)代入y=ax2+bx+3得,解得:,∴拋物線的解析式為:y=﹣x2+2x+3;(3)①設直線直線AC的解析式為,把A(3,0),C代入得,解得,∴直線AC的解析式為;②存在點P,使得△PAD的面積等于△DAE的面積,理由如下:設點P(x,﹣x2+2x+3)則點D(x,﹣x+3),∴PD=﹣x2+2x+3﹣(﹣x+3)=﹣x2+3x,DE=﹣x+3,當S△PAD=S△DAE時,有,得PD=DE,∴﹣x2+3x=﹣x+3解得x1=1,x2=3(舍去),∴y=﹣x2+2x+3=﹣12+2+3=4,∴當點P的坐標為(1,4)時,△PAD的面積等于△DAE的面積.【點睛】本題考查了用待定系數(shù)法求解析式,二次函數(shù)的綜合,掌握知識點是解題關鍵.22、(1)見解析;(2)①3;②1.【分析】(1)證出EC為⊙O的切線;由切線長定理得出EC=ED,再求得EB=ED,即可得出結論;(2)①由含30°角的直角三角形的性質(zhì)得出AB,由勾股定理求出BC,再由直角三角形斜邊上的中線性質(zhì)即可得出DE;②由等腰三角形的性質(zhì),得到∠ODA=∠A=1°,于是∠DOC=90°然后根據(jù)有一組鄰邊相等的矩形是正方形,即可得到結論.【詳解】(1)證明:連接DO.∵∠ACB=90°,AC為直徑,∴EC為⊙O的切線;又∵ED也為⊙O的切線,∴EC=ED,又∵∠EDO=90°,∴∠BDE+∠ADO=90°,∴∠BDE+∠A=90°又∵∠B+∠A=90°,∴∠BDE=∠B,∴BE=ED,∴BE=EC;(2)解:①∵∠ACB=90°,∠B=30°,AC=2,∴AB=2AC=4,∴BC==6,∵AC為直徑,∴∠BDC=∠ADC=90°,由(1)得:BE=EC,∴DE=BC=3,故答案為3;②當∠B=1°時,四邊形ODEC是正方形,理由如下:∵∠ACB=90°,∴∠A=1°,∵OA=OD,∴∠ADO=1°,∴∠AOD=90°,∴∠DOC=90°,∵∠ODE=90°,∴四邊形DECO是矩形,∵OD=OC,∴矩形DECO是正方形.故答案為1.【點睛】本題考查了圓的切線性質(zhì)、解直角三角形的知識、切線長定理等知識,解題的關鍵是學會添加常用輔助線,構造直角三角形解決問題,屬于中考常考題型.23、(1)詳見解析;(2)AC=.【分析】(1)由,推出四邊形BCDE是平行四邊形,再證明即可解決問題;(2)在中只要證明即可解決問題.【詳解】(1),E為AD的中點,即四邊形BCDE是平行四邊形四邊形BCDE是菱形;(2)如圖,連接AC,AC平分在中,.【點睛】本題考查了平行四邊形的判定定理與性質(zhì)、菱形的判定定理、角平分線的定義、正弦三角函數(shù)值、直角三角形的性質(zhì),熟記各定理與性質(zhì)是解題關鍵.24、(1)見解析;(2)BD長為1.【分析】(1)連接OD,AD,根據(jù)等腰三角形三線合一得BD=CD,根據(jù)三角形的中位線可得OD∥AC,所以得OD⊥EF,從而得結論;
(2)根據(jù)等腰三角形三線合一的性質(zhì)證得∠BAD=∠BAC=30°,由30°的直角三角形的性質(zhì)即可求得BD.【詳解】(1)證明:連接OD,AD,∵AB是⊙O的直徑,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴BD=CD,∵OA=OB,∴OD是△BAC的中位線,∴OD∥AC,∵EF⊥AC,∴OD⊥EF,∴EF是⊙O的切線;(2)解:∵AB=AC,AD⊥BC,∴∠BAD=∠BAC=30°,∴BD=AB=×10=1,即BD長為1.【點睛】本題主要考查的是圓的綜合應用,解答本題主要應用了圓周角定理、等腰三角形的性質(zhì),圓的切線的判定,30°的直角三角形的性質(zhì),掌握本題的輔助線的作法是解題的關鍵.25、(1)y=-x2-2x+6;(2)存在,D(,);(2)-4≤t<-2或0<t≤1.【分析】(1)根據(jù)點A的坐標結合線段AB的長度,可得出點B的坐標,根據(jù)點A,B的坐標,利用待定系數(shù)法即可求出拋物線的表達式;(2)由拋物線解析式,求出頂點C的坐標,從而求出直線BC解析式,設D(d,-2d+4),根據(jù)已知可知AD=AB=6時,△ABC∽△BAD,從而列出關于d的方程,解方程即可求解;(2)將拋物線的表達式變形為頂點時,依此代入點A,B的坐標求出t的值,再結合圖形即可得出:當拋物線與線段AB有且只有一個公共點時t的取值范圍.【詳解】(1)∵點A的坐標為(-4,-2),將點A向右平移6個單位長度得到點B,∴點B的坐標為(2,-2).∵拋物線y=-x2+bx+c過點,∴,解得∴拋物線表達式為y=-x2-2x+6(2)存在.如圖由(1)得,y=-x2-2x+6=-(x+1)2+7,∴C(-1,7)設直線BC解析式為y=kx+b∴解之得,∴l(xiāng)BC:y=-2x+4設D(d,-2d+4),∵在△ABC中AC=BC∴當且僅當AD=AB=6時,兩三角形相似即(-4-d)2+(-2+2d-4)2=26時,△ABC∽△BAD,解之得,d1=、d2=2(舍去)∴存在點D,使△ABC和以點A,B,D構成的三角形相似,此時點D(,);(2)如圖:拋物線y=-x2+bx+c頂點在直線上∴拋物線頂點坐標為∴拋物線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度個人車輛作為抵押物債務結算合同4篇
- 2025年度消費者權益保護普法合同履行與市場監(jiān)管協(xié)議4篇
- 二零二五版美容美發(fā)產(chǎn)品原料綠色采購與環(huán)保責任合同2篇
- 直播電商在2025年的市場格局
- 二零二五年度林業(yè)苗木冷鏈物流配送合同2篇
- 課題申報參考:明代徽州心學研究
- 2025年度個人消防工程勞務合同范本2篇
- 二零二五山地承包合同書:山地生態(tài)保護與可持續(xù)發(fā)展合作框架2篇
- 二零二五年度新能源儲能技術投資入股合同-@-1
- 二零二五年度大型會議活動場地租賃合同4篇
- 環(huán)境監(jiān)測對環(huán)境保護的意義
- 2023年數(shù)學競賽AMC8試卷(含答案)
- 神經(jīng)外科課件:神經(jīng)外科急重癥
- 2024年低壓電工證理論考試題庫及答案
- 2023年十天突破公務員面試
- 《瘋狂動物城》中英文對照(全本臺詞)
- 醫(yī)院住院醫(yī)師規(guī)范化培訓證明(樣本)
- 小學六年級語文閱讀理解100篇(及答案)
- 氣功修煉十奧妙
- 安徽省物業(yè)服務標準
- 勾股定理的歷史與證明課件
評論
0/150
提交評論