泊松分布在金融領(lǐng)域的應(yīng)用_第1頁
泊松分布在金融領(lǐng)域的應(yīng)用_第2頁
泊松分布在金融領(lǐng)域的應(yīng)用_第3頁
泊松分布在金融領(lǐng)域的應(yīng)用_第4頁
泊松分布在金融領(lǐng)域的應(yīng)用_第5頁
已閱讀5頁,還剩3頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

Random(Poissondistribution)inthefieldoffinancialapplications

【Abstract】mathematicalfinanceasasubject.Usingagreatdealofteachingtheoryandmethodstudyandsolvemajortheoriesinfinancialissues,practicalproblems,andsome,suchasthepricingoffinancialinnovation.Duetofinancialproblemsthecomplexityofthemathematicalknowledge,inadditiontothebaseofknowledge,thereareplentyoftheoriesandmethodsofmodernmathematics.Inthisarticleweintroducethevolumefluctuationsinstockpricemodel.ApplicationofPoissonprocesstheorydescribesthevolatilityofstockprices,andbasedonoptionpricingtheory,Europeancalloptionpricingformulaisderived.Inthecourseoffinancialinvestment,investorstypicallyshyawayfromrisks,andcontroltherisksinthefirstplace,sowefurtherriskaversioninthemarketofEuropeancalloptionspricerange.Inordertogiveinvestorsamorespecificreference.

【Keywords】stochasticprocessofcompoundPoissonprocesssharestradedoptionspricing

Alongwithrapideconomicdevelopment,avarietyoffinancialtoolscontinuetoproduce.Thecorrectvaluationoffinancialinstrumentsisanecessaryconditionforeffectivemanagementofrisk,weusedthepricesofsecuritiesdescribedingeometricBrownianmotionprocessiscontinuous.Withfairpricesandfinancialinstrumentsisthattheyarereasonableandthekey.Mathematicalfinanceis20centurieslaterdevelopedanewcrossdiscipline.Itisobservedwithauniquewaytomeetfinancialproblems,whichcombinemathematicaltoolsandfinancialproblems.Provideabasisforcreativeresearch,solvingfinancialproblemsandguidance.Throughmathematicsbuiltdie,andtheoryanalysis,andtheoryisderived,andnumericalcalculation,quantitativeanalysis,researchandanalysisfinancialtradingintheofvariousproblem,toprecisetodescriptionoutfinancialtradingprocessintheofsomebehaviorandmayofresults,whileresearchitscorrespondingofforecasttheory,reachedavoidedfinancialrisk,andachievedfinancialtradingreturnsmaximizeofpurpose,tomakesaboutfinancialtradingofdecisionmoresimpleandaccurate.

Becauseoffinancialphenomenastudiedinmathematicalfinancestronguncertainty,stochasticprocesstheoryasanimportantbranchofprobabilitytheory,andarewidelyusedinthefinancialresearch.Stochasticprocesstheoryinclude:theoryofprobabilityspaces.Poissonprocess,theupdatingprocess,discreteMarkovchainsandcontinuousparametersoftheMarkovchain,theBrowncampaign,martingalestheoryandstochasticintegration,stochasticdifferentialequations,andsoon.Inrecentdecades,theoryandapplicationsofstochasticprocesseshasbeendevelopingrapidly.Physics,automation,communicationsciences,economicsandManagementSciencesandmanyotherfieldsareactivefigureofthetheoryofstochasticprocesses.

ThisstochasticprocesstheoryofoptionpricingusingPoissonprocesstheorytothestudyofregularityofstockpricefluctuationinthestockmarket,considertheimpactoftransactionsonstockprices,stockpriceprocessmodelisconstructed.Andgivestheoptionofavoidingrisksintheinvestmentprocess.

AndthePoissonprocessconcepts

Definitions1.1randomprocess{Nt,T≥0}iscalledthecountingprocess,iftheIntimeintervals(0,t]occursinacertainevent(duetoapointonthetimelineofevents,sopeoplecalledtheevent)number.Therefore,acountingprocessmustmeet:

(1)NtTakenon-negativeintegervalues;

(2)Ifs<t,thenNs<Nt

(3)NtInR+=[0,∞)Therearecontinuousandpiecewisefetchconstants,

(4)Fors<t,Ns,t=NS-NtIsequaltothetime(s,t]thenumberofeventsoccurringin,

Saidthecountingprocess{Nt,T≥0}hasindependentincrements.Ifit'sinanyfinitenumberofdisjointeventsthatoccurinthetimeintervalofafewindependentofeachother,saidthecountingprocess{Nt,T≥0}withstationaryincrements,ifatanytimetheprobabilitydistributionofthenumberofeventsthatoccurredintheintervaldependsonlyonthelengthoftheinterval,andhasnothingtodowithitslocation.Thatforany0≤t1≤t2Ands≥0IncrementalNt1,t2AndNt1+s,t2+sHavethesameprobabilitydistribution.

Definitions1.2countingprocess{Nt,T≥0}iscalledintensity(orspeed)ThehomogeneousPoissonprocessifitmeetsthefollowingconditions:

(1)P(N0=0)=1,

(2)Hasindependentincrements.

(3)Forany0s<t,Ns,t=NS-NtWithparameter(t--s)ThePoissondistribution,which

Definitions1.3countprocess{,T≥0}iscalledthePoissonprocess,theargumentis,λ>0If

(1)N0=0

;

(2)Processeswithstationaryindependentincrements.

If

Youcanprove

Thatis,Ns+t-NtHasmeanm(t+s)m(t)ofthePoissondistribution.

Non-homogeneousPoissonprocessisimportantbecausenolongerrequiresastationaryincrements,allowingthepossibilityofeventsatcertaintimesthanothers.

Dangstrength(t)Territoriescanbenon-homogeneousPoissonprocessisregarded

③dSprobability

Typeintheαn>0,βn>0,λn>0Marketdepthcorrespondingtotherisk-neutralprobabilitycoefficientindexnsaid"neutral"(neutral).Becausetherisk-neutral,sotheexpectationsofstockyieldsequaltotheyieldsonbonds,namely:

We'vegotaEuropeanbuyingoptionpricingfor:

Four,riskavoidanceandriskcontrol

Onthestockmarket,investorsoftenAvoidRiskandriskcontrolasatoppriority,soconsiderhowtoavoidinvestmentrisksisofgreattheoreticalandpracticalsignificance.Assumetheexpectationsofstockreturnsthanyieldsonbonds,whichu-1αλEξ-(1-d)βλEξ>r

Probabilityisassumedbythemodelshowsthatastock'spricefluctuationsareasfollows:

Undertherisk-neutralprobability,accordingtothemodelassumptions,fluctuationsinstockpriceprobabilityis:

Five,modelthespecificpracticalproblemsofapplication

Select2009years6months22daysuntil2010years6months22daysofchinadotcom(stock)pricesastheresearchobject,theactualdatafromhttp://CN.finance.yahoo.corn。Theyearsharesofthestockpriceandtradingvolumedatastatisticsandanalysis,2010years6months22daysthestock'sopeningpriceof8.57,itsEuropeancalloptionexpirefor3months,2010years9months2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論