版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.如圖,點P(8,6)在△ABC的邊AC上,以原點O為位似中心,在第一象限內(nèi)將△ABC縮小到原來的,得到△A′B′C′,點P在A′C′上的對應點P′的的坐標為()A.(4,3) B.(3,4) C.(5,3) D.(4,4)2.若點在拋物線上,則的值()A.2021 B.2020 C.2019 D.20183.下列各式運算正確的是()A. B. C. D.4.一組數(shù)據(jù)1,2,3,3,4,1.若添加一個數(shù)據(jù)3,則下列統(tǒng)計量中,發(fā)生變化的是()A.平均數(shù) B.眾數(shù) C.中位數(shù) D.方差5.若一組數(shù)據(jù)為3,5,4,5,6,則這組數(shù)據(jù)的眾數(shù)是()A.3 B.4 C.5 D.66.如圖,以點O為位似中心,將△ABC放大后得到△DEF,已知△ABC與△DEF的面積比為1:9,則OC:CF的值為()A.1:2 B.1:3 C.1:8 D.1:97.四邊形ABCD的對角線互相平分,要使它變?yōu)榫匦?,需要添加的條件是(
)A.AB=CD B.AB=BC C.AC⊥BD D.AC=BD8.下面四個手機應用圖標中是軸對稱圖形的是()A. B. C. D.9.在平面直角坐標系中,將拋物線向上平移1個單位后所得拋物線的解析式為()A. B. C. D.10.天津市一足球場占地163000平方米,將163000用科學記數(shù)法表示應為(
)A.163×103 B.16.3×104 C.1.63×105 D.0.163×10611.如圖,在平面直角坐標系中拋物線y=(x+1)(x﹣3)與x軸相交于A、B兩點,若在拋物線上有且只有三個不同的點C1、C2、C3,使得△ABC1、△ABC2、△ABC3的面積都等于m,則m的值是()A.6 B.8 C.12 D.1612.已知關(guān)于的一元二次方程兩實數(shù)根為、,則()A.3 B.﹣3 C.1 D.﹣1二、填空題(每題4分,共24分)13.如圖,在正方形ABCD中,對角線AC、BD交于點O,E是BC的中點,DE交AC于點F,則tan∠BDE=______.14.袋子中有10個除顏色外完全相同的小球在看不到球的條件下,隨機地從袋中摸出一個球,記錄顏色后放回,將球搖勻重復上述過程1500次后,共到紅球300次,由此可以估計袋子中的紅球個數(shù)是_____.15.如圖,AB是⊙O的直徑,AC是⊙O的切線,連結(jié)OC交⊙O于點D,連結(jié)BD,∠C=30°,則∠ABD的度數(shù)是_____°.16.如圖,AB為⊙O的直徑,點P為AB延長線上的一點,過點P作⊙O的切線PE,切點為M,過A、B兩點分別作PE的垂線AC、BD,垂足分別為C、D,連接AM,則下列結(jié)論正確的是___________.(寫出所有正確結(jié)論的序號)①AM平分∠CAB;②AM2=AC?AB;③若AB=4,∠APE=30°,則的長為;④若AC=3,BD=1,則有CM=DM=.17.若代數(shù)式5x-5與2x-9的值互為相反數(shù),則x=________.18.某個周末小月和小華在南濱路跑步鍛煉身體,兩人同時從A點出發(fā),沿直線跑到B點后馬上掉頭原路返回A點算一個來回,回到A點后又馬上調(diào)頭去往B點,以此類推,每人要完成2個來回。一直兩人全程均保持勻速,掉頭時間忽略不計。如圖所示是小華從出發(fā)到他率先完成第一個來回為止,兩人到B點的距離之和y(米)與小華跑步時間x(分鐘)之間的函數(shù)圖像,則當小華跑完2個來回時,小月離B點的距離為___米.三、解答題(共78分)19.(8分)如圖1,在平面直角坐標系中,點,點.(1)求直線的函數(shù)表達式;(2)點是線段上的一點,當時,求點的坐標;(3)如圖2,在(2)的條件下,將線段繞點順時針旋轉(zhuǎn),點落在點處,連結(jié),求的面積,并直接寫出點的坐標.20.(8分)如圖,直線與雙曲線在第一象限內(nèi)交于、兩點,已知,.(1)__________,____________________,____________________.(2)直接寫出不等式的解集;(3)設(shè)點是線段上的一個動點,過點作軸于點,是軸上一點,求的面積的最大值.21.(8分)為了測量豎直旗桿的高度,某數(shù)學興趣小組在地面上的點處豎直放了一根標桿,并在地面上放置一塊平面鏡,已知旗桿底端點、點、點在同一條直線上.該興趣小組在標桿頂端點恰好通過平面鏡觀測到旗桿頂點,在點觀測旗桿頂點的仰角為.觀測點的俯角為,已知標桿的長度為米,問旗桿的高度為多少米?(結(jié)果保留根號)22.(10分)如圖1,分別是的內(nèi)角的平分線,過點作,交的延長線于點.(1)求證:;(2)如圖2,如果,且,求;(3)如果是銳角,且與相似,求的度數(shù),并直接寫出的值.23.(10分)如圖,已知一次函數(shù)y=﹣x+n的圖象與反比例函數(shù)y=的圖象交于A(4,﹣2),B(﹣2,m)兩點.(1)請直接寫出不等式﹣x+n≤的解集;(2)求反比例函數(shù)和一次函數(shù)的解析式;(3)過點A作x軸的垂線,垂足為C,連接BC,求△ABC的面積.24.(10分)如圖,在一條河流的兩岸分別有A、B、C、D四棵景觀樹,已知AB//CD,某數(shù)學活動小組測得∠DAB=45°,∠CBE=73°,AB=10m,CD=30m,請計算這條河的寬度(參考數(shù)值:,,)25.(12分)用適當?shù)姆椒ń庀铝蟹匠蹋海?)(2)26.在△ABC中,∠ACB=90°,BC=kAC,點D在AC上,連接BD.(1)如圖1,當k=1時,BD的延長線垂直于AE,垂足為E,延長BC、AE交于點F.求證:CD=CF;(2)過點C作CG⊥BD,垂足為G,連接AG并延長交BC于點H.①如圖2,若CH=CD,探究線段AG與GH的數(shù)量關(guān)系(用含k的代數(shù)式表示),并證明;②如圖3,若點D是AC的中點,直接寫出cos∠CGH的值(用含k的代數(shù)式表示).
參考答案一、選擇題(每題4分,共48分)1、A【分析】直接利用在平面直角坐標系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應點的坐標的比等于k或?k,進而結(jié)合已知得出答案.【詳解】∵點P(8,6)在△ABC的邊AC上,以原點O為位似中心,在第一象限內(nèi)將△ABC縮小到原來的,得到△A′B′C′,∴點P在A′C′上的對應點P′的的坐標為:(4,3).故選:A.【點睛】此題主要考查了位似變換,正確得出位似比是解題關(guān)鍵.2、B【分析】將P點代入拋物線解析式得到等式,對等式進行適當變形即可.【詳解】解:將代入中得所以.故選:B.【點睛】本題考查二次函數(shù)上點的坐標特征,等式的性質(zhì).能根據(jù)等式的性質(zhì)進行適當變形是解決此題的關(guān)鍵.3、D【分析】逐一對選項進行分析即可.【詳解】A.不是同類項,不能合并,故該選項錯誤;B.,故該選項錯誤;C.,故該選項錯誤;D.,故該選項正確;故選:D.【點睛】本題主要考查同底數(shù)冪的乘除法,積的乘方,掌握同底數(shù)冪的乘除法和積的乘方的運算法則是解題的關(guān)鍵.4、D【解析】A.∵原平均數(shù)是:(1+2+3+3+4+1)÷6=3;添加一個數(shù)據(jù)3后的平均數(shù)是:(1+2+3+3+4+1+3)÷7=3;∴平均數(shù)不發(fā)生變化.B.∵原眾數(shù)是:3;添加一個數(shù)據(jù)3后的眾數(shù)是:3;∴眾數(shù)不發(fā)生變化;C.∵原中位數(shù)是:3;添加一個數(shù)據(jù)3后的中位數(shù)是:3;∴中位數(shù)不發(fā)生變化;D.∵原方差是:;添加一個數(shù)據(jù)3后的方差是:;∴方差發(fā)生了變化.故選D.點睛:本題主要考查的是眾數(shù)、中位數(shù)、方差、平均數(shù)的,熟練掌握相關(guān)概念和公式是解題的關(guān)鍵.5、C【分析】根據(jù)眾數(shù)的定義即可求解.【詳解】一組數(shù)據(jù)為3,5,4,5,6中,5出現(xiàn)的次數(shù)最多,∴這組數(shù)據(jù)的眾數(shù)為5;
故選:C.【點睛】本題考查了眾數(shù)的概念,眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù),注意一組數(shù)據(jù)的眾數(shù)可能不只一個.6、A【分析】利用位似的性質(zhì)和相似三角形的性質(zhì)得到,然后利用比例性質(zhì)求出即可.【詳解】解:∵△ABC與△DEF位似,∴=,∴,∴,故選A.【點睛】本題考查了位似變換:如果兩個圖形不僅是相似圖形,而且對應頂點的連線相交于一點,對應邊互相平行,那么這樣的兩個圖形叫做位似圖形,這個點叫做位似中心.注意:①兩個圖形必須是相似形;②對應點的連線都經(jīng)過同一點;③對應邊平行.7、D【解析】四邊形ABCD的對角線互相平分,則說明四邊形是平行四邊形,由矩形的判定定理知,只需添加條件是對角線相等.【詳解】添加AC=BD,
∵四邊形ABCD的對角線互相平分,
∴四邊形ABCD是平行四邊形,
∵AC=BD,根據(jù)矩形判定定理對角線相等的平行四邊形是矩形,
∴四邊形ABCD是矩形,
故選D.【點睛】考查了矩形的判定,關(guān)鍵是掌握矩形的判定方法:①矩形的定義:有一個角是直角的平行四邊形是矩形;②有三個角是直角的四邊形是矩形;③對角線相等的平行四邊形是矩形.8、D【分析】分別根據(jù)軸對稱圖形與中心對稱圖形的性質(zhì)對各選項進行逐一分析即可.【詳解】A、既不是軸對稱圖形,也不是中心對稱圖形,故本選項錯誤;B、是中心對稱圖形,故本選項錯誤;C、既不是軸對稱圖形,也不是中心對稱圖形,故本選項錯誤;D、是軸對稱圖形,故本選項正確.故選D.【點睛】本題考查的是軸對稱圖形,熟知軸對稱圖形是針對一個圖形而言的,是一種具有特殊性質(zhì)的圖形,被一條直線分割成的兩部分沿著對稱軸折疊時,互相重合是解答此題的關(guān)鍵.9、B【分析】根據(jù)拋物線的平移規(guī)律:括號里左加右減,括號外上加下減,即可得出結(jié)論.【詳解】解:將拋物線向上平移1個單位后所得拋物線的解析式為故選B.【點睛】此題考查的是求拋物線平移后的解析式,掌握拋物線的平移規(guī)律:括號里左加右減,括號外上加下減,是解決此題的關(guān)鍵.10、C【解析】科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>10時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】解:將163000用科學記數(shù)法表示為:1.63×105.故選:C.【點睛】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.11、B【分析】根據(jù)題目中的函數(shù)解析式可以求得該拋物線與x軸的交點坐標和頂點的坐標,再根據(jù)在拋物線上有且只有三個不同的點C1、C2、C3,使得△ABC1、△ABC2、△ABC3的面積都等于m,可知其中一點一定在頂點處,從而可以求得m的值.【詳解】∵拋物線y=(x+1)(x-3)與x軸相交于A、B兩點,∴點A(-1,0),點B(3,0),該拋物線的對稱軸是直線x==1,∴AB=3-(-1)=4,該拋物線頂點的縱坐標是:y=(1+1)×(1-3)=-4,∵在拋物線上有且只有三個不同的點C1、C2、C3,使得△ABC1、△ABC2、△ABC3的面積都等于m,∴m==8,故選B.【點睛】本題考查拋物線與x軸的交點、二次函數(shù)圖象上點的坐標特征,解答本題的關(guān)鍵是明確題意,利用二次函數(shù)的性質(zhì)和數(shù)形結(jié)合的思想解答.12、A【解析】根據(jù)根與系數(shù)的關(guān)系求解即可.【詳解】∵關(guān)于的一元二次方程兩實數(shù)根為、,∴.故選:A.【點睛】本題考查了根與系數(shù)的關(guān)系,二次項系數(shù)為1,常用以下關(guān)系:、是方程的兩根時,,.二、填空題(每題4分,共24分)13、【分析】設(shè)AD=DC=a,根據(jù)勾股定理求出AC,易證△AFD∽△CFE,根據(jù)相似三角形的性質(zhì),可得:=2,進而求得CF,OF的長,由銳角的正切三角函數(shù)定義,即可求解.【詳解】∵四邊形ABCD是正方形,∴∠ADC=90°,AC⊥BD,設(shè)AD=DC=a,∴AC=a,∴OA=OC=OD=a,∵E是BC的中點,∴CE=BC=a,∵AD∥BC,∴△AFD∽△CFE,∴=2,∴CF=AC=a,∴OF=OC﹣CF=a,∴tan∠BDE===,故答案為:.【點睛】本題主要考查相似三角形的判定和性質(zhì)定理以及正切三角函數(shù)的定義,根據(jù)題意,設(shè)AD=DC=a,表示出OF,OD的長度,是解題的關(guān)鍵.14、2【分析】設(shè)袋子中紅球有x個,求出摸到紅球的頻率,用頻率去估計概率即可求出袋中紅球約有多少個.【詳解】設(shè)袋子中紅球有x個,根據(jù)題意,得:,解得:x=2,所以袋中紅球有2個,故答案為2【點睛】此題考查概率公式的應用,解題關(guān)鍵在于求出摸到紅球的頻率15、30°【分析】根據(jù)切線的性質(zhì)求出∠OAC,結(jié)合∠C=30°可求出∠AOC,根據(jù)等腰三角形性質(zhì)求出∠B=∠BDO,根據(jù)三角形外角性質(zhì)求出即可.【詳解】解:∵AC是⊙O的切線,∴∠OAC=90°,∵∠C=30°,∴∠AOC=90°﹣30°=60°,∵OB=OD,∴∠ABD=∠BDO,∵∠ABD+∠BDO=∠AOC,∴∠ABD=AOC=30°,故答案為:30°.【點睛】本題考查了切線的性質(zhì),三角形外角性質(zhì),三角形內(nèi)角和定理,等腰三角形性質(zhì)的應用,解此題的關(guān)鍵是求出∠AOC的度數(shù).16、①②④【解析】連接OM,由切線的性質(zhì)可得OM⊥PC,繼而得OM∥AC,再根據(jù)平行線的性質(zhì)以及等邊對等角即可求得∠CAM=∠OAM,由此可判斷①;通過證明△ACM∽△AMB,根據(jù)相似三角形的對應邊成比例可判斷②;求出∠MOP=60°,利用弧長公式求得的長可判斷③;由BD⊥PC,AC⊥PC,OM⊥PC,可得BD∥AC//OM,繼而可得PB=OB=AO,PD=DM=CM,進而有OM=2BD=2,在Rt△PBD中,PB=BO=OM=2,利用勾股定理求出PD的長,可得CM=DM=DP=,由此可判斷④.【詳解】連接OM,∵PE為⊙O的切線,∴OM⊥PC,∵AC⊥PC,∴OM∥AC,∴∠CAM=∠AMO,∵OA=OM,∠OAM=∠AMO,∴∠CAM=∠OAM,即AM平分∠CAB,故①正確;∵AB為⊙O的直徑,∴∠AMB=90°,∵∠CAM=∠MAB,∠ACM=∠AMB,∴△ACM∽△AMB,∴,∴AM2=AC?AB,故②正確;∵∠APE=30°,∴∠MOP=∠OMP﹣∠APE=90°﹣30°=60°,∵AB=4,∴OB=2,∴的長為,故③錯誤;∵BD⊥PC,AC⊥PC,OM⊥PC,∴BD∥AC//OM,∴△PBD∽△PAC,∴,∴PB=PA,又∵AO=BO,AO+BO=AB,AB+PB=PA,∴PB=OB=AO,又∵BD∥AC//OM,∴PD=DM=CM,∴OM=2BD=2,在Rt△PBD中,PB=BO=OM=2∴PD==,∴CM=DM=DP=,故④正確,故答案為①②④.【點睛】本題考查了切線的性質(zhì),平行線分線段成比例定理,相似三角形的判定與性質(zhì),勾股定理等,綜合性較強,正確添加輔助線,熟練掌握和靈活運用相關(guān)知識是解題的關(guān)鍵.17、2【解析】由5x-5的值與2x-9的值互為相反數(shù)可知:5x-5+2x-9=0,解此方程即可求得答案.【詳解】由題意可得:5x-5+2x-9=0,移項,得7x=14,系數(shù)化為1,得x=2.【點睛】本題考查了相反數(shù)的性質(zhì)以及一元一次方程的解法.18、1【分析】根據(jù)題意和函數(shù)圖象中的數(shù)據(jù)可以求得點A和點B之間的距離,再根據(jù)圖象中的數(shù)據(jù)可以求得當小華跑完2個米回時,小月離B點的距離,本題得以解決.【詳解】解:設(shè)A點到B點的距離為S米,小華的速度為a米/分,小月的速度為b米/分,,解得:;則當小華跑完1個來回時,小月離B點的距離為:772-550=222(米),即小華跑完1個來回比小月多跑的路程是:550-222=328(米),故小華跑完2個來回比小月多跑的路程是:328×2=656(米),則當小華跑完2個米回時,小月離B點的距離為:656-550=1(米)故答案為:1.【點睛】本題考查一次函數(shù)的應用,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.三、解答題(共78分)19、(1);(2);(3),.【分析】(1)利用待定系數(shù)法即可解決問題;(2)過點、分別做軸于點,軸于點,根據(jù)相似三角形的性質(zhì)得出PM的長,即點P的縱坐標,代入直線解析式,從而求解;(3)過點作交的延長線于點,若求的面積,求出CH的長即可,根據(jù)旋轉(zhuǎn)120°,得∠CAH=60°,解直角三角形AHC即可得出CH長,從而求解,【詳解】解:(1))∵A(2,0),,設(shè)直線AB的解析式為y=kx+b,則有,解得:,∴直線AB的解析式為.(2)如圖1,過點、分別做軸于點,軸于點,即PM∥BN.∵,∴AP:AB=2:3,∴=∴將代入解析式可得,∴(3)①如圖2,過點作交的延長線于點.∵中,由勾股定理得:AP=,在中,,∴∴;②過點H作FE∥x軸,過點C作CE⊥FE于點E,交x軸于點G,過點A作AF⊥FE于點F,Rt△ACH中,AH=,∵PM∥AF,AM∥HF,根據(jù)直角相等、兩直線平行,同位角相等易證△APM∽△HAF,AP=2,AM=4,PM=2,∴,即,解得:AF=,HF=3,∵∠AHF+∠CHE=∠AHF+∠FAH=90°,∴∠CHE=∠FAH,∵∠HEC=∠AFH=90°,∴△HEC∽△AFH,方法同上得:CE=3,HE=,由四邊形AFEG是矩形,得AF=GE=,AG=FH+HE,∴OG=OA+FH+HE=2+3+=5+,CG=CE-EG=3-,即點.【點睛】本題考查一次函數(shù)的綜合應用、相似三角形的判定與性質(zhì)、待定系數(shù)法等,解題關(guān)鍵是靈活運用所學知識解決問題,難度稍大.20、(1),,.(2)或.(3)當時,有最大值,最大值為【分析】(1)先求出反比例函數(shù)解析式,進而求出點A坐標,最后用待定系數(shù)法,即可得出結(jié)論;(2)直接利用函數(shù)圖象得出結(jié)論;(3)先設(shè)出點P坐標,進而表示出△PED的面積,即可得出結(jié)論.【詳解】解:(1)∵點B(2,1)在雙曲線上,∴k2=2×1=2,∴雙曲線的解析式為y2=,∵A(1,m)在雙曲線y2=上,∴m=1×2=2,∴A(1,2),∵直線AB:y1=k1x+b過A(1,2)、B(2,1)兩點,∴,∴,∴直線AB的解析式為:y=?x+3;故,,故答案為:-1;2;3;(2)根據(jù)函數(shù)圖象得,不等式y(tǒng)2>y1的解集為0<x<1或x>2;(3)設(shè)點,且,則當時,有最大值,最大值為【點睛】此題是反比例函數(shù)綜合題,主要考查了一次函數(shù)和反比例函數(shù)的圖象和性質(zhì),待定系數(shù)法,三角形的面積公式,求出直線AB的解析式是解本題的關(guān)鍵.21、【分析】作交于點,則,,易得,根據(jù)光的反射規(guī)律易得,可得△CDE和三角形ABE均為等腰直角三角形,設(shè),則,,,在中有,代入求解即可.【詳解】解:如圖作交于點,則,在中,易求得由光的反射規(guī)律易得,在中,易求得設(shè),則,,在中,,即,解得:即旗桿的高度為.【點睛】本題考查解直角三角形,解題的關(guān)鍵是熟練運用銳角三角函數(shù)的定義以及光的反射規(guī)律,本題屬于中等題型22、(1)證明見解析;(2);(3)當,;當,.【分析】(1)先利用角平分線的性質(zhì),得,,再利用外角、三角形內(nèi)角和進行換算即可;(2)延長AD,構(gòu)造平行相似,得到,再按條件進行計算;(3)利用△ABC與△ADE相似,得到,所以得到或,再利用三角函數(shù)求值.【詳解】(1)如圖1中∵∴,∵AD平分∴,同理得∵,∴∴(2)延長AD交BC于點F∵∴BE平分∠ABC∴∴∴∴,∵∴(3)∵△ABC與△ADE相似,∴∠ABC中必有一個內(nèi)角和為90°∵∠ABC是銳角∴當時∵∴∵∴,∵分別是的內(nèi)角的平分線∴∴∵∴代入解得②當時∵△ABC與△ADE相似∴∵分別是的內(nèi)角的平分線∴∴此時綜上所述,當,;當,【點睛】本題考查了相似三角形的綜合題,掌握相似三角形的判定和性質(zhì)、平行線的判定和性質(zhì)以及銳角三角函數(shù)是解題的關(guān)鍵.23、(1)﹣2≤x<0或x≥4;(2)y=﹣,y=﹣x+2;(3)6【分析】(1)根據(jù)圖像即可得到答案;(2)將點A(4,﹣2),B(﹣2,m)的坐標分別代入解析式即可得到答案;(3)過點B作BD⊥AC,根據(jù)點A、B的坐標求得AC、BD的長度,即可求得圖形面積.【詳解】解:(1)由圖象可知:不等式﹣x+n≤的解集為﹣2≤x<0或x≥4;(2)∵一次函數(shù)y=﹣x+n的圖象與反比例函數(shù)y=的圖象交于A(4,﹣2),B(﹣2,m)兩點.∴k=4×(﹣2)=﹣2m,﹣2=﹣4+n解得m=4,k=﹣8,n=2,∴反比例函數(shù)和一次函數(shù)的解析式分別為y=﹣,y=﹣x+2;(3)由(2)知B(-2,4),過點B作BD⊥AC,交AC的延長線于D,∵A(4,﹣2),B(-2,4),∴AC=2,BD=2+4=6,S△ABC=.【點睛】此題考查反比例函數(shù)的性質(zhì),待定系數(shù)法求函數(shù)解析式,反比例函數(shù)與一次函數(shù)的關(guān)系,在求圖像中三角形面積時用點的坐標表示線段的長度.24、m【分析】分別過C,D作CF⊥AE于F,DG⊥AE于F,構(gòu)建直角三角形解答即可.【詳解】分別過C,D作CF⊥AE于F,DG⊥AE于F,
∴∠AGD=∠BFC=90°,
∵AB∥CD,
∴∠FCD=90°,
∴四邊形CFGD是矩形,
∴CD=FG=30m,CF=DG,
在直角三角形ADG中,∠DA
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 5《七律 長征》 說課稿-2024-2025學年語文六年級上冊統(tǒng)編版001
- 2024年四年級英語下冊 Unit 7 What's the matter第4課時說課稿 譯林牛津版001
- 18《慈母情深》說課稿-2024-2025學年統(tǒng)編版語文五年級上冊001
- 2025門窗工程承包合同
- 2025市場咨詢服務合同范本
- 2025嫁接種苗技術(shù)服務合同書
- 2024-2025學年高中歷史 第2單元 西方人文精神的起源及其發(fā)展 第7課 啟蒙運動說課稿 新人教版必修3
- 信息平臺建設(shè)合同范本
- 7 《我在這里長大》第一課時(說課稿)2023-2024學年統(tǒng)編版道德與法治三年級下冊
- 書推廣合同范例
- 專題23平拋運動臨界問題相遇問題類平拋運和斜拋運動
- 超聲科醫(yī)德醫(yī)風制度內(nèi)容
- QC成果清水混凝土樓梯卡槽式木模板體系創(chuàng)新
- 高三開學收心班會課件
- 蒸汽換算計算表
- 四年級計算題大全(列豎式計算,可打印)
- 科技計劃項目申報培訓
- 591食堂不合格食品處置制度
- 國際金融課件(完整版)
- 220t鍋爐課程設(shè)計 李學玉
- 全英文劇本 《劇院魅影》
評論
0/150
提交評論