版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.方程的兩根分別是,則等于()A.1 B.-1 C.3 D.-32.的絕對值是()A. B.2020 C. D.3.關(guān)于二次函數(shù),下列說法錯誤的是()A.它的圖象開口方向向上 B.它的圖象頂點坐標(biāo)為(0,4)C.它的圖象對稱軸是y軸 D.當(dāng)時,y有最大值44.方程的兩根分別為()A.=-1,=2 B.=1,=2 C.=―l,=-2 D.=1,=-25.已知反比例函數(shù)y=kx的圖象經(jīng)過點P(﹣2,3A.(﹣1,﹣6) B.(1,6) C.(3,﹣2) D.(3,2)6.如圖,AB是⊙O的直徑,C是⊙O上一點(A、B除外),∠BOD=44°,則∠C的度數(shù)是()A.44° B.22° C.46° D.36°7.如圖,在圓心角為45°的扇形內(nèi)有一正方形CDEF,其中點C、D在半徑OA上,點F在半徑OB上,點E在弧AB上,則扇形與正方形的面積比是()A.π:8 B.5π:8 C.π:4 D.π:48.設(shè),下列變形正確的是()A. B. C. D.9.河堤橫斷面如圖所示,堤高BC=5米,迎水坡AB的坡比1:,則AC的長是()A.10米 B.米 C.15米 D.米10.如圖,某物體由上下兩個圓錐組成,其軸截面中,,.若下部圓錐的側(cè)面積為1,則上部圓錐的側(cè)面積為()A. B. C. D.11.下列圖形中,既是軸對稱圖形,又是中心對稱圖形的是()A.平行四邊形 B.圓 C.等邊三角形 D.正五邊形12.在圓,平行四邊形、函數(shù)的圖象、的圖象中,既是軸對稱圖形又是中心對稱圖形的個數(shù)有()A.0 B.1 C.2 D.3二、填空題(每題4分,共24分)13.如圖,在平面直角坐標(biāo)系中,已知經(jīng)過原點,與軸、軸分別交于、兩點,點坐標(biāo)為,與交于點,則圓中陰影部分的面積為________.14.二次函數(shù)y=x2-2x+2圖像的頂點坐標(biāo)是______.15.已知是方程的一個根,則方程另一個根是________.16.拋物線y=(x﹣1)(x﹣3)的對稱軸是直線x=_____.17.如圖,在中,,,點在邊上,,.點是線段上一動點,當(dāng)半徑為的與的一邊相切時,的長為____________.18.如圖,直角三角形的直角頂點在坐標(biāo)原點,若點在反比例函數(shù)的圖像上,點在反比例函數(shù)的圖像上,且,則_______.三、解答題(共78分)19.(8分)如圖①,在直角坐標(biāo)系中,點A的坐標(biāo)為(1,0),以O(shè)A為邊在第一象限內(nèi)作正方形OABC,點D是x軸正半軸上一動點(OD>1),連接BD,以BD為邊在第一象限內(nèi)作正方形DBFE,設(shè)M為正方形DBFE的中心,直線MA交y軸于點N.如果定義:只有一組對角是直角的四邊形叫做損矩形.(1)試找出圖1中的一個損矩形;(2)試說明(1)中找出的損矩形的四個頂點一定在同一個圓上;(3)隨著點D位置的變化,點N的位置是否會發(fā)生變化?若沒有發(fā)生變化,求出點N的坐標(biāo);若發(fā)生變化,請說明理由;(4)在圖②中,過點M作MG⊥y軸于點G,連接DN,若四邊形DMGN為損矩形,求D點坐標(biāo).20.(8分)如圖,在中,,以為直徑作交于于于.求證:是中點;求證:是的切線21.(8分)如圖,在平面直角坐標(biāo)系中,矩形的頂點在軸上,在軸上,把矩形沿對角線所在的直線對折,點恰好落在反比例函數(shù)的圖象上點處,與軸交于點,延長交軸于點,點剛好是的中點.已知的坐標(biāo)為.(1)求反比例函數(shù)的函數(shù)表達(dá)式;(2)若是反比例函數(shù)圖象上的一點,點在軸上,若以為頂點的四邊形是平行四邊形,請直接寫出點的坐標(biāo)_________.22.(10分).在一個不透明的布袋中裝有三個小球,小球上分別標(biāo)有數(shù)字﹣1、0、2,它們除了數(shù)字不同外,其他都完全相同.(1)隨機(jī)地從布袋中摸出一個小球,則摸出的球為標(biāo)有數(shù)字2的小球的概率為;(2)小麗先從布袋中隨機(jī)摸出一個小球,記下數(shù)字作為平面直角坐標(biāo)系內(nèi)點M的橫坐標(biāo).再將此球放回、攪勻,然后由小華再從布袋中隨機(jī)摸出一個小球,記下數(shù)字作為平面直角坐標(biāo)系內(nèi)點M的縱坐標(biāo),請用樹狀圖或表格列出點M所有可能的坐標(biāo),并求出點M落在如圖所示的正方形網(wǎng)格內(nèi)(包括邊界)的概率.23.(10分)在初中階段的函數(shù)學(xué)習(xí)中,我們經(jīng)歷了“確定函數(shù)的表達(dá)式——利用函數(shù)圖象研其性質(zhì)——運(yùn)用函數(shù)解決問題”的學(xué)習(xí)過程.如圖,在平面直角坐標(biāo)系中己經(jīng)繪制了一條直線.另一函數(shù)與的函數(shù)關(guān)系如下表:…-6-5-4-3-2-10123456……-2-0.2511.7521.751-0.25-2-4.25-7-10.25-14…(1)求直線的解析式;(2)請根據(jù)列表中的數(shù)據(jù),繪制出函數(shù)的近似圖像;(3)請根據(jù)所學(xué)知識并結(jié)合上述信息擬合出函數(shù)的解折式,并求出與的交點坐標(biāo).24.(10分)已知關(guān)于的一元二次方程:.(1)求證:對于任意實數(shù),方程都有實數(shù)根;(2)當(dāng)為何值時,方程的兩個根互為相反數(shù)?請說明理由.25.(12分)在平面直角坐標(biāo)系xOy中,拋物線交y軸于點為A,頂點為D,對稱軸與x軸交于點H.(1)求頂點D的坐標(biāo)(用含m的代數(shù)式表示);(2)當(dāng)拋物線過點(1,-2),且不經(jīng)過第一象限時,平移此拋物線到拋物線的位置,求平移的方向和距離;(3)當(dāng)拋物線頂點D在第二象限時,如果∠ADH=∠AHO,求m的值.26.定義:我們知道,四邊形的一條對角線把這個四邊形分成了兩個三角形,如果這兩個三角形相似(不全等),我們就把這條對角線叫做這個四邊形的“相似對角線”.理解:(1)如圖1,已知Rt△ABC在正方形網(wǎng)格中,請你只用無刻度的直尺在網(wǎng)格中找到一點D,使四邊形ABCD是以AC為“相似對角線”的四邊形(畫出1個即可);(2)如圖2,在四邊形ABCD中,,對角線BD平分∠ABC.求證:BD是四邊形ABCD的“相似對角線”;運(yùn)用:(3)如圖3,已知FH是四邊形EFGH的“相似對角線”,∠EFH=∠HFG=.連接EG,若△EFG的面積為,求FH的長.
參考答案一、選擇題(每題4分,共48分)1、B【分析】根據(jù)一元二次方程根與系數(shù)的關(guān)系,即可得到答案.【詳解】解:∵的兩根分別是,∴,故選:B.【點睛】本題考查了一元二次方程根與系數(shù)的關(guān)系,解題的關(guān)鍵是熟練掌握一元二次方程根與系數(shù)的關(guān)系進(jìn)行解題.2、B【分析】根據(jù)絕對值的定義直接解答.【詳解】解:根據(jù)絕對值的概念可知:|?2121|=2121,故選:B.【點睛】本題考查了絕對值.解題的關(guān)鍵是掌握絕對值的概念,注意掌握一個正數(shù)的絕對值是它本身;一個負(fù)數(shù)的絕對值是它的相反數(shù);1的絕對值是1.3、D【分析】由拋物線的解析式可求得其開口方向、對稱軸、函數(shù)的最值即可判斷.【詳解】∵,∴拋物線開口向上,對稱軸為直線x=0,頂點為(0,4),當(dāng)x=0時,有最小值4,故A、B、C正確,D錯誤;故選:D.【點睛】本題主要考查二次函數(shù)的性質(zhì),掌握二次函數(shù)的頂點式是解題的關(guān)鍵,即在y=a(x?h)2+k中,對稱軸為x=h,頂點坐標(biāo)為(h,k).4、D【解析】(x-1)(x+1)=0,可化為:x-1=0或x+1=0,解得:x1=1,x1=-1.故選D5、C【解析】先根據(jù)點(-2,3),在反比例函數(shù)y=k的圖象上求出k的值,再根據(jù)k=xy的特點對各選項進(jìn)行逐一判斷.【詳解】∵反比例函數(shù)y=kx的圖象經(jīng)過點(﹣2,3)∴k=2×3=-6,A.∵(-6)×(-1)=6≠-6,∴此點不在反比例函數(shù)圖象上;B.∵1×6=6≠-6,∴此點不在反比例函數(shù)圖象上;C.∵3×(-2)=-6,∴此點在反比例函數(shù)圖象上;D.∵3×2=6≠-6,∴此點不在反比例函數(shù)圖象上。故答案選:C.【點睛】本題考查的知識點是反比例函數(shù)圖像上點的坐標(biāo)特點,解題的關(guān)鍵是熟練的掌握反比例函數(shù)圖像上點的坐標(biāo)特點.6、B【分析】根據(jù)圓周角定理解答即可.【詳解】解,∵∠BOD=44°,∴∠C=∠BOD=22°,故選:B.【點睛】本題考查了圓周角定理,屬于基本題型,熟練掌握圓周角定理是關(guān)鍵.7、B【分析】連接OE,設(shè)正方形的邊長為a.根據(jù)等腰直角三角形的性質(zhì),得OC=CF=a,在直角三角形OFC中,根據(jù)勾股定理列方程,用a表示出r的值,再根據(jù)扇形及正方形的面積公式求解.【詳解】解:連接OE,設(shè)正方形的邊長為a,則正方形CDEF的面積是a2,在Rt△OCF中,a2+(2a)2=r2,即r=a,扇形與正方形的面積比=:a2=:a2=5π:1.故選B.【點睛】本題考查的是扇形面積的計算,熟記扇形的面積公式是解答此題的關(guān)鍵.8、D【分析】根據(jù)比例的性質(zhì)逐個判斷即可.【詳解】解:由得,2a=3b,A、∵,∴2b=3a,故本選項不符合題意;
B、∵,∴3a=2b,故本選項不符合題意;
C、,故本選項不符合題意;
D、,故本選項符合題意;
故選:D.【點睛】本題考查了比例的性質(zhì),能熟記比例的性質(zhì)是解此題的關(guān)鍵,如果,那么ad=bc.9、B【解析】Rt△ABC中,已知了坡比是坡面的鉛直高度BC與水平寬度AC之比,通過解直角三角形即可求出水平寬度AC的長.【詳解】Rt△ABC中,BC=5米,tanA=1:;∴AC=BC÷tanA=5米;故選:B.【點睛】此題主要考查學(xué)生對坡度坡角的掌握及三角函數(shù)的運(yùn)用能力.10、C【分析】先證明△ABD為等邊三角形,得到AB=AD=BD,∠A=∠ABD=∠ADB=60°,由求出∠CBD=∠CDB=30°,從而求出BC和BD的比值,利用圓錐的側(cè)面積的計算方法得到上面圓錐的側(cè)面積與下面圓錐的側(cè)面積的比等于AB:CB,從而得到上部圓錐的側(cè)面積.【詳解】解:∵∠A=60°,AB=AD,
∴△ABD為等邊三角形,
∴AB=AD=BD,∠A=∠ABD=∠ADB=60°,∵∠ABC=90°,
∴∠CBD=30°,而CB=CD,
∴△CBD為底角為30°的等腰三角形,過點C作CE⊥BD于點E,易得BD=2BE,∵∠CBD=30°,∴BE:BC=:2,∴BD:BC=:2=:1,即AB:BC=:1,∵上面圓錐與下面圓錐的底面相同,
∴上面圓錐的側(cè)面積與下面圓錐的側(cè)面積的比等于AB:CB,
∴下面圓錐的側(cè)面積=.
故選:C.【點睛】本題考查了圓錐的計算:圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.也考查了等腰直角三角形和等邊三角形的性質(zhì).11、B【解析】根據(jù)中心對稱圖形和軸對稱圖形的概念對各項分析判斷即可.【詳解】平行四邊形是中心對稱圖形,但不是軸對稱圖形,故A錯誤;圓既是軸對稱圖形又是中心對稱圖形,故B正確;等邊三角形是軸對稱圖形,但不是中心對稱圖形,故C錯誤;正五邊形是軸對稱圖形,但不是中心對稱圖形,故D錯誤.故答案為:B.【點睛】本題考查了軸對稱圖形和中心對稱圖形的定義,熟練掌握其定義是解題的關(guān)鍵.12、C【分析】根據(jù)軸對稱圖形又是中心對稱圖形的定義和函數(shù)圖象,可得答案.【詳解】解:圓是軸對稱圖形又是中心對稱圖形;
平行四邊形是中心對稱圖形,不是軸對稱圖形;
函數(shù)y=x2的圖象是軸對稱圖形,不是中心對稱圖形;的圖象是中心對稱圖形,是軸對稱圖形;
故選:C.【點睛】本題考查了反比例函數(shù)和二次函數(shù)的圖象,利用了軸對稱,中心對稱的定義.二、填空題(每題4分,共24分)13、【分析】連接AB,從圖中明確,然后根據(jù)公式計算即可.【詳解】解:連接,∵,∴是直徑,根據(jù)同弧對的圓周角相等得:,∵,∴,,即圓的半徑為2,∴.故答案為:.【點睛】本題考查了同弧對的圓周角相等;90°的圓周角對的弦是直徑;銳角三角函數(shù)的概念;圓、直角三角形的面積分式,解題的關(guān)鍵是熟練運(yùn)用所學(xué)的知識進(jìn)行解題.14、(1,1)【解析】分析:把二次函數(shù)解析式轉(zhuǎn)化成頂點式形式,然后寫出頂點坐標(biāo)即可.詳解:∵∴頂點坐標(biāo)為(1,1).故答案為:(1,1).點睛:考查二次函數(shù)的性質(zhì),熟練掌握配方法是解題的關(guān)鍵.15、1【分析】設(shè)方程另一個根為x1,根據(jù)根與系數(shù)的關(guān)系得到-1?x1=-1,然后解一次方程即可.【詳解】設(shè)方程另一個根為x1,根據(jù)題意得-1?x1=-1,所以x1=1.故答案為1.【點睛】本題考查了根與系數(shù)的關(guān)系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根時,x1+x2=-,x1x2=.16、1【分析】將拋物線的解析式化為頂點式,即可得到該拋物線的對稱軸;【詳解】解:∵拋物線y=(x﹣1)(x﹣3)=x1﹣4x+3=(x﹣1)1﹣1,∴該拋物線的對稱軸是直線x=1,故答案為:1.【點睛】本題考查了二次函數(shù)的性質(zhì),掌握二次函數(shù)的性質(zhì)是解題的關(guān)鍵.17、或或【分析】根據(jù)勾股定理得到AB、AD的值,再分3種情況根據(jù)相似三角形性質(zhì)來求AP的值.【詳解】解:∵在中,,,,∴AD=在Rt△ACB中,,,,∴CB=6+10=16∵AB2=AC2+BC2AB=①當(dāng)⊙P與BC相切時,設(shè)切點為E,連結(jié)PE,則PE=4,∠AEP=90°∵AD=BD=10∴∠EAP=∠CBA,∠C=∠AEP=90°∴△APE∽△ACB②當(dāng)⊙P與AC相切時,設(shè)切點為F,連結(jié)PF,則PF=4,∠AFP=90°∵∠C=∠AFP=90°∠CAD=∠FAP∴△CAD∽△FAP③當(dāng)⊙P與BC相切時,設(shè)切點為G,連結(jié)PG,則PG=4,∠AGP=90°∵∠C=∠PGD=90°∠ADC=∠PDG∴△CAD∽△GPD故答案為:或或5【點睛】本題考查了利用相似三角形的性質(zhì)對應(yīng)邊成比例來證明三角形邊的長.注意分清對應(yīng)邊,不要錯位.18、【分析】構(gòu)造一線三垂直可得,由相似三角形性質(zhì)可得,結(jié)合得出,進(jìn)而得出,即可得出答案.【詳解】解:過點作軸于點,過點作軸于點,,,,,又,,∴,,點在反比例函數(shù)的圖像上,∴,,∴經(jīng)過點的反比例函數(shù)圖象在第二象限,故反比例函數(shù)解析式為:.即.故答案為:.【點睛】此題主要考查了相似三角形的判定與性質(zhì)以及反比例函數(shù)數(shù)的性質(zhì),掌握反比例函數(shù)中k的幾何意義和構(gòu)造一線三垂直模型得相似三角形,從而正確得出是解題關(guān)鍵.三、解答題(共78分)19、(1)詳見解析;(2)詳見解析;(3)N點的坐標(biāo)為(0,﹣1);(4)D點坐標(biāo)為(3,0).【解析】試題分析:(1)根據(jù)題中給出的損矩形的定義,從圖找出只有一組對角是直角的四邊形即可;(2)證明四邊形BADM四個頂點到BD的中點距離相等即可;(3)利用同弧所對的圓周角相等可得∠MAD=∠MBD,進(jìn)而得到OA=ON,即可求得點N的坐標(biāo);(4)根據(jù)正方形的性質(zhì)及損矩形含有的直角,利用勾股定理求解.(1)四邊形ABMD為損矩形;(2)取BD中點H,連結(jié)MH,AH∵四邊形OABC,BDEF是正方形∴△ABD,△BDM都是直角三角形∴HA=BDHM=BD∴HA=HB=HM=HD=BD∴損矩形ABMD一定有外接圓(3)∵損矩形ABMD一定有外接圓⊙H∴MAD=MBD∵四邊形BDEF是正方形∴MBD=45°∴MAD=45°∴OAN=45°∵OA=1∴ON=1∴N點的坐標(biāo)為(0,-1)(4)延長AB交MG于點P,過點M作MQ⊥軸于點Q設(shè)MG=,則四邊形APMQ為正方形∴PM=AQ=-1∴OG=MQ=-1∵△MBP≌△MDQ∴DQ=BP=CG=-2∴MN2ND2MD2∵四邊形DMGN為損矩形∴∴∴=2.5或=1(舍去)∴OD=3∴D點坐標(biāo)為(3,0).考點:本題考查的是確定圓的條件,正方形的性質(zhì)點評:解答本題的關(guān)鍵是理解損矩形的只有一組對角是直角的性質(zhì),20、(1)詳見解析,(2)詳見解析【分析】(1)連接AD,利用等腰三角形三線合一即可證明是中點;(2)連接OD,通過三角形中位線的性質(zhì)得出,則有OD⊥DE,則可證明結(jié)論.【詳解】(1)連接AD.∵AB是⊙O的直徑,∴AD⊥BC,∵AB=AC,∴BD=DC,(2)連接OD.∵AO=BO,BD=DC,∴,∵DE⊥AC,∴OD⊥DE,∴DE是⊙O的切線.【點睛】本題主要考查等腰三角形三線合一和切線的判定,掌握等腰三角形三線合一和切線的判定方法是解題的關(guān)鍵.21、(1);(2),,(,0).【分析】(1)證得BD是CF的垂直平分線,求得,作DG⊥BF于G,求得點D的坐標(biāo)為,從而求得反比例函數(shù)的解析式;(2)分3種情形,分別畫出圖形即可解決問題.【詳解】(1)∵四邊形ABOC是矩形,∴AB=OC,AC=OB,,根據(jù)對折的性質(zhì)知,,∴,,AB=DB,又∵D是CF的中點,∴BD是CF的垂直平分線,∴BC=BF,,∴,∵,∴,∵點B的坐標(biāo)為,∴,在中,,,,∴,過D作DG⊥BF于G,如圖,在中,,,,∴,,∴,∴點D的坐標(biāo)為,代入反比例函數(shù)的解析式得:,∴反比例函數(shù)的解析式;(2)如圖①、②中,作EQ∥x軸交反比例函數(shù)的圖象于點Q,在中,,,∴,∴點E的坐標(biāo)為,點Q縱坐標(biāo)與點E縱坐標(biāo)都是,代入反比例函數(shù)的解析式得:,解得:,∴點Q的坐標(biāo)為,∴,∵四點構(gòu)成平行四邊形,∴∴點的坐標(biāo)分別為,;如圖③中,構(gòu)成平行四邊形,作QM∥y軸交軸于點M,∵四邊形為平行四邊形,∴,,∴,∴,,∴點的坐標(biāo)為,∴∴,∴點的坐標(biāo)為,綜上,符合條件點的坐標(biāo)有:,,;【點睛】本題考查反比例函數(shù)綜合題、矩形的性質(zhì)、翻折變換、直角三角形中30度角的性質(zhì)、平行四邊形的判定和性質(zhì)、解直角三角形等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造直角三角形解決問題,學(xué)會用分類討論的思想思考問題.22、(1);(2)列表見解析,.【解析】試題分析:(1)一共有3種等可能的結(jié)果總數(shù),摸出標(biāo)有數(shù)字2的小球有1種可能,因此摸出的球為標(biāo)有數(shù)字2的小球的概率為;(2)利用列表得出共有9種等可能的結(jié)果數(shù),再找出點M落在如圖所示的正方形網(wǎng)格內(nèi)(包括邊界)的結(jié)果數(shù),可求得結(jié)果.試題解析:(1)P(摸出的球為標(biāo)有數(shù)字2的小球)=;(2)列表如下:小華
小麗
-1
0
2
-1
(-1,-1)
(-1,0)
(-1,2)
0
(0,-1)
(0,0)
(0,2)
2
(2,-1)
(2,0)
(2,2)
共有9種等可能的結(jié)果數(shù),其中點M落在如圖所示的正方形網(wǎng)格內(nèi)(包括邊界)的結(jié)果數(shù)為6,∴P(點M落在如圖所示的正方形網(wǎng)格內(nèi))==.考點:1列表或樹狀圖求概率;2平面直角坐標(biāo)系.23、(1);(2)見解析;(3)交點為和【分析】(1)根據(jù)待定系數(shù)法即可求出直線的解析式;(2)描點連線即可;(3)根據(jù)圖象得出函數(shù)為二次函數(shù),頂點坐標(biāo)為(-2,2),用待定系數(shù)法即可求出拋物線的解析式,解方程組即可得出與交點坐標(biāo).【詳解】(1)設(shè)直線的解析式為y=kx+m.由圖象可知,直線過點(6,0),(0,-3),∴,解得:,∴;(2)圖象如圖:(3)由圖象可知:函數(shù)為拋物線,頂點為.設(shè)其解析式為:從表中選一點代入得:1=4a+2,解出:,∴,即.聯(lián)立兩個解析式:,解得:或,∴交點為和.【點睛】本題考查了二次函數(shù)的圖象和性質(zhì).根據(jù)圖象求出一次函數(shù)和二次函數(shù)的解析式是解答本題的關(guān)鍵.24、(1)見解析;(2)1,理由見解析.【解析】試題分析:(1)根據(jù)方程的系數(shù)結(jié)合根的判別式,可得出△=(t﹣3)2≥0,由此可證出:對于任意實數(shù)t,方程都有實數(shù)根;(2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 蘇科版八年級物理上冊《第四章物態(tài)變化》章末測試卷含答案
- 人教版三年級數(shù)學(xué)下冊導(dǎo)學(xué)案
- 人教版二年級語文下冊知識點歸納
- 抗生素輪換制度在控制耐藥菌傳播中的應(yīng)用
- 高一化學(xué)第三單元金屬及其化合物第三講用途廣泛的金屬材料練習(xí)題
- 2024屆江蘇省南通市海安某中學(xué)高考化學(xué)三模試卷含解析
- 2024高中地理第一章人口的變化第三節(jié)人口的合理容量課時演練含解析新人教版必修2
- 2024高中語文第一單元以意逆志知人論世自主賞析蜀相學(xué)案新人教版選修中國古代詩歌散文欣賞
- 2024高中語文第四單元創(chuàng)造形象詩文有別項羽之死作業(yè)含解析新人教版選修中國古代詩歌散文欣賞
- 2024高考化學(xué)一輪復(fù)習(xí)第2章元素與物質(zhì)世界第1講元素與物質(zhì)分類學(xué)案魯科版
- 檔案館查資料委托書
- 高中數(shù)學(xué)人教A版必修第一冊 全冊 思維導(dǎo)圖
- 【基于自由現(xiàn)金流貼現(xiàn)法的企業(yè)估值的案例探析3300字(論文)】
- 江門市廣雅中學(xué)2023-2024學(xué)年七年級下學(xué)期月考數(shù)學(xué)試題 (B卷)
- 鑄件工藝性分析報告
- 船舶維修搶修方案
- 九年級初三中考物理綜合復(fù)習(xí)測試卷3套(含答案)
- (正式版)JTT 1218.5-2024 城市軌道交通運(yùn)營設(shè)備維修與更新技術(shù)規(guī)范 第5部分:通信
- 2023年人教版五年級上冊語文期末考試題(加答案)
- 新中國史智慧樹知到期末考試答案2024年
- 基于物聯(lián)網(wǎng)的智能衣柜
評論
0/150
提交評論