版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.如圖,的半徑為3,是的弦,直徑,,則的長為()A. B. C. D.2.如圖,在Rt△PMN中,∠P=90°,PM=PN,MN=6cm,矩形ABCD中AB=2cm,BC=10cm,點C和點M重合,點B、C(M)、N在同一直線上,令Rt△PMN不動,矩形ABCD沿MN所在直線以每秒1cm的速度向右移動,至點C與點N重合為止,設移動x秒后,矩形ABCD與△PMN重疊部分的面積為y,則y與x的大致圖象是()A. B. C. D.3.反比例函數(shù)的圖象經(jīng)過點,若點在反比例函數(shù)的圖象上,則n等于()A.-4 B.-9 C.4 D.94.下列約分正確的是()A. B. C. D.5.某工廠一月份生產(chǎn)機器100臺,計劃二、三月份共生產(chǎn)機器240臺,設二、三月份的平均增長率為x,則根據(jù)題意列出方程是()A.100(1+x)2=240B.100(1+x)+100(1+x)2=240C.100+100(1+x)+100(1+x)2=240D.100(1﹣x)2=2406.一元二次方程的根的情況是()A.有兩個相等的實數(shù)根 B.有兩個不相等的實數(shù)根C.只有一個實數(shù)根 D.沒有實數(shù)根7.下面的圖形中,是軸對稱圖形但不是中心對稱圖形的是()A. B. C. D.8.在平面直角坐標系中,將拋物線y=2(x﹣1)2+1先向左平移2個單位,再向上平移3個單位,則平移后拋物線的表達式是()A.y=2(x+1)2+4 B.y=2(x﹣1)2+4C.y=2(x+2)2+4 D.y=2(x﹣3)2+49.生物興趣小組的學生,將自己收集的標本向本組其他成員各贈送一件,全組共互增了182件.如果全組共有x名同學,則根據(jù)題意列出的方程是().A.x(x+1)=182 B.x(x+1)=182×C.x(x-1)=182 D.x(x-1)=182×210.下列說法中,正確的個數(shù)()①位似圖形都相似:②兩個等邊三角形一定是位似圖形;③兩個相似多邊形的面積比為5:1.則周長的比為5:1;④兩個大小不相等的圓一定是位似圖形.A.1個 B.2個 C.3個 D.4個二、填空題(每小題3分,共24分)11.二次函數(shù)y=ax2+4ax+c的最大值為4,且圖象過點(-3,0),則該二次函數(shù)的解析式為____________.12.將一元二次方程變形為的形式為__________.13.如圖是拋物線y1=ax2+bx+c(a≠0)圖象的一部分,拋物線的頂點坐標A(1,3),與x軸的一個交點B(4,0),直線y2=mx+n(m≠0)與拋物線交于A,B兩點,下列結(jié)論:①2a+b=0;②abc>0;③方程ax2+bx+c=3有兩個相等的實數(shù)根;④拋物線與x軸的另一個交點是(﹣1,0);⑤當1<x<4時,有y2<y1,其中正確的是________.14.已知三角形的兩邊分別是3和4,第三邊的數(shù)值是方程x2﹣9x+14=0的根,則這個三角形的周長為_____.15.已知點A(3,y1)、B(2,y2)都在拋物線y=﹣(x+1)2+2上,則y1與y2的大小關(guān)系是_____.16.拋物線與y軸的交點做標為__________.17.如圖,在△ABC中,∠ACB=90°,AC=6,AB=1.現(xiàn)分別以點A、點B為圓心,以大于AB相同的長為半徑作弧,兩弧相交于點M和點N,作直線MN交AB于點D,交BC于點E.若將△BDE沿直線MN翻折得△B′DE,使△B′DE與△ABC落在同一平面內(nèi),連接B′E、B′C,則△B′CE的周長為_____.18.如圖,矩形的對角線、相交于點,AB與BC的比是黃金比,過點C作CE∥BD,過點D作DE∥AC,DE、交于點,連接AE,則tan∠DAE的值為___________.(不取近似值)三、解答題(共66分)19.(10分)在如圖所示的網(wǎng)格圖中,已知和點(1)在網(wǎng)格圖中點M為位似中心,畫出,使其與的位似比為1:1.(1)寫出的各頂點的坐標.20.(6分)如圖,在平面直角坐標系xOy中,A(3,4),B(0,﹣1),C(4,0).(1)以點B為中心,把△ABC逆時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的圖形;(2)在(1)中的條件下,①點C經(jīng)過的路徑弧的長為(結(jié)果保留π);②寫出點A'的坐標為.21.(6分)一個不透明的口袋中裝有4張卡片,卡片上分別標有數(shù)字1、-2、-3、4,它們除了標有的數(shù)字不同之外再也沒有其它區(qū)別,小芳從盒子中隨機抽取一張卡片.(1)求小芳抽到負數(shù)的概率;(2)若小明再從剩余的三張卡片中隨機抽取一張,請你用樹狀圖或列表法,求小明和小芳兩人均抽到負數(shù)的概率.22.(8分)如圖1,的余切值為2,,點D是線段上的一動點(點D不與點A、B重合),以點D為頂點的正方形的另兩個頂點E、F都在射線上,且點F在點E的右側(cè),聯(lián)結(jié),并延長,交射線于點P.(1)點D在運動時,下列的線段和角中,________是始終保持不變的量(填序號);①;②;③;④;⑤;⑥;(2)設正方形的邊長為x,線段的長為y,求y與x之間的函數(shù)關(guān)系式,并寫出定義域;(3)如果與相似,但面積不相等,求此時正方形的邊長.23.(8分)已知一次函數(shù)的圖象與軸和軸分別交于、兩點,與反比例函數(shù)的圖象分別交于、兩點.(1)如圖,當,點在線段上(不與點、重合)時,過點作軸和軸的垂線,垂足為、.當矩形的面積為2時,求出點的位置;(2)如圖,當時,在軸上是否存在點,使得以、、為頂點的三角形與相似?若存在,求出點的坐標;若不存在,說明理由;(3)若某個等腰三角形的一條邊長為5,另兩條邊長恰好是兩個函數(shù)圖象的交點橫坐標,求的值.24.(8分)拋物線y=-2x2+8x-1.(1)用配方法求頂點坐標,對稱軸;(2)x取何值時,y隨x的增大而減???25.(10分)(特例感知)(1)如圖①,∠ABC是⊙O的圓周角,BC為直徑,BD平分∠ABC交⊙O于點D,CD=3,BD=4,則點D到直線AB的距離為.(類比遷移)(2)如圖②,∠ABC是⊙O的圓周角,BC為⊙O的弦,BD平分∠ABC交⊙O于點D,過點D作DE⊥BC,垂足為E,探索線段AB、BE、BC之間的數(shù)量關(guān)系,并說明理由.(問題解決)(3)如圖③,四邊形ABCD為⊙O的內(nèi)接四邊形,∠ABC=90°,BD平分∠ABC,BD=7,AB=6,則△ABC的內(nèi)心與外心之間的距離為.26.(10分)如圖,拋物線y=a(x+2)(x﹣4)與x軸交于A,B兩點,與y軸交于點C,且∠ACO=∠CBO.(1)求線段OC的長度;(2)若點D在第四象限的拋物線上,連接BD、CD,求△BCD的面積的最大值;(3)若點P在平面內(nèi),當以點A、C、B、P為頂點的四邊形是平行四邊形時,直接寫出點P的坐標.
參考答案一、選擇題(每小題3分,共30分)1、C【分析】連接OC,利用垂徑定理以及圓心角與圓周角的關(guān)系求出;再利用弧長公式即可求出的長.【詳解】解:連接OC(同弧所對的圓心角是圓周角的2倍)∵直徑∴=(垂徑定理)∴故選C【點睛】本題考查了垂徑定理、圓心角與圓周角以及利用弧長公式求弧長,熟練掌握相關(guān)定理和公式是解答本題的關(guān)鍵.2、A【解析】分析:在Rt△PMN中解題,要充分運用好垂直關(guān)系和45度角,因為此題也是點的移動問題,可知矩形ABCD以每秒1cm的速度由開始向右移動到停止,和Rt△PMN重疊部分的形狀可分為下列三種情況,(1)0≤x≤2;(2)2<x≤4;(3)4<x≤6;根據(jù)重疊圖形確定面積的求法,作出判斷即可.詳解:∵∠P=90°,PM=PN,∴∠PMN=∠PNM=45°,由題意得:CM=x,分三種情況:①當0≤x≤2時,如圖1,邊CD與PM交于點E,∵∠PMN=45°,∴△MEC是等腰直角三角形,此時矩形ABCD與△PMN重疊部分是△EMC,∴y=S△EMC=CM?CE=;故選項B和D不正確;②如圖2,當D在邊PN上時,過P作PF⊥MN于F,交AD于G,∵∠N=45°,CD=2,∴CN=CD=2,∴CM=6﹣2=4,即此時x=4,當2<x≤4時,如圖3,矩形ABCD與△PMN重疊部分是四邊形EMCD,過E作EF⊥MN于F,∴EF=MF=2,∴ED=CF=x﹣2,∴y=S梯形EMCD=CD?(DE+CM)==2x﹣2;③當4<x≤6時,如圖4,矩形ABCD與△PMN重疊部分是五邊形EMCGF,過E作EH⊥MN于H,∴EH=MH=2,DE=CH=x﹣2,∵MN=6,CM=x,∴CG=CN=6﹣x,∴DF=DG=2﹣(6﹣x)=x﹣4,∴y=S梯形EMCD﹣S△FDG=﹣=×2×(x﹣2+x)﹣=﹣+10x﹣18,故選項A正確;故選:A.點睛:此題是動點問題的函數(shù)圖象,有難度,主要考查等腰直角三角形的性質(zhì)和矩形的性質(zhì)的應用、動點運動問題的路程表示,注意運用數(shù)形結(jié)合和分類討論思想的應用.3、A【分析】將點(-2,6)代入得出k的值,再將代入即可【詳解】解:∵反比例函數(shù)的圖象經(jīng)過點,∴k=(-2)×6=-12,∴又點(3,n)在此反比例函數(shù)的圖象上,
∴3n=-12,
解得:n=-1.
故選:A【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征,只要點在函數(shù)的圖象上,則一定滿足函數(shù)的解析式.反之,只要滿足函數(shù)解析式就一定在函數(shù)的圖象上.4、D【分析】根據(jù)約分的運算法則,以及分式的基本性質(zhì),分別進行判斷,即可得到答案.【詳解】解:A、,故A錯誤;B、,故B錯誤;C、,故C錯誤;D、,正確;故選:D.【點睛】本題考查了分式的基本性質(zhì),以及約分的運算法則,解題的關(guān)鍵是熟練掌握分式的基本性質(zhì)進行解題.5、B【分析】設二、三月份的平均增長率為x,則二月份的生產(chǎn)量為100×(1+x),三月份的生產(chǎn)量為100×(1+x)(1+x),根據(jù)二月份的生產(chǎn)量+三月份的生產(chǎn)量=1臺,列出方程即可.【詳解】設二、三月份的平均增長率為x,則二月份的生產(chǎn)量為100×(1+x),三月份的生產(chǎn)量為100×(1+x)(1+x),根據(jù)題意,得100(1+x)+100(1+x)2=1.故選B.【點睛】本題考查了由實際問題抽象出一元二次方程的知識,設出未知數(shù),正確找出等量關(guān)系是解決問題的關(guān)鍵.6、D【分析】先計算判別式的值,然后根據(jù)判別式的意義判斷方程根的情況.【詳解】∵△=62-4×(-1)×(-10)=36-40=-4<0,
∴方程沒有實數(shù)根.
故選D.【點睛】此題考查一元二次方程的根的判別式,解題關(guān)鍵在于掌握方程有兩個不相等的實數(shù)根;當△=0,方程有兩個相等的實數(shù)根;當△<0,方程沒有實數(shù)根.7、D【解析】分析:根據(jù)軸對稱圖形和中心對稱圖形的定義判斷即可.詳解:A.不是軸對稱圖形,是中心對稱圖形,故此選項錯誤;B.不是軸對稱圖形,是中心對稱圖形,故此選項錯誤;C.是軸對稱圖形,也是中心對稱圖形,故此選項錯誤;D.是軸對稱圖形,不是中心對稱圖形,故此選項正確.故選D.點睛:考查軸對稱圖形和中心對稱圖形的定義,熟記它們的概念是解題的關(guān)鍵.8、A【分析】只需確定原拋物線解析式的頂點坐標平移后的對應點坐標即可.【詳解】解:原拋物線y=2(x﹣1)2+1的頂點為(1,1),先向左平移2個單位,再向上平移3個單位,新頂點為(﹣1,4).即所得拋物線的頂點坐標是(﹣1,4).所以,平移后拋物線的表達式是y=2(x+1)2+4,故選:A.【點睛】本題主要考查了二次函數(shù)圖像的平移,拋物線的解析式為頂點式時,求出頂點平移后的對應點坐標,可得平移后拋物線的解析式,熟練掌握二次函數(shù)圖像的平移規(guī)律是解題的關(guān)鍵.9、C【解析】試題分析:先求每名同學贈的標本,再求x名同學贈的標本,而已知全組共互贈了182件,故根據(jù)等量關(guān)系可得到方程.每名同學所贈的標本為:(x-1)件,那么x名同學共贈:x(x-1)件,根據(jù)題意可列方程:x(x-1)=182,故選C.考點:本題考查的是根據(jù)實際問題列一元二次方程點評:找到關(guān)鍵描述語,找到等量關(guān)系,然后準確的列出方程是解答本題的關(guān)鍵.10、B【分析】根據(jù)位似圖形的定義(如果兩個圖形不僅是相似圖形,而且對應頂點的連線相交于一點,對應邊互相平行,那么這樣的兩個圖形叫做位似圖形,這個點叫做位似中心.)分別對①②④進行判斷,根據(jù)相似多邊形的面積比等于相似比的平方,周長比等于相似比對③進行判斷.【詳解】解:①位似圖形都相似,故該選項正確;②兩個等邊三角形不一定是位似圖形,故該選項錯誤;③兩個相似多邊形的面積比為5:1.則周長的比為,故該選項錯誤;④兩個大小不相等的圓一定是位似圖形,故該選項正確.正確的是①和④,有兩個,故選:B【點睛】本題考查的是位似圖形、相似多邊形性質(zhì),掌握位似圖形的定義、相似多邊形的性質(zhì)定理是解決此題的關(guān)鍵.二、填空題(每小題3分,共24分)11、y=-4x2-16x-12【解析】∵拋物線的對稱軸為直線x==﹣2,∴拋物線的頂點坐標為(﹣2,4),又∵拋物線過點(﹣3,0),∴,解得:a=﹣4,c=﹣12,則拋物線的解析式為y=-4x2-16x-12.故答案為y=-4x2-16x-12.【點睛】本題考查用待定系數(shù)法求二次函數(shù)解析式,解此題的關(guān)鍵在于先根據(jù)頂點坐標與函數(shù)系數(shù)的關(guān)系,求得頂點坐標,再用待定系數(shù)法求函數(shù)解析式即可.12、【分析】根據(jù)完全平方公式配方即可.【詳解】解:故答案為:.【點睛】此題考查的是配方法,掌握完全平方公式是解決此題的關(guān)鍵.13、①③⑤【解析】①根據(jù)拋物線的開口方向以及對稱軸為x=1,即可得出a、b之間的關(guān)系以及ab的正負,由此得出①正確,根據(jù)拋物線與y軸的交點在y軸正半軸上,可知c為正結(jié)合a<0、b>0即可得出②錯誤,將拋物線往下平移3個單位長度可知拋物線與x軸只有一個交點從而得知③正確,根據(jù)拋物線的對稱性結(jié)合拋物線的對稱軸為x=1以及點B的坐標,即可得出拋物線與x軸的另一交點坐標,④正確,⑤根據(jù)兩函數(shù)圖象的上下位置關(guān)系即可解題.【詳解】∵拋物線的頂點坐標A(1,3),∴對稱軸為x=-=1,∴2a+b=0,①正確,∵a,b,拋物線與y軸交于正半軸,∴c∴abc0,②錯誤,∵把拋物線向下平移3個單位長度得到y(tǒng)=ax2+bx+c-3,此時拋物線的頂點也向下平移3個單位長度,∴頂點坐標為(1,0),拋物線與x軸只有一個交點,即方程ax2+bx+c=3有兩個相等的實數(shù)根,③正確.∵對稱軸為x=-=1,與x軸的一個交點為(4,0),根據(jù)對稱性質(zhì)可知與x軸的另一個交點為(-2,0),④錯誤,由拋物線和直線的圖像可知,當1<x<4時,有y2<y1.,⑤正確.【點睛】本題考查了二次函數(shù)的圖像和性質(zhì),熟悉二次函數(shù)的性質(zhì)是解題關(guān)鍵.14、1.【分析】求出方程的解,再看看是否符合三角形三邊關(guān)系定理即可解答.【詳解】∵x2﹣1x+14=0,∴(x﹣2)(x﹣7)=0,則x﹣2=0或x﹣7=0,解得x=2或x=7,當x=2時,三角形的周長為2+3+4=1;當x=7時,3+4=7,不能構(gòu)成三角形;故答案為:1.【點睛】本題考查解一元二次方程和三角形三邊關(guān)系定理的應用,解題的關(guān)鍵是確定三角形的第三邊.15、y1<y1【分析】先求得函數(shù)的對稱軸為,再判斷、在對稱軸右側(cè),從而判斷出與的大小關(guān)系.【詳解】∵函數(shù)y=﹣(x+1)1+1的對稱軸為,∴、在對稱軸右側(cè),∵拋物線開口向下,在對稱軸右側(cè)y隨x的增大而減小,且3>1,∴y1<y1.故答案為:y1<y1.【點睛】本題考查了待定系數(shù)法二次函數(shù)圖象上點的特征,利用已知解析式得出對稱軸進而利用二次函數(shù)增減性得出答案是解題關(guān)鍵.16、(0,9)【分析】令x=0,求出y的值,然后寫出交點坐標即可.【詳解】解:x=0時,y=-9,
所以,拋物線與y軸的交點坐標為(0,-9).
故正確答案為:(0,-9).【點睛】本題考查二次函數(shù)圖象上點的坐標特征,解題關(guān)鍵是熟練掌握二次函數(shù)圖象與坐標軸的交點的求解方法.17、3【分析】根據(jù)線段垂直平分線的性質(zhì)和折疊的性質(zhì)得點B′與點A重合,BE=AE,進而可以求解.【詳解】在△ABC中,∠ACB=90°,AC=6,AB=1.根據(jù)勾股定理,得:BC=2.連接AE,由作圖可知:MN是線段AB的垂直平分線,∴BE=AE,BD=AD,由翻折可知:點B′與點A重合,∴△B′CE的周長=AC+CE+AE=AC+CE+BE=AC+BC=6+2=3故答案為3.【點睛】本題主要考查垂直平分線的性質(zhì)定理和折疊的性質(zhì),通過等量代換把△B′CE的周長化為AC+BC的值,是解題的關(guān)鍵.18、【分析】根據(jù)AB與BC的比是黃金比得到AB∶BC=,連接OE與CD交于點G,過E點作EF⊥AF交AD延長線于F,證明四邊形CEDO是菱形,得到,,即可求出tan∠DAE的值;【詳解】解:∵AB與BC的比是黃金比,∴AB∶BC=連接OE與CD交于點G,過E點作EF⊥AF交AD延長線于F,矩形的對角線、相交于點,∵CE∥BD,DE∥AC,∴四邊形CEDO是平行四邊形,又∵是矩形,∴OC=OD,∴四邊形CEDO是菱形(鄰邊相等的平行四邊形是菱形),∴CD與OE垂直且平分,∴,∴,tan∠DAE,故答案為:;【點睛】本題主要考查了矩形的性質(zhì)、菱形的判定與性質(zhì)、平行四邊形的判定與性質(zhì)、黃金分割比,掌握鄰邊相等的平行四邊形是菱形是解題的關(guān)鍵;三、解答題(共66分)19、(1)圖見解析;(1).【分析】(1)先根據(jù)位似圖形的性質(zhì)和位似比得出點的位置,再順次連接點即可得;(1)先根據(jù)點的位置得出它們的坐標,再根據(jù)點分別為的中點即可得出答案.【詳解】(1)先連接,再根據(jù)位似圖形的性質(zhì)和位似比可得點分別為的中點,再順次連接點即可得到,如圖所示:(1),且點分別為的中點,,即.【點睛】本題考查了位似圖形的性質(zhì)和位似比、畫位似圖形,掌握理解位似圖形的性質(zhì)和位似比是解題關(guān)鍵.20、(1)見解析;(2)①,②(﹣5,2).【分析】(1)利用網(wǎng)格特點和旋轉(zhuǎn)的性質(zhì)畫出A、C的對應點A′、C′,然后順次連接即可;(2)①先利用勾股定理計算出BC的長,然后利用弧長公式計算;②利用(1)中所畫圖形寫出點A′的坐標.【詳解】解:(1)如圖,△A′BC′為所作;(2)①BC=,故點C經(jīng)過的路徑弧的長==π;②點A′的坐標為(﹣5,2).故答案為:π,(﹣5,2).【點睛】本題考查了作圖?旋轉(zhuǎn)變換:根據(jù)旋轉(zhuǎn)的性質(zhì)可知,對應角都相等都等于旋轉(zhuǎn)角,對應線段也相等,由此可以通過作相等的角,在角的邊上截取相等的線段的方法,找到對應點,順次連接得出旋轉(zhuǎn)后的圖形,也考查了弧長公式的應用.21、(1);(2)【分析】(1)由一個不透明的口袋中裝有4張卡片,卡片上分別標有數(shù)字1、-2、-3、4,它們除了標有的數(shù)字不同之外再也沒有其它區(qū)別,小芳從盒子中隨機抽取一張卡片,抽到負數(shù)的有2種情況,直接利用概率公式求解即可求得答案.(2)首先根據(jù)題意畫出樹狀圖或列表,然后由圖表求得所有等可能的結(jié)果與小明和小芳兩人均抽到負數(shù)的情況,再利用概率公式求解即可求得答案.【詳解】(1)∵一個不透明的口袋中裝有4張卡片,卡片上分別標有數(shù)字1、-2、-3、4,它們除了標有的數(shù)字不同之外再也沒有其它區(qū)別,∴小芳從盒子中隨機抽取一張卡片,抽到負數(shù)的有2種情況,∴P(小芳抽到負數(shù))=(2)畫樹狀圖如下:∵共有12種機會均等的結(jié)果,其中兩人均抽到負數(shù)的有2種,∴P(兩人均抽到負數(shù))=22、(1)④⑤;(2);(3)或.【分析】(1)作于M,交于N,如圖,利用三角函數(shù)的定義得到,設,則,利用勾股定理得,解得,即,,設正方形的邊長為x,則,,由于,則可判斷為定值;再利用得到,則可判斷為定值;在中,利用勾股定理和三角函數(shù)可判斷在變化,在變化,在變化;(2)易得四邊形為矩形,則,證明,利用相似比可得到y(tǒng)與x的關(guān)系式;(3)由于,與相似,且面積不相等,利用相似比得到,討論:當點P在點F點右側(cè)時,則,所以,當點P在點F點左側(cè)時,則,所以,然后分別解方程即可得到正方形的邊長.【詳解】(1)如圖,作于M,交于N,在中,∵,設,則,∵,∴,解得,∴,,設正方形的邊長為x,在中,∵,∴,∴,在中,,∴為定值;∵,∴,∴為定值;在中,,而在變化,∴在變化,在變化,∴在變化,所以和是始終保持不變的量;故答案為:④⑤(2)∵MN⊥AP,DEFG是正方形,∴四邊形為矩形,∴,∵,∴,∴,即,∴(3)∵,與相似,且面積不相等,∴,即,∴,當點P在點F點右側(cè)時,AP=AF+PF==,∴,解得,當點P在點F點左側(cè)時,,∴,解得,綜上所述,正方形的邊長為或.【點睛】本題考查了相似形綜合題:熟練掌握銳角三角函數(shù)的定義、正方形的性質(zhì)和相似三角形的判定與性質(zhì).23、(1)或;(2)存在,或;(3)【分析】(1)根據(jù)已知條件先求出函數(shù)解析式,然后根據(jù)平行得到,得出,又結(jié)合矩形面積=,可求出結(jié)果;(2)先由已知條件推到出點E在A點左側(cè),然后求出C,D兩點坐標,再分以下兩種情況:①當;②當,得出,進而可得出結(jié)果;(3)聯(lián)立一次函數(shù)和反比例函數(shù)的解析式得出方程組,消去y得出關(guān)于x的一元二次方程,解出x的值,再分以下兩種情況結(jié)合三角形的三邊關(guān)系求解:①5為等腰三角形的腰長;②5為等腰三角形底邊長.進而得出k的值.【詳解】解:(1)當時,,如圖,由軸,軸,易得.∴,即①,而矩形面積為2,∴②.∴由①②得為1或2.∴或.(2)∵,∴,,∴,而,∴點不可能在點右側(cè),當在點左側(cè)時,,聯(lián)立或即,.①當,∴.而,,,,即.∴.②當,∴.即,∴.綜上所述,或.(3)當和時,聯(lián)立,得,,,.①當5為等腰三角形的腰長時,.②當5為等腰三角形底邊長時,.而,∴舍去.因此,綜上,.【點睛】本題是一次函數(shù)和反比例函數(shù)的綜合題,主要考查一次函數(shù)和反比例函數(shù)解析式的求法,圖象與性質(zhì),兩函數(shù)交點問題以及相似的判定與性質(zhì),綜合性較強,有一定的難度.24、(1)(2,2),x=2(2)當x≥2時,y隨x的增大而減小【解析】(1)利用配方法將拋物線解析式邊形為y=-2(x-2)2+2,由此即可得出拋物線的頂點坐標以及拋物線的對稱軸;(2)由a=-2<0利用二次函數(shù)的性質(zhì)即可得出:當x≥2時,y隨x的增大而減小,此題得解.【詳解】(1)∵y=-2x2+8x-1=-2(x2-4x)-1=-2(x2-4x+4)+8-1=-2(x-2)2+2,∴該拋物線的頂點坐標為(2,2),對稱軸為直線x=2.(2)∵a=-2<0,∴當x≥2時,y隨x的增大而減?。军c睛】本題考查了二次函數(shù)的三種形式以及二次函數(shù)的性質(zhì),利用配方法將二次函數(shù)解析式的一般式換算成頂點式是解題的關(guān)鍵.25、(1)(2)AB+BC=2BE(3)【分析】(1)由AB是直徑可得∠BDC=90°,根據(jù)勾股定理可得BC=5過點D分別作DE⊥BC于點E,DF⊥BA于點F由BD平分∠ABC可得DE=DF=,DF即為所求,(2)過點D分別作DE⊥BC于點E,DF⊥BA于點F由∠ABC+∠ADC=180°,∠ABC+∠EDF=180°可得∠ADF=∠CDE進而可證△ADF≌△CDE(ASA)∴AF=CE∴BF-AB=BC-BE易證BF=BE∴BE-AB=BC-BE,即AB+BC=2BE(3)如圖易得四邊形BEDF為正方形,BD是對角線,可得正方形邊長為7由(2)可得BC=2BE-AB=8,由勾股定理可得AC=10作△ABC內(nèi)切圓,M為圓心,N為切點,由切線長定理可得,所以ON=5-4=1由面積法易得內(nèi)切圓半徑為2【詳解】解:(1)由AB是直徑可得∠BDC=90°,根據(jù)勾股定理可得BC=5過點D分別作DE⊥BC于點E,DF⊥BA于點F由BD平分∠ABC可得DE=DF=,DF即為所
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 口譯就餐對話演示
- 企業(yè)標準的編寫合同5篇
- 二零二五年度智能車庫使用權(quán)出售及管理服務合同3篇
- 二零二五版2025年度情感修復協(xié)議書-自愿離婚調(diào)解合同3篇
- 2025版共享用工社會保險繳納協(xié)議范本3篇
- 設備維護保養(yǎng)培訓教學案例
- 中考題型連連看近3年幻燈片課件
- 第8課現(xiàn)代文學和美術(shù)教學文案
- 電腦操作會考電腦2001-2002上課講義
- 二零二五年茶葉市場推廣合作合同2篇
- 礦石運輸與堆放技術(shù)
- 學校安全存在的問題及整改措施
- 2024-2025年江蘇專轉(zhuǎn)本英語歷年真題(含答案)
- 紅色中國風蛇年晚會豎版邀請函
- 電力線路遷改工程方案
- 六年級下冊語文試卷-《14 文言文二則》一課一練(含答案)人教部編版
- 酒店求購收購方案
- 工程建設法規(guī)與案例 第3版 課件全套 劉黎虹第1-11章 建設法規(guī)概述-建設工程糾紛解決及法律責任
- 工商企業(yè)管理畢業(yè)論文范文(4篇)
- 《2024版 CSCO非小細胞肺癌診療指南》解讀 2
- 化工企業(yè)安全操作規(guī)程
評論
0/150
提交評論